CN108111077A - The fault-tolerant prediction stator flux regulation method and system of permanent magnet synchronous motor - Google Patents

The fault-tolerant prediction stator flux regulation method and system of permanent magnet synchronous motor Download PDF

Info

Publication number
CN108111077A
CN108111077A CN201810030764.3A CN201810030764A CN108111077A CN 108111077 A CN108111077 A CN 108111077A CN 201810030764 A CN201810030764 A CN 201810030764A CN 108111077 A CN108111077 A CN 108111077A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810030764.3A
Other languages
Chinese (zh)
Other versions
CN108111077B (en
Inventor
黄守道
吴公平
罗德荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201810030764.3A priority Critical patent/CN108111077B/en
Publication of CN108111077A publication Critical patent/CN108111077A/en
Application granted granted Critical
Publication of CN108111077B publication Critical patent/CN108111077B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/28Stator flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • External Artificial Organs (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开了一种永磁同步电机的容错预测定子磁链控制方法及系统,方法采用双闭环控制且设计了定子磁链滑模观测器、容错预测转速控制器以及容错预测定子磁链控制器,双闭环的外环为容错预测转速控制器、内环为容错预测定子磁链控制器,定子磁链滑模观测器用于观测出负载转矩、外部扰动、定子磁链、转子位置估计偏差角及永磁体失磁率;容错预测转速控制器用于计算出q轴定子磁链指令值;容错预测定子磁链控制器用于计算出d、q轴指令电压,进而实现对永磁同步电机的控制。本发明不仅可以有效地消除永磁体失磁及转子位置估计不准时产生的电流偏差,而且还可有效抑制转矩的脉动。

The invention discloses a fault-tolerant predictive stator flux linkage control method and system for a permanent magnet synchronous motor. The method adopts double closed-loop control and designs a stator flux linkage sliding mode observer, a fault-tolerant predictive speed controller, and a fault-tolerant predictive stator flux linkage controller. , the outer loop of the double closed loop is a fault-tolerant predictive speed controller, and the inner loop is a fault-tolerant predictive stator flux controller. The stator flux sliding mode observer is used to observe the load torque, external disturbance, stator flux linkage, and rotor position estimation deviation angle and the permanent magnet loss rate; the fault-tolerant predictive speed controller is used to calculate the q-axis stator flux command value; the fault-tolerant predictive stator flux controller is used to calculate the d, q-axis command voltage, and then realize the control of the permanent magnet synchronous motor. The invention can not only effectively eliminate the current deviation caused by the loss of magnetism of the permanent magnet and the inaccurate estimation of the rotor position, but also effectively suppress the pulsation of the torque.

Description

永磁同步电机的容错预测定子磁链控制方法及系统Fault-tolerant predictive stator flux linkage control method and system for permanent magnet synchronous motor

技术领域technical field

本发明涉及永磁同步电机的控制技术,具体涉及一种永磁同步电机的容错预测定子磁链控制方法及系统。The invention relates to the control technology of a permanent magnet synchronous motor, in particular to a fault-tolerant predictive stator flux linkage control method and system for a permanent magnet synchronous motor.

背景技术Background technique

近年来随着微处理器运算速度及性能的不断提高,使得在一个控制周期内能够实现较为复杂的控制算法。因此,预测控制因具有结构简单、动态响应快和控制精度高等优点得到了广泛的关注和研究。电流预测控制能够使永磁同步电机电流获得良好的动态和稳态响应,但是也存在一定的问题。由于预测控制是基于模型的控制方法,因此预测控制器对电机的磁链等参数依赖较强,并且严格取决于电机转子的位置信息。In recent years, with the continuous improvement of the computing speed and performance of the microprocessor, more complex control algorithms can be realized in one control cycle. Therefore, predictive control has been widely concerned and researched due to its advantages of simple structure, fast dynamic response and high control precision. Current predictive control can make permanent magnet synchronous motor current obtain good dynamic and steady-state response, but there are certain problems. Since the predictive control is a model-based control method, the predictive controller has a strong dependence on parameters such as the flux linkage of the motor, and is strictly dependent on the position information of the motor rotor.

