CN108111077A - The fault-tolerant prediction stator flux regulation method and system of permanent magnet synchronous motor - Google Patents

The fault-tolerant prediction stator flux regulation method and system of permanent magnet synchronous motor Download PDF

Info

Publication number
CN108111077A
CN108111077A CN201810030764.3A CN201810030764A CN108111077A CN 108111077 A CN108111077 A CN 108111077A CN 201810030764 A CN201810030764 A CN 201810030764A CN 108111077 A CN108111077 A CN 108111077A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810030764.3A
Other languages
Chinese (zh)
Other versions
CN108111077B (en
Inventor
黄守道
吴公平
罗德荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201810030764.3A priority Critical patent/CN108111077B/en
Publication of CN108111077A publication Critical patent/CN108111077A/en
Application granted granted Critical
Publication of CN108111077B publication Critical patent/CN108111077B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/28Stator flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • External Artificial Organs (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

The invention discloses a kind of fault-tolerant prediction stator flux regulation method and system of permanent magnet synchronous motor, method is using double-closed-loop control and devises stator magnetic linkage sliding mode observer, fault-tolerant prediction rotational speed governor and fault-tolerant prediction stator flux regulation device, the outer shroud of two close cycles is fault-tolerant prediction rotational speed governor, inner ring is fault-tolerant prediction stator flux regulation device, and stator magnetic linkage sliding mode observer is used to observe load torque, external disturbance, stator magnetic linkage, the rotor position estimate angle of deviation and permanent magnet loss of excitation rate;Fault-tolerant prediction rotational speed governor is used to calculate q axis stator magnetic linkage command values;Fault-tolerant prediction stator flux regulation device realizes the control to permanent magnet synchronous motor for calculating d, q axis command voltage.The present invention not only can effectively eliminate the current deviation that permanent magnet loss of excitation and rotor position estimate do not generate on time, but also can effectively inhibit the pulsation of torque.

Description

The fault-tolerant prediction stator flux regulation method and system of permanent magnet synchronous motor
Technical field
The present invention relates to the control technologies of permanent magnet synchronous motor, and in particular to a kind of fault-tolerant pre- measure of permanent magnet synchronous motor Sub- flux linkage control method and system.
Background technology
Recently as the continuous improvement of microprocessor arithmetic speed and performance so that can be real in a controlling cycle Existing more complicated control algolithm.Therefore, PREDICTIVE CONTROL is because having many advantages, such as that simple in structure, dynamic response is fast and control accuracy is high Extensive concern and research are obtained.Predictive current control can make permanent magnet synchronous motor electric current obtain good dynamic and stable state Response, but there is also it is certain the problem of.Since PREDICTIVE CONTROL is System design based on model method, predictive controller is to electricity The dependence of the parameters such as the magnetic linkage of machine is stronger, and is critically dependent on the location information of rotor.
Since the military service operating mode of permanent magnet synchronous motor is poor, environment is more severe, and with the increase of Years Of Service, permanent magnetism Loss of excitation failure easily occurs for body.In addition, some more severe operating mode lower rotor parts location information it is more difficult acquisition or acquisition Rotor position information is inaccurate, this will all reduce the precision and reliability of Predictive Control System.It navigates in electric vehicle, aviation My god, in the occasion that use environments are severe, reliability requirement is high such as defence equipment, when the location information of permanent magnet loss of excitation or rotor obtains When taking inaccuracy, it will cause electric current static difference, system effectiveness is caused to reduce, nominal torque can not be exported and can not be operated in The problems such as torque control pattern.This greatly limits the application ranges of permanent magnet synchronous motor.
The content of the invention
The technical problem to be solved in the present invention:For the above problem of the prior art, a kind of permanent magnet synchronous motor is provided Fault-tolerant prediction stator flux regulation method and system, rotor permanent magnet magnetic linkage parameter of the present invention independent of permanent magnet synchronous motor With the position without detecting rotor exactly, this is a kind of PREDICTIVE CONTROL mode having compared with strong fault tolerance ability, it effectively disappears Except Classical forecast control algolithm by rotor permanent magnet loss of excitation and rotor position estimate is not allowed to be influenced.
In order to solve the above-mentioned technical problem, the technical solution adopted by the present invention is:
A kind of fault-tolerant prediction stator flux regulation method of permanent magnet synchronous motor, implementation steps include:
1) rotational speed omega (k) and d shaft voltages u of arbitrary k moment permanent magnet synchronous motor are obtainedd(k), q shaft voltages uq(k)、d Shaft current id(k) and q shaft currents iq(k);
2) by rotational speed omega (k) and d shaft voltages ud(k), q shaft voltages uq(k), d shaft currents id(k) and q shaft currents iq(k) It inputs in default stator magnetic linkage sliding mode observer and obtains load torqueExternal disturbanceD axis stator magnetic linkagesq Axis stator magnetic linkageRotor position angle deviationAnd permanent magnet loss of excitation rate
3) according to the load torque obtained in stator magnetic linkage sliding mode observerExternal disturbanceRotor position angle is inclined DifferencePermanent magnet loss of excitation rateAnd rotational speed command value ωrefPass through default fault-tolerant prediction rotating speed with motor response rotational speed omega (k) Controller carries out the q axis stator magnetic linkage command values that fault-tolerant prediction rotating speed control calculates the k moment
4) the d axis stator magnetic linkage command values at k moment are setWherein ψroFor permanent magnet flux linkage, glug is used Bright day expansion calculates d, q axis stator magnetic linkage command value at k+2 moment
5) according to d axis stator magnetic linkage command valuesQ axis stator magnetic linkage command valuesStator magnetic linkage is slided The d axis stator magnetic linkages obtained in mould observerQ axis stator magnetic linkagesRotor position angle deviationPermanent magnetism Body loss of excitation rateFault-tolerant prediction stator flux regulation is carried out by default fault-tolerant prediction stator flux regulation device and calculates the instruction of d axis VoltageWithqAxis command voltage
6) by d axis command voltagesWithqAxis command voltageIt is quiet that two-phase is obtained after inverse Park conversion The only α phase command voltages u under coordinate systemα(k+1) and β phase command voltages uβ(k+1);
7) by the α phase command voltages u under two-phase rest frameα(k+1) and β phase command voltages uβ(k+1) through SVPWM moulds The 6 road pwm pulse signals that permanent magnet synchronous motor is driven to work are generated after block modulation.
Preferably, the detailed step of step 2) includes:
2.1) permanent magnet synchronous motor in the case of permanent magnet loss of excitation and rotor position estimate of the foundation as shown in formula (1) are not allowed State equation;
In formula (1), x is the vector of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed composition,For the integration of matrix x, A, B, D, C, E are State Equation Coefficients item matrix, the matrix that u is d shaft voltages, q shaft voltages and q axis stator magnetic linkage form, fψFor forever Magnet magnetic linkage item, faFor indeterminate, x1For the vector of d shaft currents, q shaft currents and rotating speed composition, each parameter in formula (1) Shown in function expression such as formula (1-1)~formula (1-4);
fω=3npro△ψrq+△ψrdψq+△ψrd△ψrq] (1-4)
In formula (1-1)~formula (1-4), ψdFor d axis stator magnetic linkage, ψqFor q axis stator magnetic linkages, ω is permanent magnet synchronous motor Rotating speed, idFor d shaft currents, iqFor q shaft currents, udFor d shaft voltages, uqFor q shaft voltages, ψroFor permanent magnet flux linkage, △ ψrdFor permanent magnetism D axis Virtual shipyard variable after body loss of excitation, △ ψrqFor q axis Virtual shipyard variable, T after permanent magnet loss of excitationLFor load torque, fωFor not Determine item, LdFor d axle inductance values, LqFor q axle inductance values, R is stator resistance value, npFor number of pole-pairs, J is rotary inertia;
2.2) for permanent magnet synchronous motor state equation, the sliding-mode surface as shown in formula (2) is chosen;
In formula (2), e is the vector x and its observation of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed compositionBetween Difference,For d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed composition vector x observation,For d shaft currents, q shaft currents And the vector x of rotating speed composition1Observation, E be (1-3) shown in State Equation Coefficients item matrix E,For q shaft currents idSight Measured value,For q shaft currents iqObservation,For d axis stator magnetic linkages ψdObservation,For q axis stator magnetic linkages ψqObservation,For the observation of the rotational speed omega of permanent magnet synchronous motor, e1For d axis stator magnetic linkages ψdAnd its observationDifference, e2For q axis stators Magnetic linkage ψqAnd its observationDifference, e3For the rotational speed omega and its observation of permanent magnet synchronous motorDifference;
2.3) stator magnetic linkage sliding mode observer of the design as shown in formula (3);
In formula (3),For d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed composition vector x observation,Determine for d axis The observation of the vector x of sub- magnetic linkage, q axis stator magnetic linkage and rotating speed composition, sgn () are sign function, and A, B, C, E are formula (1) State Equation Coefficients item, u be d shaft voltages, q shaft voltages and q axis stator magnetic linkage composition matrix, fψFor permanent magnet flux linkage item, ω is the rotating speed of permanent magnet synchronous motor, and e is the vector x and its observation of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed composition Between difference, shown in the function expression such as formula (3-1) of L, H is matrix and its function expression such as formula (3- to be designed 2) shown in;
In formula (3-2), h1,h2,h3For the diagonal entry of matrix H to be designed;
2.4) sign function for calling is designed;
2.5) observation of d axis stator magnetic linkages and the observation of q axis stator magnetic linkages can be obtained such as formula (4) by solving;