由于永磁同步电机的服役工况较差,环境较恶劣,并且随着服役年限的增加,永磁体容易发生失磁故障。此外,在一些较为恶劣的工况下转子的位置信息较难获取或获取的转子位置信息不准确,这都将会降低预测控制系统的精度及可靠性。在电动汽车、航空航天、国防装备等使用环境恶劣、可靠性要求高的场合中,当永磁体失磁或转子的位置信息获取不准确时,将会引起电流静差,导致系统效率降低,无法输出额定转矩,以及无法工作在力矩控制模式等问题。这极大地限制了永磁同步电机的应用范围。Due to the poor service conditions and harsh environment of permanent magnet synchronous motors, and with the increase of service life, permanent magnets are prone to demagnetization failures. In addition, under some harsh working conditions, the rotor position information is difficult to obtain or the obtained rotor position information is inaccurate, which will reduce the accuracy and reliability of the predictive control system. In electric vehicles, aerospace, national defense equipment and other occasions with harsh environments and high reliability requirements, when the permanent magnet loses its magnetism or the position information of the rotor is inaccurate, it will cause a static difference in current, resulting in a decrease in system efficiency and failure Output rated torque, and unable to work in torque control mode and other issues. This greatly limits the application range of permanent magnet synchronous motors.

发明内容Contents of the invention

本发明要解决的技术问题:针对现有技术的上述问题,提供一种永磁同步电机的容错预测定子磁链控制方法及系统,本发明不依赖于永磁同步电机的转子永磁体磁链参数和无需准确地检测转子的位置,这是一种具有较强容错能力的预测控制方式,它有效地消除了传统预测控制算法受转子永磁体失磁和转子位置估计不准的影响。The technical problem to be solved by the present invention: Aiming at the above-mentioned problems of the prior art, a fault-tolerant predictive stator flux linkage control method and system for a permanent magnet synchronous motor is provided. The present invention does not depend on the rotor permanent magnet flux linkage parameters of the permanent magnet synchronous motor And without accurately detecting the position of the rotor, this is a predictive control method with strong fault tolerance, which effectively eliminates the influence of the traditional predictive control algorithm from the loss of magnetism of the rotor and the inaccurate estimation of the rotor position.

为了解决上述技术问题,本发明采用的技术方案为:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:

一种永磁同步电机的容错预测定子磁链控制方法,实施步骤包括:A fault-tolerant predictive stator flux linkage control method for a permanent magnet synchronous motor, the implementation steps comprising:

1)获取任意的k时刻永磁同步电机的转速ω(k)及d轴电压ud(k)、q轴电压uq(k)、d轴电流id(k)以及q轴电流iq(k);1) Obtain the speed ω(k) of the permanent magnet synchronous motor at any time k, the d-axis voltage u d (k), the q-axis voltage u q (k), the d-axis current id (k) and the q-axis current i q (k);

2)将转速ω(k)及d轴电压ud(k)、q轴电压uq(k)、d轴电流id(k)以及q轴电流iq(k)输入预设的定子磁链滑模观测器中得到负载转矩外部扰动d轴定子磁链q轴定子磁链转子位置角度偏差及永磁体失磁率 2) Input the rotational speed ω(k), d-axis voltage u d (k), q-axis voltage u q (k), d-axis current i d (k) and q-axis current i q (k) into the preset stator magnetic The load torque is obtained in the chain sliding mode observer external disturbance d-axis stator flux linkage q-axis stator flux linkage Rotor position angle deviation and permanent magnet loss rate

3)根据定子磁链滑模观测器中得到的负载转矩外部扰动转子位置角度偏差永磁体失磁率及转速指令值ωref和电机响应转速ω(k)通过预设的容错预测转速控制器进行容错预测转速控制计算k时刻的q轴定子磁链指令值 3) According to the load torque obtained in the stator flux sliding mode observer external disturbance Rotor position angle deviation Permanent magnet loss rate And the speed command value ω ref and the motor response speed ω(k) perform fault-tolerant predictive speed control through the preset fault-tolerant predictive speed controller to calculate the q-axis stator flux command value at time k