In formula (4),For k+1 moment d axis stator flux observer values,It is seen for k+1 moment q axis stator magnetic linkage Measured value, R be stator resistance value, LdFor d axle inductance values, LqFor q axle inductance values, TsFor the sampling period,For k moment d axis stators Magnetic linkage ψd(k) observation,For k moment q axis stator magnetic linkages ψq(k) observation,For the rotating speed at k+1 moment,For the observation of the rotating speed of k moment permanent magnet synchronous motors, ω (k) is the rotating speed of k moment permanent magnet synchronous motors, ud(k) it is k Moment d shaft voltage, uq(k) it is k moment q shaft voltages, ψroFor permanent magnet flux linkage, e1(k) it is k moment d axis stator magnetic linkages ψd(k) and Its observationDifference, e2(k) it is k moment q axis stator magnetic linkages ψq(k) and its observationDifference, e3(k) for the k moment forever The rotating speed and its observation of magnetic-synchro motorDifference, sgn () be step 2.4) design sign function, h1,h2,h3To treat The diagonal entry of the matrix H of design, npFor number of pole-pairs, J is rotary inertia;
2.6) solution such as formula (5)~(11), obtain the observation of load torqueThe observation of external disturbanceRotor The observation of position angle deviationAnd the observation of permanent magnet loss of excitation rate
In formula (5)~(11),For the observation of d axis Virtual shipyard variables,For the sight of q axis Virtual shipyard variables Measured value, h1,h2,h3For the diagonal entry of matrix H to be designed, e1(k) it is k moment d axis stator magnetic linkages ψd(k) and its observationDifference, e2(k) it is k moment q axis stator magnetic linkages ψq(k) and its observationDifference, e3(k) it is k moment permanent magnet synchronous electrics The rotating speed and its observation of machineDifference, sgn () be step 2.4) design sign function,For load torque observation, J is rotary inertia, and ω (k) is the rotating speed of k moment permanent magnet synchronous motors, npFor number of pole-pairs,For external disturbance observation, LqFor q Axle inductance value, ψroFor permanent magnet flux linkage,For d axis Virtual shipyard variable △ ψ after permanent magnet loss of excitationrdObservation,For Q axis Virtual shipyard variable △ ψ after permanent magnet loss of excitationrqObservation, ψq(k) it is k moment q axis stator magnetic linkages,For rotor-position Angular deviation observation,For the observation of magnetic linkage after permanent magnet loss of excitation,For permanent magnet loss of excitation rate observation.
Preferably, in step 2.4) shown in the function expression such as formula (12) of the sign function of design;
In formula (12), ν is the input parameter of sign function, and p is small constant.
Preferably, fault-tolerant prediction rotating speed control is carried out by default fault-tolerant prediction rotational speed governor in step 3) and calculates k The q axis stator magnetic linkage command values at momentFunction expression such as formula (13) shown in;
In formula (13),For the q axis stator magnetic linkage command values at k moment, ωref(k+1) it is the rotary speed instruction at k+1 moment Value, ω (k) be k moment permanent magnet synchronous motors rotating speed, npFor number of pole-pairs, ψroFor permanent magnet flux linkage, TdsFor sampling period Ts's Multiple, J are rotary inertia, LqFor q axle inductance values,For d axis Virtual shipyard variable △ ψ after permanent magnet loss of excitationrdObservation, ψq(k-1) it is k-1 moment q axis stator magnetic linkages,For load torque observation,For external disturbance observation.
Preferably, d, q axis stator magnetic linkage command value at k+2 moment are calculated in step 4) using Lagrangian expansion Function expression such as formula (14) shown in;
In formula (14),For the d axis stator magnetic linkage command values at k+2 moment,Determine for the d axis at k+1 moment Sub- magnetic linkage command value,For the d axis stator magnetic linkage command values at k moment, ψroFor permanent magnet flux linkage, LdFor d axle inductance values,For the d shaft current command values at k moment;For the q axis stator magnetic linkage command values at k+2 moment,For the k moment Q axis stator magnetic linkage command values,For the q axis stator magnetic linkage command values at k-1 moment,For the q at k-2 moment Axis stator magnetic linkage command value.
Preferably, fault-tolerant prediction stator magnetic linkage control is carried out by default fault-tolerant prediction stator flux regulation device in step 5) System calculates d axis command voltagesWithqAxis command voltageFunction expression such as formula (15) shown in;
In formula (15), ud(k+1) it is the d shaft voltages at k+1 moment,For the q shaft voltages at k+1 moment,For the d axis stator magnetic linkage command values at k+2 moment,For the q axis stator magnetic linkage command values at k+2 moment, R is Stator resistance value, LdFor d axle inductance values, LqFor q axle inductance values, TsFor the sampling period,For k+1 moment d axis stator magnetic linkages Observation,For k+1 moment q axis stator flux observer values, ω (k) is the rotating speed of k moment permanent magnet synchronous motors, ψroFor Permanent magnet flux linkage,For permanent magnet loss of excitation rate observation,For rotor position angle deviation observation.
The present invention also provides a kind of fault-tolerant prediction stator flux regulation system of permanent magnet synchronous motor, including department of computer science System, the computer system are programmed to perform the fault-tolerant prediction stator flux regulation method of the foregoing permanent magnet synchronous motor of the present invention The step of.
The fault-tolerant prediction stator flux regulation method tool of permanent magnet synchronous motor of the present invention has the advantage that:
1) present invention is not allowed to cause to pass on the basis of Classical forecast control for permanent magnet loss of excitation and rotor position estimate The problem of system PREDICTIVE CONTROL can not effectively control permanent magnet synchronous motor, the present invention proposes fault-tolerant prediction stator magnet Chain control method, this method is succinct efficiently to have stronger fault-tolerant ability simultaneously.
2) present invention can effectively eliminate permanent magnet loss of excitation and influence to control system is not allowed in rotor position estimate, together When torque pulsation also play inhibitory action, ensure that even running ability of the permanent magnet synchronous motor under special operation condition therefore.
The fault-tolerant prediction stator flux regulation system of permanent magnet synchronous motor of the present invention is the appearance of permanent magnet synchronous motor of the present invention The corresponding system of mistake prediction stator flux regulation method, therefore equally also there is the fault-tolerant pre- measure of permanent magnet synchronous motor of the present invention The aforementioned advantages of sub- flux linkage control method, therefore details are not described herein.
Description of the drawings
Fig. 1 is the control principle schematic diagram of present invention method.
Fig. 2 is the system frame structure schematic diagram of the embodiment of the present invention.
For the embodiment of the present invention, the torque control performance in the case where rotor position estimate is not allowed tests schematic diagram to Fig. 3.
Fig. 4 is that torque control performance of the embodiment of the present invention in permanent magnet loss of excitation tests schematic diagram.
Fig. 5 is the embodiment of the present invention in permanent magnet loss of excitation and the unpunctual torque control performance experiment signal of rotor position estimate Figure.
Specific embodiment
As shown in Figure 1, the implementation steps bag of the fault-tolerant prediction stator flux regulation method of the present embodiment permanent magnet synchronous motor It includes:
1) rotational speed omega (k) and d shaft voltages u of arbitrary k moment permanent magnet synchronous motor are obtainedd(k), q shaft voltages uq(k)、d Shaft current id(k) and q shaft currents iq(k);
2) by rotational speed omega (k) and d shaft voltages ud(k), q shaft voltages uq(k), d shaft currents id(k) and q shaft currents iq(k) It inputs in default stator magnetic linkage sliding mode observer and obtains load torqueExternal disturbanceD axis stator magnetic linkagesq Axis stator magnetic linkageRotor position angle deviationAnd permanent magnet loss of excitation rate
3) according to the load torque obtained in stator magnetic linkage sliding mode observerExternal disturbanceRotor position angle is inclined DifferencePermanent magnet loss of excitation rateAnd rotational speed command value ωrefPass through default fault-tolerant prediction rotating speed with motor response rotational speed omega (k) Controller carries out the q axis stator magnetic linkage command values that fault-tolerant prediction rotating speed control calculates the k moment
4) the d axis stator magnetic linkage command values at k moment are setWherein ψroFor permanent magnet flux linkage, glug is used Bright day expansion calculates d, q axis stator magnetic linkage command value at k+2 moment
5) according to d axis stator magnetic linkage command valuesQ axis stator magnetic linkage command valuesStator magnetic linkage sliding formwork The d axis stator magnetic linkages obtained in observerQ axis stator magnetic linkagesRotor position angle deviationPermanent magnet Loss of excitation rateFault-tolerant prediction stator flux regulation is carried out by default fault-tolerant prediction stator flux regulation device and calculates d axis instruction electricity PressureWithqAxis command voltage