4)设定k时刻的d轴定子磁链指令值其中ψro为永磁体磁链,使用拉格朗日展开式计算k+2时刻的d、q轴定子磁链指令值 4) Set the d-axis stator flux linkage command value at time k Where ψ ro is the permanent magnet flux linkage, and the Lagrangian expansion is used to calculate the d and q axis stator flux command values at k+2

5)根据d轴定子磁链指令值q轴定子磁链指令值定子磁链滑模观测器中得到的d轴定子磁链q轴定子磁链转子位置角度偏差永磁体失磁率通过预设的容错预测定子磁链控制器进行容错预测定子磁链控制计算d轴指令电压q轴指令电压 5) According to the command value of the d-axis stator flux linkage q-axis stator flux linkage command value The d-axis stator flux obtained in the stator flux sliding mode observer q-axis stator flux linkage Rotor position angle deviation Permanent magnet loss rate Fault-tolerant predictive stator flux control through the preset fault-tolerant predictive stator flux controller to calculate the d-axis command voltage and q- axis command voltage

6)将d轴指令电压q轴指令电压经逆Park变换后获得两相静止坐标系下的α相指令电压uα(k+1)和β相指令电压uβ(k+1);6) Set the d-axis command voltage and q- axis command voltage After the inverse Park transformation, the α-phase command voltage u α (k+1) and the β-phase command voltage u β (k+1) in the two-phase stationary coordinate system are obtained;

7)将两相静止坐标系下的α相指令电压uα(k+1)和β相指令电压uβ(k+1)经SVPWM模块调制后生成用于驱动永磁同步电机工作的6路PWM脉冲信号。7) The α-phase command voltage u α (k+1) and the β-phase command voltage u β (k+1) in the two-phase stationary coordinate system are modulated by the SVPWM module to generate 6 channels for driving the permanent magnet synchronous motor. PWM pulse signal.

优选地,步骤2)的详细步骤包括:Preferably, the detailed steps of step 2) include:

2.1)建立如式(1)所示的永磁体失磁和转子位置估计不准情况下的永磁同步电机状态方程;2.1) Establish the permanent magnet synchronous motor state equation under the condition of permanent magnet demagnetization and rotor position estimation inaccurate as shown in formula (1);

式(1)中,x为d轴定子磁链、q轴定子磁链及转速组成的矢量,为矩阵x的积分,A,B,D,C,E为状态方程系数项矩阵,u为d轴电压、q轴电压及q轴定子磁链组成的矩阵,fψ为永磁体磁链项,fa为不确定项,x1为d轴电流、q轴电流及转速组成的矢量,式(1)中各个参量的函数表达式如式(1-1)~式(1-4)所示;In formula (1), x is the vector composed of d-axis stator flux linkage, q-axis stator flux linkage and rotational speed, is the integral of matrix x, A, B, D, C, E are the matrix of state equation coefficient items, u is the matrix composed of d-axis voltage, q-axis voltage and q-axis stator flux linkage, f ψ is the permanent magnet flux linkage item, f a is an uncertain item, x 1 is a vector composed of d-axis current, q-axis current and rotational speed, and the function expressions of each parameter in formula (1) are shown in formula (1-1) ~ formula (1-4) ;

fω=3npro△ψrq+△ψrdψq+△ψrd△ψrq] (1-4)f ω =3n pro △ψ rq + △ψ rd ψ q + △ψ rd △ψ rq ] (1-4)

式(1-1)~式(1-4)中,ψd为d轴定子磁链、ψq为q轴定子磁链,ω为永磁同步电机的转速,id为d轴电流,iq为q轴电流,ud为d轴电压,uq为q轴电压,ψro为永磁体磁链,△ψrd为永磁体失磁后d轴虚拟磁链变量,△ψrq为永磁体失磁后q轴虚拟磁链变量,TL为负载转矩,fω为不确定项,Ld为d轴电感值,Lq为q轴电感值,R为定子电阻值,np为极对数,J为转动惯量;In formula (1-1) ~ formula (1-4), ψ d is the d-axis stator flux linkage, ψ q is the q-axis stator flux linkage, ω is the speed of permanent magnet synchronous motor, i d is the d-axis current, i q is the q-axis current, u d is the d-axis voltage, u q is the q-axis voltage, ψ ro is the flux linkage of the permanent magnet, △ψ rd is the virtual flux linkage variable of the d-axis after the permanent magnet is demagnetized, △ψ rq is the permanent magnet The q-axis virtual flux linkage variable after demagnetization, T L is the load torque, f ω is the uncertain item, L d is the d-axis inductance value, L q is the q-axis inductance value, R is the stator resistance value, n p is the pole logarithm, J is moment of inertia;