6) by d axis command voltagesWithqAxis command voltageIt is quiet that two-phase is obtained after inverse Park conversion The only α phase command voltages u under coordinate systemα(k+1) and β phase command voltages uβ(k+1);
7) by the α phase command voltages u under two-phase rest frameα(k+1) and β phase command voltages uβ(k+1) through SVPWM moulds The 6 road pwm pulse signals that permanent magnet synchronous motor is driven to work are generated after block modulation.
In the present embodiment, the detailed step of step 2) includes:
2.1) permanent magnet synchronous motor in the case of permanent magnet loss of excitation and rotor position estimate of the foundation as shown in formula (1) are not allowed State equation;
In formula (1), x is the vector of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed composition,For the integration of matrix x, A, B, D, C, E are State Equation Coefficients item matrix, the matrix that u is d shaft voltages, q shaft voltages and q axis stator magnetic linkage form, fψFor forever Magnet magnetic linkage item, faFor indeterminate, x1For the vector of d shaft currents, q shaft currents and rotating speed composition, each parameter in formula (1) Shown in function expression such as formula (1-1)~formula (1-4);
fω=3npro△ψrq+△ψrdψq+△ψrd△ψrq] (1-4)
In formula (1-1)~formula (1-4), ψdFor d axis stator magnetic linkage, ψqFor q axis stator magnetic linkages, ω is permanent magnet synchronous motor Rotating speed, idFor d shaft currents, iqFor q shaft currents, udFor d shaft voltages, uqFor q shaft voltages, ψroFor permanent magnet flux linkage, △ ψrdFor permanent magnetism D axis Virtual shipyard variable after body loss of excitation, △ ψrqFor q axis Virtual shipyard variable, T after permanent magnet loss of excitationLFor load torque, fωFor not Determine item, LdFor d axle inductance values, LqFor q axle inductance values, R is stator resistance value, npFor number of pole-pairs, J is rotary inertia;
2.2) for permanent magnet synchronous motor state equation, the sliding-mode surface as shown in formula (2) is chosen;
In formula (2), e is the vector x and its observation of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed compositionBetween Difference,For d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed composition vector x observation,For d shaft currents, q shaft currents And the vector x of rotating speed composition1Observation, E be (1-3) shown in State Equation Coefficients item matrix E,For q shaft currents idSight Measured value,For q shaft currents iqObservation,For d axis stator magnetic linkages ψdObservation,For q axis stator magnetic linkages ψqObservation,For the observation of the rotational speed omega of permanent magnet synchronous motor, e1For d axis stator magnetic linkages ψdAnd its observationDifference, e2For q axis stators Magnetic linkage ψqAnd its observationDifference, e3For the rotational speed omega and its observation of permanent magnet synchronous motorDifference;
2.3) stator magnetic linkage sliding mode observer of the design as shown in formula (3);
In formula (3),For d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed composition vector x observation,Determine for d axis The observation of the vector x of sub- magnetic linkage, q axis stator magnetic linkage and rotating speed composition, sgn () are sign function, and A, B, C, E are formula (1) State Equation Coefficients item, u be d shaft voltages, q shaft voltages and q axis stator magnetic linkage composition matrix, fψFor permanent magnet flux linkage item, ω is the rotating speed of permanent magnet synchronous motor, and e is the vector x and its observation of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed composition Between difference, shown in the function expression such as formula (3-1) of L, H is matrix and its function expression such as formula (3- to be designed 2) shown in;
In formula (3-2), h1,h2,h3For the diagonal entry of matrix H to be designed;
2.4) sign function for calling is designed;
2.5) observation of d axis stator magnetic linkages and the observation of q axis stator magnetic linkages can be obtained such as formula (4) by solving;
In formula (4),For k+1 moment d axis stator flux observer values,For k+1 moment q axis stator magnetic linkages Observation, R be stator resistance value, LdFor d axle inductance values, LqFor q axle inductance values, TsFor the sampling period,Determine for k moment d axis Sub- magnetic linkage ψd(k) observation,For k moment q axis stator magnetic linkages ψq(k) observation,For the rotating speed at k+1 moment,For the observation of the rotating speed of k moment permanent magnet synchronous motors, ω (k) is the rotating speed of k moment permanent magnet synchronous motors, ud(k) it is k Moment d shaft voltage, uq(k) it is k moment q shaft voltages, ψroFor permanent magnet flux linkage, e1(k) it is k moment d axis stator magnetic linkages ψd(k) and Its observationDifference, e2(k) it is k moment q axis stator magnetic linkages ψq(k) and its observationDifference, e3(k) it is the k moment The rotating speed and its observation of permanent magnet synchronous motorDifference, sgn () be step 2.4) design sign function, h1,h2,h3 For the diagonal entry of matrix H to be designed, npFor number of pole-pairs, J is rotary inertia;
2.6) solution such as formula (5)~(11), obtain the observation of load torqueThe observation of external disturbanceRotor The observation of position angle deviationAnd the observation of permanent magnet loss of excitation rate
In formula (5)~(11),For the observation of d axis Virtual shipyard variables,For the sight of q axis Virtual shipyard variables Measured value, h1,h2,h3For the diagonal entry of matrix H to be designed, e1(k) it is k moment d axis stator magnetic linkages ψd(k) and its observationDifference, e2(k) it is k moment q axis stator magnetic linkages ψq(k) and its observationDifference, e3(k) it is k moment permanent-magnet synchronous The rotating speed and its observation of motorDifference, sgn () be step 2.4) design sign function,It is observed for load torque Value, J are rotary inertia, and ω (k) is the rotating speed of k moment permanent magnet synchronous motors, npFor number of pole-pairs,For external disturbance observation, Lq For q axle inductance values, ψroFor permanent magnet flux linkage,For d axis Virtual shipyard variable △ ψ after permanent magnet loss of excitationrdObservation, For q axis Virtual shipyard variable △ ψ after permanent magnet loss of excitationrqObservation, ψq(k) it is k moment q axis stator magnetic linkages,For rotor position Angular deviation observation is put,For the observation of magnetic linkage after permanent magnet loss of excitation,For permanent magnet loss of excitation rate observation.
In the present embodiment, in step 2.4) shown in the function expression such as formula (12) of the sign function of design;
In formula (12), ν is the input parameter of sign function, and p is small constant.
In the present embodiment, fault-tolerant prediction rotating speed control meter is carried out by default fault-tolerant prediction rotational speed governor in step 3) Calculate the q axis stator magnetic linkage command values at k momentFunction expression such as formula (13) shown in;
In formula (13),For the q axis stator magnetic linkage command values at k moment, ωref(k+1) it is the rotary speed instruction at k+1 moment Value, ω (k) be k moment permanent magnet synchronous motors rotating speed, npFor number of pole-pairs, ψroFor permanent magnet flux linkage, TdsFor sampling period Ts's Multiple, J are rotary inertia, LqFor q axle inductance values,For d axis Virtual shipyard variable △ ψ after permanent magnet loss of excitationrdObservation, ψq(k-1) it is k-1 moment q axis stator magnetic linkages,For load torque observation,For external disturbance observation.
In the present embodiment, d, q axis stator magnetic linkage command value at k+2 moment are calculated in step 4) using Lagrangian expansionFunction expression such as formula (14) shown in;
In formula (14),For the d axis stator magnetic linkage command values at k+2 moment,Determine for the d axis at k+1 moment Sub- magnetic linkage command value,For the d axis stator magnetic linkage command values at k moment, ψroFor permanent magnet flux linkage, LdFor d axle inductance values,For the d shaft current command values at k moment;For the q axis stator magnetic linkage command values at k+2 moment,For the k moment Q axis stator magnetic linkage command values,For the q axis stator magnetic linkage command values at k-1 moment,For the q at k-2 moment Axis stator magnetic linkage command value.
In the present embodiment, fault-tolerant prediction stator magnet is carried out by default fault-tolerant prediction stator flux regulation device in step 5) Chain control calculates d axis command voltagesWithqAxis command voltageFunction expression such as formula (15) shown in;
In formula (15), ud(k+1) it is the d shaft voltages at k+1 moment,For the q shaft voltages at k+1 moment,For the d axis stator magnetic linkage command values at k+2 moment,For the q axis stator magnetic linkage command values at k+2 moment, R is Stator resistance value, LdFor d axle inductance values, LqFor q axle inductance values, TsFor the sampling period,For k+1 moment d axis stator magnetic linkages Observation,For k+1 moment q axis stator flux observer values, ω (k) is the rotating speed of k moment permanent magnet synchronous motors, ψroFor Permanent magnet flux linkage,For permanent magnet loss of excitation rate observation,For rotor position angle deviation observation.