2.2)针对永磁同步电机状态方程,选取如式(2)所示的滑模面;2.2) For the permanent magnet synchronous motor state equation, select the sliding mode surface shown in formula (2);

式(2)中,e为d轴定子磁链、q轴定子磁链及转速组成的矢量x及其观测值之间的差值,为d轴定子磁链、q轴定子磁链及转速组成的矢量x的观测值,为d轴电流、q轴电流及转速组成的矢量x1的观测值,E为(1-3)所示的状态方程系数项矩阵E,为q轴电流id的观测值,为q轴电流iq的观测值,为d轴定子磁链ψd的观测值、为q轴定子磁链ψq的观测值,为永磁同步电机的转速ω的观测值,e1为d轴定子磁链ψd及其观测值之差,e2为q轴定子磁链ψq及其观测值之差,e3为永磁同步电机的转速ω及其观测值之差;In formula (2), e is the vector x composed of d-axis stator flux linkage, q-axis stator flux linkage and rotational speed and its observed value the difference between is the observed value of the vector x composed of d-axis stator flux linkage, q-axis stator flux linkage and rotational speed, is the observed value of vector x1 composed of d-axis current, q-axis current and rotational speed, E is the state equation coefficient term matrix E shown in (1-3), is the observed value of the q-axis current id , is the observed value of the q-axis current i q , is the observed value of d-axis stator flux linkage ψ d , is the observed value of the q-axis stator flux linkage ψ q , is the observed value of the rotational speed ω of the permanent magnet synchronous motor, e 1 is the d-axis stator flux linkage ψ d and its observed value The difference, e 2 is the q-axis stator flux linkage ψ q and its observed value The difference, e 3 is the speed ω of the permanent magnet synchronous motor and its observed value Difference;

2.3)设计如式(3)所示的定子磁链滑模观测器;2.3) Design the stator flux linkage sliding mode observer as shown in formula (3);

式(3)中,为d轴定子磁链、q轴定子磁链及转速组成的矢量x的观测值,为d轴定子磁链、q轴定子磁链及转速组成的矢量x的观测值,sgn(·)为符号函数,A,B,C,E为式(1)的状态方程系数项,u为d轴电压、q轴电压及q轴定子磁链组成的矩阵,fψ为永磁体磁链项,ω为永磁同步电机的转速,e为d轴定子磁链、q轴定子磁链及转速组成的矢量x及其观测值之间的差值,L的函数表达式如式(3-1)所示,H为待设计的矩阵且其的函数表达式如式(3-2)所示;In formula (3), is the observed value of vector x composed of d-axis stator flux linkage, q-axis stator flux linkage and rotational speed, is the observed value of the vector x composed of d-axis stator flux linkage, q-axis stator flux linkage and rotational speed, sgn( ) is a sign function, A, B, C, E are the coefficient items of the state equation in formula (1), and u is The matrix composed of d-axis voltage, q-axis voltage and q-axis stator flux linkage, f ψ is the permanent magnet flux linkage item, ω is the speed of permanent magnet synchronous motor, e is the d-axis stator flux linkage, q-axis stator flux linkage and speed A vector consisting of x and its observations The difference between L, the function expression of L is shown in formula (3-1), H is the matrix to be designed and its function expression is shown in formula (3-2);

式(3-2)中,h1,h2,h3为待设计的矩阵H的对角线元素;In formula (3-2), h 1 , h 2 , h 3 are the diagonal elements of the matrix H to be designed;

2.4)设计可供调用的符号函数;2.4) Design symbolic functions that can be called;

2.5)求解如式(4)可得d轴定子磁链的观测值和q轴定子磁链的观测值;2.5) Solving formula (4) can obtain the observed value of the d-axis stator flux linkage and the observed value of the q-axis stator flux linkage;