As shown in Fig. 2, using a kind of fault-tolerant prediction stator flux regulation for permanent magnet synchronous motor system of the present embodiment The system of method includes permanent magnet synchronous motor 1, signal acquisition module 2, stator magnetic linkage sliding mode observer 3, fault-tolerant predetermined speed control It is device 4 processed, Lagrangian computing module 5, fault-tolerant prediction stator flux regulation device 6, inverse park conversion 7, SVPWM modulation modules 8, inverse Become device 9.Wherein, the input terminal of signal acquisition module 2 is linked with permanent magnet synchronous motor 1, and the output terminal of signal acquisition module 2 is with determining The input terminal link of sub- magnetic linkage sliding mode observer 3, the output terminal of stator magnetic linkage sliding mode observer 3 respectively with fault-tolerant predetermined speed control The input terminal link of the input terminal of device 4 processed and fault-tolerant prediction stator flux regulation device 6, the output of fault-tolerant predetermined speed controller 4 The input terminal with Lagrangian computing module 5 is held to link, the output terminal of Lagrangian computing module 5 and fault-tolerant prediction stator magnetic linkage The input terminal link of controller 6, the output terminal and the input terminal of inverse park conversion 7 of fault-tolerant prediction stator flux regulation device 6 link, The input terminal of the output terminal and SVPWM modulation modules 8 of inverse park conversion 7 links, the output terminal of SVPWM modulation modules 8 and inversion The input terminal link of device 9, output terminal and the permanent magnet synchronous motor 1 of inverter 9 link, wherein:
Signal acquisition module 2 is used to obtain rotational speed omega (k), the d shaft voltages u of permanent magnet synchronous motord(k), q shaft voltages uq (k), d shaft currents id(k) and q shaft currents iq(k);
Stator magnetic linkage sliding mode observer 3 is used to observe load torqueExternal disturbanceD axis stator magnetic linkagesq Axis stator magnetic linkageRotor position angle deviationAnd permanent magnet loss of excitation rate
Fault-tolerant predetermined speed controller 4 is used to obtain the q axis stator magnetic linkage command values at k moment
Lagrangian computing module 5 is used to obtain d, q axis stator magnetic linkage command value at k+2 moment
Fault-tolerant prediction stator flux regulation device 6 is used to obtain d axis command voltagesWithqAxis command voltage
Inverse park conversion 7 is used to obtain the α phase command voltages u under two-phase rest frameα(k+1) and β phase command voltages uβ (k+1);
SVPWM modulation modules 8 generate 6 road pwm pulse signals of driving inverter work for modulating.
Torque control performance tests schematic diagram, wherein T in the case that Fig. 3 is not allowed for rotor position estimateeRepresent that permanent magnetism is same Walk the electromagnetic torque of motor, iabcRepresent the threephase stator electric current of permanent magnet synchronous motor;The operation of permanent magnet synchronous motor is divided into following Three phases:First stage, permanent magnet synchronous motor normal operation;Second stage, there is a situation where rotor position estimate is not allowed, and Position deviation angle is just;Phase III, there is a situation where rotor position estimate is not allowed, and position deviation angle is negative;It can by Fig. 3 Know, the electromagnetic torque in first stage, permanent magnet synchronous motor normal operation is 800N;Second stage and three phases In, in the case that rotor position estimate is not allowed, the torque performance of permanent magnet synchronous motor and positive reason after method using the present invention Torque performance under condition is equally superior, it follows that in the case where rotor position estimate is not allowed, using side proposed by the present invention Method can inhibit the pulsation of torque well.
Fig. 4 be permanent magnet loss of excitation in the case of torque control performance test schematic diagram, wherein Te, iabcDefinition and Fig. 4 it is complete It is exactly the same;The operation of permanent magnet synchronous motor is divided into following three phases:First stage, permanent magnet synchronous motor normal operation;Second Loss of excitation failure occurs for stage, permanent magnet;Phase III, permanent magnet synchronous motor recover to normal operation;As shown in Figure 4, first A stage and three phases, electromagnetic torque during permanent magnet synchronous motor normal operation is 800N;In second stage, permanent magnet In the case of generation loss of excitation failure, the torque performance of permanent magnet synchronous motor and turn under normal circumstances after method using the present invention Square performance is equally superior, it follows that in the case where loss of excitation failure occurs for permanent magnet, it can be very using method proposed by the present invention Inhibit the pulsation of torque well.
Torque control performance tests schematic diagram in the case that Fig. 5 is not allowed for permanent magnet loss of excitation and rotor position estimate, wherein Te, iabcDefinition it is identical with Fig. 4;The operation of permanent magnet synchronous motor is divided into following three phases:First stage, permanent magnetism are same Walk motor normal operation;Second stage, while there is a situation where permanent magnet loss of excitation and rotor position estimate are not allowed, but position deviation Angle is just;Phase III, while there is a situation where permanent magnet loss of excitation and rotor position estimate are not allowed, but position deviation angle is negative; As shown in Figure 5, the electromagnetic torque in first stage, permanent magnet synchronous motor normal operation is 800N;Second stage and In three phases, in the case that permanent magnet loss of excitation and rotor position estimate are not allowed, permanent magnet synchronous electric after method using the present invention The torque performance of machine is superior as torque performance under normal circumstances, it follows that estimating in permanent magnet loss of excitation and rotor-position In the case that meter is inaccurate, the pulsation of torque can be inhibited well using method proposed by the present invention.
In conclusion the fault-tolerant prediction stator flux regulation method of the present embodiment permanent magnet synchronous motor uses double-closed-loop control And stator magnetic linkage sliding mode observer, fault-tolerant prediction rotational speed governor and fault-tolerant prediction stator flux regulation device are devised, it is double to close The outer shroud of ring is that fault-tolerant prediction rotational speed governor, inner ring are fault-tolerant prediction stator flux regulation device, stator magnetic linkage sliding mode observer Load torque, external disturbance, stator magnetic linkage, rotor position can be observed according to the rotating speed, voltage, electric current of permanent magnet synchronous motor simultaneously Put estimated bias angle and permanent magnet loss of excitation rate;What the fault-tolerant prediction rotational speed governor was exported according to stator magnetic linkage sliding mode observer The response speed of observation, the command value of rotating speed and motor calculates q axis stator magnetic linkage command values;The fault-tolerant prediction stator magnet The q axis stator magnets that the observation and fault-tolerant prediction rotational speed governor that chain controller is exported according to stator magnetic linkage sliding mode observer export Chain command value calculates d, q axis command voltage, and then realizes the control to permanent magnet synchronous motor, by above-mentioned technological means, no The current deviation that permanent magnet loss of excitation and rotor position estimate do not generate on time only can be effectively eliminated, but also can effectively be inhibited The pulsation of torque.
The present embodiment also provides a kind of fault-tolerant prediction stator flux regulation system of permanent magnet synchronous motor, including department of computer science System, the computer system are programmed to perform the fault-tolerant prediction stator flux regulation method of the foregoing permanent magnet synchronous motor of the present embodiment The step of, which can be realized based on processors such as CPU, DSP, FPGA as needed.
The above is only the preferred embodiment of the present invention, and protection scope of the present invention is not limited merely to above-mentioned implementation Example, all technical solutions belonged under thinking of the present invention all belong to the scope of protection of the present invention.It should be pointed out that for the art Those of ordinary skill for, several improvements and modifications without departing from the principles of the present invention, these improvements and modifications It should be regarded as protection scope of the present invention.

Claims (7)

1. a kind of fault-tolerant prediction stator flux regulation method of permanent magnet synchronous motor, it is characterised in that implementation steps include:
1) rotational speed omega (k) and d shaft voltages u of arbitrary k moment permanent magnet synchronous motor are obtainedd(k), q shaft voltages uq(k), d axis electricity Flow id(k) and q shaft currents iq(k);
2) by rotational speed omega (k) and d shaft voltages ud(k), q shaft voltages uq(k), d shaft currents id(k) and q shaft currents iq(k) input is pre- If stator magnetic linkage sliding mode observer in obtain load torqueExternal disturbanceD axis stator magnetic linkagesQ axis stators Magnetic linkageRotor position angle deviationAnd permanent magnet loss of excitation rate
3) according to the load torque obtained in stator magnetic linkage sliding mode observerExternal disturbanceRotor position angle deviation Permanent magnet loss of excitation rateAnd rotational speed command value ωrefIt is controlled with motor response rotational speed omega (k) by default fault-tolerant prediction rotating speed Device carries out the q axis stator magnetic linkage command values that fault-tolerant prediction rotating speed control calculates the k moment
4) the d axis stator magnetic linkage command values at k moment are setWherein ψroFor permanent magnet flux linkage, Lagrange is used Expansion calculates d, q axis stator magnetic linkage command value at k+2 moment
5) according to d axis stator magnetic linkage command valuesQ axis stator magnetic linkage command valuesStator magnetic linkage sliding formwork is observed The d axis stator magnetic linkages obtained in deviceQ axis stator magnetic linkagesRotor position angle deviationPermanent magnet loss of excitation RateFault-tolerant prediction stator flux regulation is carried out by default fault-tolerant prediction stator flux regulation device and calculates d axis command voltagesWithqAxis command voltage
6) by d axis command voltagesWithqAxis command voltageThe static seat of two-phase is obtained after inverse Park conversion α phase command voltages u under mark systemα(k+1) and β phase command voltages uβ(k+1);
7) by the α phase command voltages u under two-phase rest frameα(k+1) and β phase command voltages uβ(k+1) through SVPWM module tune The 6 road pwm pulse signals that permanent magnet synchronous motor is driven to work are generated after system.
2. the fault-tolerant prediction stator flux regulation method of permanent magnet synchronous motor according to claim 1, which is characterized in that step Rapid detailed step 2) includes:
2.1) the permanent magnet synchronous motor state in the case of permanent magnet loss of excitation and rotor position estimate of the foundation as shown in formula (1) are not allowed Equation;
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mi>x</mi> <mo>+</mo> <mi>B</mi> <mi>u</mi> <mo>+</mo> <msub> <mi>Cf</mi> <mi>&amp;psi;</mi> </msub> <mo>+</mo> <msub> <mi>Df</mi> <mi>a</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>x</mi> <mo>=</mo> <msub> <mi>Ex</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>&amp;psi;</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
In formula (1), x is the vector of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed composition,For the integration of matrix x, A, B, D, C, E are State Equation Coefficients item matrix, the matrix that u is d shaft voltages, q shaft voltages and q axis stator magnetic linkage form, fψFor permanent magnet Magnetic linkage item, faFor indeterminate, x1For the vector of d shaft currents, q shaft currents and rotating speed composition, the function of each parameter in formula (1) Shown in expression formula such as formula (1-1)~formula (1-4);
<mrow> <mi>x</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>u</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mi>q</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>f</mi> <mi>&amp;psi;</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;&amp;psi;</mi> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;&amp;psi;</mi> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>T</mi> <mi>L</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>f</mi> <mi>&amp;omega;</mi> </msub> <mrow> <mn>2</mn> <msub> <mi>L</mi> <mi>q</mi> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> </mrow> </mtd> <mtd> <mi>&amp;omega;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>&amp;omega;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>q</mi> </msub> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>B</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mrow> <mn>3</mn> <msubsup> <mi>n</mi> <mi>p</mi> <mn>2</mn> </msubsup> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>C</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>D</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&amp;omega;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>&amp;omega;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msub> <mi>n</mi> <mi>p</mi> </msub> <mi>J</mi> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>E</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>L</mi> <mi>d</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>L</mi> <mi>q</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
fω=3nproΔψrq+Δψrdψq+ΔψrdΔψrq] (1-4)
In formula (1-1)~formula (1-4), ψdFor d axis stator magnetic linkage, ψqFor q axis stator magnetic linkages, ω is the rotating speed of permanent magnet synchronous motor, idFor d shaft currents, iqFor q shaft currents, udFor d shaft voltages, uqFor q shaft voltages, ψroFor permanent magnet flux linkage, Δ ψrdIt is lost for permanent magnet D axis Virtual shipyard variable after magnetic, Δ ψrqFor q axis Virtual shipyard variable, T after permanent magnet loss of excitationLFor load torque, fωIt is uncertain , LdFor d axle inductance values, LqFor q axle inductance values, R is stator resistance value, npFor number of pole-pairs, J is rotary inertia;
2.2) for permanent magnet synchronous motor state equation, choose the sliding-mode surface as shown in formula (2);
<mrow> <mi>e</mi> <mo>=</mo> <mi>x</mi> <mo>-</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>e</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mi>q</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;omega;</mi> <mo>-</mo> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>E</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>q</mi> </msub> <mo>-</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&amp;omega;</mi> <mo>-</mo> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
In formula (2), e is the vector x and its observation of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed compositionBetween difference,For d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed composition vector x observation,For d shaft currents, q shaft currents and rotating speed The vector x of composition1Observation, E be (1-3) shown in State Equation Coefficients item matrix E,For q shaft currents idObservation, For q shaft currents iqObservation,For d axis stator magnetic linkages ψdObservation,For q axis stator magnetic linkages ψqObservation,For forever The observation of the rotational speed omega of magnetic-synchro motor, e1For d axis stator magnetic linkages ψdAnd its observationDifference, e2For q axis stator magnetic linkages ψq And its observationDifference, e3For the rotational speed omega and its observation of permanent magnet synchronous motorDifference;
2.3) stator magnetic linkage sliding mode observer of the design as shown in formula (3);
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>+</mo> <mi>B</mi> <mi>u</mi> <mo>+</mo> <msub> <mi>Cf</mi> <mi>&amp;psi;</mi> </msub> <mo>+</mo> <mi>&amp;omega;</mi> <mi>L</mi> <mi>e</mi> <mo>+</mo> <mi>&amp;omega;</mi> <mi>H</mi> <mi> </mi> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>E</mi> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>&amp;psi;</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
In formula (3),For the observation of the vector x of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed compositionFor d axis stator magnets The observation of the vector x of chain, q axis stator magnetic linkage and rotating speed composition, sgn () are sign function, and A, B, C, E are the shape of formula (1) State system of equations is several, the matrix that u is d shaft voltages, q shaft voltages and q axis stator magnetic linkage form, fψFor permanent magnet flux linkage item, ω is The rotating speed of permanent magnet synchronous motor, e are the vector x and its observation of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed compositionBetween Difference, shown in the function expression such as formula (3-1) of L, H is matrix to be designed and its function expression such as formula (3-2) institute Show;
<mrow> <mi>L</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>H</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>h</mi> <mn>1</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>h</mi> <mn>2</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>h</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
In formula (3-2), h1,h2,h3For the diagonal entry of matrix H to be designed;
2.4) sign function for calling is designed;
2.5) observation of d axis stator magnetic linkages and the observation of q axis stator magnetic linkages can be obtained such as formula (4) by solving;
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>u</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>+</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>e</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mi>sgn</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>q</mi> </msub> </mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>u</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>e</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mi>sgn</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <msubsup> <mi>n</mi> <mi>p</mi> <mn>2</mn> </msubsup> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> </mrow> </mfrac> <msub> <mi>&amp;psi;</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>h</mi> <mn>3</mn> </msub> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mi>sgn</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