式(4)中,为k+1时刻d轴定子磁链观测值,为k+1时刻q轴定子磁链观测值,R为定子电阻值,Ld为d轴电感值,Lq为q轴电感值,Ts为采样周期,为k时刻d轴定子磁链ψd(k)的观测值,为k时刻q轴定子磁链ψq(k)的观测值,为k+1时刻的转速,为k时刻永磁同步电机的转速的观测值,ω(k)为k时刻永磁同步电机的转速,ud(k)为k时刻d轴电压,uq(k)为k时刻q轴电压,ψro为永磁体磁链,e1(k)为k时刻d轴定子磁链ψd(k)及其观测值之差,e2(k)为k时刻q轴定子磁链ψq(k)及其观测值之差,e3(k)为k时刻永磁同步电机的转速及其观测值之差,sgn(·)为步骤2.4)设计的符号函数,h1,h2,h3为待设计的矩阵H的对角线元素,np为极对数,J为转动惯量;In formula (4), is the observed value of the d-axis stator flux linkage at time k+1, is the observed value of q-axis stator flux linkage at time k+1, R is the stator resistance value, L d is the d-axis inductance value, L q is the q-axis inductance value, T s is the sampling period, is the observed value of d-axis stator flux linkage ψ d (k) at time k, is the observed value of q-axis stator flux linkage ψ q (k) at time k, is the rotational speed at time k+1, is the observed value of the speed of the permanent magnet synchronous motor at time k, ω(k) is the speed of the permanent magnet synchronous motor at time k, u d (k) is the d-axis voltage at time k, u q (k) is the q-axis voltage at time k , ψ ro is the permanent magnet flux linkage, e 1 (k) is the d-axis stator flux linkage ψ d (k) and its observed value at time k difference, e 2 (k) is the q-axis stator flux linkage ψ q (k) and its observed value at time k difference, e 3 (k) is the rotational speed of the permanent magnet synchronous motor and its observed value at time k difference, sgn( ) is the sign function designed in step 2.4), h 1 , h 2 , h 3 are the diagonal elements of the matrix H to be designed, n p is the pole logarithm, and J is the moment of inertia;

2.6)求解如式(5)~(11),得到负载转矩的观测值外部扰动的观测值转子位置角度偏差的观测值及永磁体失磁率的观测值 2.6) Solve formulas (5) to (11) to obtain the observed value of load torque Observations of External Disturbances Observed value of rotor position angle deviation and the observed value of the loss rate of the permanent magnet

式(5)~(11)中,为d轴虚拟磁链变量的观测值,为q轴虚拟磁链变量的观测值,h1,h2,h3为待设计的矩阵H的对角线元素,e1(k)为k时刻d轴定子磁链ψd(k)及其观测值之差,e2(k)为k时刻q轴定子磁链ψq(k)及其观测值之差,e3(k)为k时刻永磁同步电机的转速及其观测值之差,sgn(·)为步骤2.4)设计的符号函数,为负载转矩观测值,J为转动惯量,ω(k)为k时刻永磁同步电机的转速,np为极对数,为外部扰动观测值,Lq为q轴电感值,ψro为永磁体磁链,为永磁体失磁后d轴虚拟磁链变量△ψrd的观测值,为永磁体失磁后q轴虚拟磁链变量△ψrq的观测值,ψq(k)为k时刻q轴定子磁链,为转子位置角度偏差观测值,为永磁体失磁后磁链的观测值,为永磁体失磁率观测值。In formula (5)~(11), is the observed value of d-axis virtual flux linkage variable, is the observed value of the q-axis virtual flux linkage variable, h 1 , h 2 , h 3 are the diagonal elements of the matrix H to be designed, e 1 (k) is the d-axis stator flux linkage ψ d (k) and its observed value difference, e 2 (k) is the q-axis stator flux linkage ψ q (k) and its observed value at time k difference, e 3 (k) is the rotational speed of the permanent magnet synchronous motor and its observed value at time k The difference, sgn( ) is the sign function designed in step 2.4), is the load torque observation value, J is the moment of inertia, ω(k) is the speed of the permanent magnet synchronous motor at time k, n p is the number of pole pairs, is the external disturbance observation value, L q is the q-axis inductance value, ψ ro is the flux linkage of the permanent magnet, is the observed value of d-axis virtual flux linkage variable △ψ rd after the permanent magnet is demagnetized, is the observed value of the q-axis virtual flux linkage variable △ψ rq after the permanent magnet loses magnetism, ψ q (k) is the q-axis stator flux linkage at time k, is the observed value of rotor position angle deviation, is the observed value of the flux linkage after the permanent magnet is demagnetized, is the observed value of the permanent magnet loss rate.