In formula (4),For k+1 moment d axis stator flux observer values,For k+1 moment q axis stator flux observers Value, R be stator resistance value, LdFor d axle inductance values, LqFor q axle inductance values, TsFor the sampling period,For k moment d axis stator magnets Chain ψd(k) observation,For k moment q axis stator magnetic linkages ψq(k) observation,For the rotating speed at k+1 moment, For the observation of the rotating speed of k moment permanent magnet synchronous motors, ω (k) is the rotating speed of k moment permanent magnet synchronous motors, ud(k) it is the k moment D shaft voltages, uq(k) it is k moment q shaft voltages, ψroFor permanent magnet flux linkage, e1(k) it is k moment d axis stator magnetic linkages ψd(k) and its see Measured valueDifference, e2(k) it is k moment q axis stator magnetic linkages ψq(k) and its observationDifference, e3(k) it is k moment permanent magnetism The rotating speed and its observation of synchronous motorDifference, sgn () be step 2.4) design sign function, h1,h2,h3To wait to set The diagonal entry of the matrix H of meter, npFor number of pole-pairs, J is rotary inertia;
2.6) solution such as formula (5)~(11), obtain the observation of load torqueThe observation of external disturbanceRotor-position The observation of angular deviationAnd the observation of permanent magnet loss of excitation rate
<mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mi>J</mi> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>n</mi> <mi>p</mi> </msub> </mfrac> <msub> <mi>h</mi> <mn>3</mn> </msub> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>3</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>&amp;omega;</mi> </msub> <mrow> <mn>2</mn> <msub> <mi>L</mi> <mi>q</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>&amp;omega;</mi> </msub> <mo>=</mo> <mn>3</mn> <msub> <mi>n</mi> <mi>p</mi> </msub> <mo>&amp;lsqb;</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <msub> <mi>&amp;psi;</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>&amp;Delta;</mi> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mo>=</mo> <msup> <mi>tan</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>-</mo> <mo>|</mo> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> </mrow> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mover> <mi>&amp;lambda;</mi> <mo>^</mo> </mover> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> </mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> </mfrac> <mo>&amp;times;</mo> <mn>100</mn> <mi>%</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
In formula (5)~(11),For the observation of d axis Virtual shipyard variables,For the observation of q axis Virtual shipyard variables, h1,h2,h3For the diagonal entry of matrix H to be designed, e1(k) it is k moment d axis stator magnetic linkages ψd(k) and its observation Difference, e2(k) it is k moment q axis stator magnetic linkages ψq(k) and its observationDifference, e3(k) it is k moment permanent magnet synchronous motors Rotating speed and its observationDifference, sgn () be step 2.4) design sign function,For load torque observation, J is Rotary inertia, ω (k) be k moment permanent magnet synchronous motors rotating speed, npFor number of pole-pairs,For external disturbance observation, LqFor q axis Inductance value, ψroFor permanent magnet flux linkage,For d axis Virtual shipyard variable Δ ψ after permanent magnet loss of excitationrdObservation,For forever Q axis Virtual shipyard variable Δ ψ after magnet loss of excitationrqObservation, ψq(k) it is k moment q axis stator magnetic linkages,For rotor position angle Deviation observation is spent,For the observation of magnetic linkage after permanent magnet loss of excitation,For permanent magnet loss of excitation rate observation.
3. the fault-tolerant prediction stator flux regulation method of permanent magnet synchronous motor according to claim 2, which is characterized in that step Shown in the function expression such as formula (12) of the sign function of rapid 2.4) middle design;
<mrow> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>e</mi> <mrow> <mi>p</mi> <mi>v</mi> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <msup> <mi>e</mi> <mrow> <mi>p</mi> <mi>v</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
In formula (12), ν is the input parameter of sign function, and p is small constant.
4. the fault-tolerant prediction stator flux regulation method of permanent magnet synchronous motor according to claim 1, which is characterized in that step It is rapid 3) in pass through it is default it is fault-tolerant prediction rotational speed governor carry out it is fault-tolerant prediction rotating speed control calculate the k moment q axis stator magnetic linkages Command valueFunction expression such as formula (13) shown in;
<mrow> <msubsup> <mi>&amp;psi;</mi> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>&amp;omega;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <msubsup> <mi>n</mi> <mi>p</mi> <mn>2</mn> </msubsup> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> <mo>+</mo> <mn>6</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> <msub> <mi>n</mi> <mi>p</mi> </msub> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> </mrow> <mrow> <mn>4</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> </mrow> </mfrac> <msub> <mi>&amp;psi;</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>n</mi> <mi>p</mi> </msub> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> </mrow> <mi>J</mi> </mfrac> <msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>n</mi> <mi>p</mi> </msub> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> </mrow> </mfrac> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>&amp;omega;</mi> </msub> </mrow> <mfrac> <mrow> <mn>9</mn> <msubsup> <mi>n</mi> <mi>p</mi> <mn>2</mn> </msubsup> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> <mo>+</mo> <mn>6</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> <msub> <mi>n</mi> <mi>p</mi> </msub> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> </mrow> <mrow> <mn>4</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> </mrow> </mfrac> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
In formula (13),For the q axis stator magnetic linkage command values at k moment, ωref(k+1) it is the rotational speed command value at k+1 moment, ω (k) be k moment permanent magnet synchronous motors rotating speed, npFor number of pole-pairs, ψroFor permanent magnet flux linkage, TdsFor sampling period TsTimes Number, J are rotary inertia, LqFor q axle inductance values,For d axis Virtual shipyard variable Δ ψ after permanent magnet loss of excitationrdObservation, ψq (k-1) it is k-1 moment q axis stator magnetic linkages,For load torque observation,For external disturbance observation.
5. the fault-tolerant prediction stator flux regulation method of permanent magnet synchronous motor according to claim 1, which is characterized in that step Rapid 4) middle d, q axis stator magnetic linkage command value that the k+2 moment is calculated using Lagrangian expansion's Shown in function expression such as formula (14);
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;psi;</mi> <mi>d</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&amp;psi;</mi> <mi>d</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&amp;psi;</mi> <mi>d</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>L</mi> <mi>d</mi> </msub> <msubsup> <mi>i</mi> <mi>d</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;psi;</mi> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>3</mn> <msubsup> <mi>&amp;psi;</mi> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>3</mn> <msubsup> <mi>&amp;psi;</mi> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&amp;psi;</mi> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
In formula (14),For the d axis stator magnetic linkage command values at k+2 moment,For the d axis stator magnets at k+1 moment Chain command value,For the d axis stator magnetic linkage command values at k moment, ψroFor permanent magnet flux linkage, LdFor d axle inductance values,For The d shaft current command values at k moment;For the q axis stator magnetic linkage command values at k+2 moment,Determine for the q axis at k moment Sub- magnetic linkage command value,For the q axis stator magnetic linkage command values at k-1 moment,For the q axis stator magnets at k-2 moment Chain command value.
6. the fault-tolerant prediction stator flux regulation method of permanent magnet synchronous motor according to claim 1, which is characterized in that step It is rapid 5) in pass through default fault-tolerant prediction stator flux regulation device and carry out fault-tolerant prediction stator flux regulation and calculate d axis command voltagesWithqAxis command voltageFunction expression such as formula (15) shown in;
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>s</mi> </msub> </mfrac> <msubsup> <mi>&amp;psi;</mi> <mi>d</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>s</mi> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>-</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mover> <mi>&amp;lambda;</mi> <mo>^</mo> </mover> </mrow> <mo>)</mo> </mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mrow> <mi>&amp;Delta;</mi> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>s</mi> </msub> </mfrac> <msubsup> <mi>&amp;psi;</mi> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>q</mi> </msub> </mfrac> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>s</mi> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mover> <mi>&amp;lambda;</mi> <mo>^</mo> </mover> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mrow> <mi>&amp;Delta;</mi> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mn>1</mn> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
In formula (15), ud(k+1) it is the d shaft voltages at k+1 moment,For the q shaft voltages at k+1 moment,For k+ The d axis stator magnetic linkage command values at 2 moment,For the q axis stator magnetic linkage command values at k+2 moment, R is stator resistance value, Ld For d axle inductance values, LqFor q axle inductance values, TsFor the sampling period,For k+1 moment d axis stator flux observer values,For k+1 moment q axis stator flux observer values, ω (k) is the rotating speed of k moment permanent magnet synchronous motors, ψroFor permanent magnet magnetic Chain,For permanent magnet loss of excitation rate observation,For rotor position angle deviation observation.
7. a kind of fault-tolerant prediction stator flux regulation system of permanent magnet synchronous motor, including computer system, it is characterised in that:Institute State the fault-tolerant prediction stator that computer system is programmed to perform in claim 1~6 permanent magnet synchronous motor described in any one The step of flux linkage control method.
CN201810030764.3A 2018-01-12 2018-01-12 The fault-tolerant prediction stator flux regulation method and system of permanent magnet synchronous motor Active CN108111077B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810030764.3A CN108111077B (en) 2018-01-12 2018-01-12 The fault-tolerant prediction stator flux regulation method and system of permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810030764.3A CN108111077B (en) 2018-01-12 2018-01-12 The fault-tolerant prediction stator flux regulation method and system of permanent magnet synchronous motor