优选地,步骤2.4)中设计的符号函数的函数表达式如式(12)所示;Preferably, the functional expression of the symbolic function designed in step 2.4) is as shown in formula (12);

式(12)中,ν为符号函数的输入参量,p为微小常数。In formula (12), ν is the input parameter of the sign function, and p is a tiny constant.

优选地,步骤3)中通过预设的容错预测转速控制器进行容错预测转速控制计算k时刻的q轴定子磁链指令值的函数表达式如式(13)所示;Preferably, in step 3), the preset fault-tolerant predictive speed controller is used to perform fault-tolerant predictive speed control to calculate the q-axis stator flux linkage command value at time k The function expression of is shown in formula (13);

式(13)中,为k时刻的q轴定子磁链指令值,ωref(k+1)为k+1时刻的转速指令值,ω(k)为k时刻永磁同步电机的转速,np为极对数,ψro为永磁体磁链,Tds为采样周期Ts的倍数,J为转动惯量,Lq为q轴电感值,为永磁体失磁后d轴虚拟磁链变量△ψrd的观测值,ψq(k-1)为k-1时刻q轴定子磁链,为负载转矩观测值,为外部扰动观测值。In formula (13), is the q-axis stator flux command value at time k, ω ref (k+1) is the speed command value at time k+1, ω(k) is the speed of permanent magnet synchronous motor at time k, n p is the number of pole pairs, ψ ro is the flux linkage of the permanent magnet, T ds is the multiple of the sampling period T s , J is the moment of inertia, L q is the q-axis inductance value, is the observed value of d-axis virtual flux linkage variable △ψ rd after the permanent magnet loses magnetism, ψ q (k-1) is the q-axis stator flux linkage at k-1 time, is the load torque observation value, is the observed value of the external disturbance.

优选地,步骤4)中使用拉格朗日展开式计算k+2时刻的d、q轴定子磁链指令值 的函数表达式如式(14)所示;Preferably, in step 4), the Lagrangian expansion is used to calculate the d and q axis stator flux command values at k+2 time The function expression of is shown in formula (14);

式(14)中,为k+2时刻的d轴定子磁链指令值,为k+1时刻的d轴定子磁链指令值,为k时刻的d轴定子磁链指令值,ψro为永磁体磁链,Ld为d轴电感值,为k时刻的d轴电流指令值;为k+2时刻的q轴定子磁链指令值,为k时刻的q轴定子磁链指令值,为k-1时刻的q轴定子磁链指令值,为k-2时刻的q轴定子磁链指令值。In formula (14), is the d-axis stator flux command value at time k+2, is the d-axis stator flux command value at time k+1, is the d-axis stator flux command value at time k, ψ ro is the permanent magnet flux linkage, L d is the d-axis inductance value, is the d-axis current command value at time k; is the q-axis stator flux command value at time k+2, is the q-axis stator flux command value at time k, is the q-axis stator flux command value at time k-1, is the q-axis stator flux command value at time k-2.

优选地,步骤5)中通过预设的容错预测定子磁链控制器进行容错预测定子磁链控制计算d轴指令电压q轴指令电压的函数表达式如式(15)所示;Preferably, in step 5), a preset fault-tolerant predictive stator flux linkage controller is used to perform fault-tolerant predictive stator flux linkage control to calculate the d-axis command voltage and q- axis command voltage The function expression of is shown in formula (15);