Publications (2)

Publication Number Publication Date
CN108111077A true CN108111077A (en) 2018-06-01
CN108111077B CN108111077B (en) 2019-07-26

Family

ID=62220013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810030764.3A Active CN108111077B (en) 2018-01-12 2018-01-12 The fault-tolerant prediction stator flux regulation method and system of permanent magnet synchronous motor

Country Status (1)

Country Link
CN (1) CN108111077B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809183A (en) * 2018-06-15 2018-11-13 常熟开关制造有限公司(原常熟开关厂) A kind of motor control method and control device
CN108923709A (en) * 2018-06-26 2018-11-30 湖南大学 A kind of cascade robust Fault-Tolerant forecast Control Algorithm of permanent magnet synchronous motor
CN111130413A (en) * 2020-01-03 2020-05-08 湖南大学 Multiphase energy storage permanent magnet motor stator flux linkage prediction control method, system and medium
CN112311290A (en) * 2020-10-26 2021-02-02 江苏大学 Robust prediction permanent magnet synchronous hub motor sensorless controller
CN112886889A (en) * 2021-01-15 2021-06-01 湖南大学 Modular multi-winding permanent magnet motor system parameter immune prediction control method and system
US11031891B1 (en) 2021-02-23 2021-06-08 King Abdulaziz University Predictive flux control for induction motor drives with modified disturbance observer for improved transient response

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030218887A1 (en) * 2002-04-30 2003-11-27 Kojori Hassan A. Synchronous and bi-directional variable frequency power conversion systems
CN101149423A (en) * 2007-11-02 2008-03-26 清华大学 Permanent-magnetism synchronous motor permanent magnetic field aberration real-time detection and analysis method and device
CN106059428A (en) * 2016-07-07 2016-10-26 东南大学 Model prediction control method of three-phase four-switch inverter driven permanent magnet synchronous motor
CN106849779A (en) * 2017-03-21 2017-06-13 合肥工业大学 Switched reluctance machines dead-beat current PWM duty cycle control method
CN107482976A (en) * 2017-09-25 2017-12-15 湖南大学 Loss of excitation failure tolerant forecast Control Algorithm and device for permagnetic synchronous motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030218887A1 (en) * 2002-04-30 2003-11-27 Kojori Hassan A. Synchronous and bi-directional variable frequency power conversion systems
CN101149423A (en) * 2007-11-02 2008-03-26 清华大学 Permanent-magnetism synchronous motor permanent magnetic field aberration real-time detection and analysis method and device
CN106059428A (en) * 2016-07-07 2016-10-26 东南大学 Model prediction control method of three-phase four-switch inverter driven permanent magnet synchronous motor
CN106849779A (en) * 2017-03-21 2017-06-13 合肥工业大学 Switched reluctance machines dead-beat current PWM duty cycle control method
CN107482976A (en) * 2017-09-25 2017-12-15 湖南大学 Loss of excitation failure tolerant forecast Control Algorithm and device for permagnetic synchronous motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张昌凡 等: "一种永磁同步电机失磁故障容错预测控制算法", 《电工技术学报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809183A (en) * 2018-06-15 2018-11-13 常熟开关制造有限公司(原常熟开关厂) A kind of motor control method and control device
CN108809183B (en) * 2018-06-15 2020-07-31 常熟开关制造有限公司(原常熟开关厂) Motor control method and control device
CN108923709A (en) * 2018-06-26 2018-11-30 湖南大学 A kind of cascade robust Fault-Tolerant forecast Control Algorithm of permanent magnet synchronous motor
CN108923709B (en) * 2018-06-26 2021-04-13 湖南大学 Cascaded robust fault-tolerant predictive control method of permanent magnet synchronous motor
CN111130413A (en) * 2020-01-03 2020-05-08 湖南大学 Multiphase energy storage permanent magnet motor stator flux linkage prediction control method, system and medium
CN111130413B (en) * 2020-01-03 2021-06-04 湖南中聚福能源科技有限公司 Multiphase energy storage permanent magnet motor stator flux linkage prediction control method, system and medium
CN112311290A (en) * 2020-10-26 2021-02-02 江苏大学 Robust prediction permanent magnet synchronous hub motor sensorless controller
CN112311290B (en) * 2020-10-26 2022-03-22 江苏大学 Robust prediction permanent magnet synchronous hub motor sensorless controller
CN112886889A (en) * 2021-01-15 2021-06-01 湖南大学 Modular multi-winding permanent magnet motor system parameter immune prediction control method and system
CN112886889B (en) * 2021-01-15 2022-05-17 湖南大学 Modular multi-winding permanent magnet motor system parameter immune prediction control method and system
US11031891B1 (en) 2021-02-23 2021-06-08 King Abdulaziz University Predictive flux control for induction motor drives with modified disturbance observer for improved transient response

Also Published As

Publication number Publication date
CN108111077B (en) 2019-07-26

Similar Documents

Publication Publication Date Title
CN108111077A (en) The fault-tolerant prediction stator flux regulation method and system of permanent magnet synchronous motor
Wu et al. A signal-based fault detection and tolerance control method of current sensor for PMSM drive
Akrad et al. Design of a fault-tolerant controller based on observers for a PMSM drive
CN107482976B (en) Loss of excitation failure tolerant forecast Control Algorithm and device for permanent magnet synchronous motor
CN100574082C (en) The startup of interior permanent magnet machines and restarting
CN104283478B (en) A kind of Over Electric Motor with PMSM current control system and control method
CN104158454B (en) Synchronous motor controls device
CN101485079B (en) Sensorless control apparatus of synchronous machine
CN105027422A (en) Rotating electric machine control device
CN105490604B (en) A kind of forecast Control Algorithm of the inductive switching motor variable speed system of three-phase four
CN104718694A (en) Synchronous machine control device
CN108377117B (en) Permanent magnet synchronous motor composite current control system and method based on predictive control
CN111551849A (en) double-Y phase shift 30-degree double-redundancy permanent magnet synchronous motor turn-to-turn short circuit fault online diagnosis method
Concari et al. Validation of a faulted rotor induction machine model with an insightful geometrical interpretation of physical quantities
CN107276479A (en) A kind of two-phase orthogonal winding permagnetic synchronous motor rotating speed determines method
CN106533300A (en) Speed ring fuzzy control and high-frequency injection method-based sensorless control system
CN101946136A (en) Refrigeration equipment
Zanma et al. Model predictive direct torque control for PMSM with discrete voltage vectors
CN108923709A (en) A kind of cascade robust Fault-Tolerant forecast Control Algorithm of permanent magnet synchronous motor
Mapelli et al. A rotor resistance MRAS estimator for EV induction motor traction drive based on torque and reactive stator power: Simulation and experimental results
CN105322857A (en) Anti-loss of excitation diagnosis method based on permanent-magnet synchronous motor
Xiao et al. New adaptive sliding-mode observer design for sensorless control of PMSM in electric vehicle drive system
Zhou et al. A hybrid stepper motor control solution based on a low-cost position sensor
Prabu et al. Advanced direct torque control of induction motor
CN106877768A (en) Multi-phase permanent motor rotor-position discrimination method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201225

Address after: Room 3002, management committee complex building, Yuelu high tech Zone, No.8, bachelor street, Yuelu District, Changsha City, Hunan Province

Patentee after: Hunan zhongjufu Energy Technology Co.,Ltd.

Address before: Yuelu District City, Hunan province 410082 Changsha Lushan Road No. 2

Patentee before: HUNAN University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240201

Address after: 410082 Yuelu District Lushan South Road Lushan Gate, Changsha City, Hunan Province

Patentee after: HUNAN University

Country or region after: China

Address before: Room 3002, management committee complex building, Yuelu high tech Zone, No.8, bachelor street, Yuelu District, Changsha City, Hunan Province

Patentee before: Hunan zhongjufu Energy Technology Co.,Ltd.

Country or region before: China