式(15)中,ud(k+1)为k+1时刻的d轴电压,为k+1时刻的q轴电压,为k+2时刻的d轴定子磁链指令值,为k+2时刻的q轴定子磁链指令值,R为定子电阻值,Ld为d轴电感值,Lq为q轴电感值,Ts为采样周期,为k+1时刻d轴定子磁链观测值,为k+1时刻q轴定子磁链观测值,ω(k)为k时刻永磁同步电机的转速,ψro为永磁体磁链,为永磁体失磁率观测值,为转子位置角度偏差观测值。In formula (15), u d (k+1) is the d-axis voltage at time k+1, is the q-axis voltage at time k+1, is the d-axis stator flux command value at time k+2, is the q-axis stator flux command value at time k+2, R is the stator resistance value, L d is the d-axis inductance value, L q is the q-axis inductance value, T s is the sampling period, is the observed value of the d-axis stator flux linkage at time k+1, is the observed value of the q-axis stator flux linkage at time k+1, ω(k) is the speed of the permanent magnet synchronous motor at time k, ψ ro is the flux linkage of the permanent magnet, is the observed value of the loss rate of the permanent magnet, is the observed value of the rotor position angle deviation.

本发明还提供一种永磁同步电机的容错预测定子磁链控制系统,包括计算机系统,所述计算机系统被编程以执行本发明前述永磁同步电机的容错预测定子磁链控制方法的步骤。The present invention also provides a fault-tolerant predictive stator flux linkage control system for permanent magnet synchronous motors, including a computer system programmed to execute the steps of the aforementioned fault-tolerant predictive stator flux linkage control method for permanent magnet synchronous motors of the present invention.

本发明永磁同步电机的容错预测定子磁链控制方法具有下述优点:The fault-tolerant prediction stator flux linkage control method of the permanent magnet synchronous motor of the present invention has the following advantages:

1)本发明在传统预测控制的基础上,针对永磁体失磁及转子位置估计不准导致传统预测控制无法有效地对永磁体同步电机进行控制的问题,本发明提出了容错预测定子磁链控制方法,该方法简洁高效同时具有较强的容错能力。1) On the basis of traditional predictive control, the present invention proposes a fault-tolerant predictive stator flux linkage control for the problem that traditional predictive control cannot effectively control permanent magnet synchronous motors due to the inaccurate estimation of permanent magnet demagnetization and rotor position method, which is simple and efficient and has strong fault tolerance.

2)本发明能够有效地消除永磁体失磁和转子位置估计不准对控制系统的影响,同时转矩脉动也起到了抑制作用,为此保证了永磁同步电机在特殊工况下的平稳运行能力。2) The present invention can effectively eliminate the influence of permanent magnet demagnetization and inaccurate rotor position estimation on the control system, and at the same time, the torque ripple also plays a restraining role, thus ensuring the stable operation of the permanent magnet synchronous motor under special working conditions ability.

本发明永磁同步电机的容错预测定子磁链控制系统为本发明永磁同步电机的容错预测定子磁链控制方法对应的系统,因此同样也具有本发明永磁同步电机的容错预测定子磁链控制方法的前述优点,故在此不再赘述。The fault-tolerant predictive stator flux linkage control system of the permanent magnet synchronous motor of the present invention is a system corresponding to the fault-tolerant predictive stator flux linkage control method of the permanent magnet synchronous motor of the present invention, so it also has the fault-tolerant predictive stator flux linkage control of the permanent magnet synchronous motor of the present invention The foregoing advantages of the method are not repeated here.

附图说明Description of drawings

图1为本发明实施例方法的控制原理示意图。Fig. 1 is a schematic diagram of the control principle of the method of the embodiment of the present invention.

图2为本发明实施例的系统框架结构示意图。FIG. 2 is a schematic diagram of a system framework structure according to an embodiment of the present invention.

图3为本发明实施例在转子位置估计不准的情况下转矩控制性能实验示意图。FIG. 3 is a schematic diagram of an experiment of torque control performance under the condition that the estimation of the rotor position is inaccurate according to the embodiment of the present invention.

图4为本发明实施例在永磁体失磁时的转矩控制性能实验示意图。FIG. 4 is a schematic diagram of an experiment of torque control performance of an embodiment of the present invention when the permanent magnet is demagnetized.

图5为本发明实施例在永磁体失磁和转子位置估计不准时转矩控制性能实验示意图。Fig. 5 is a schematic diagram of an experiment of torque control performance when the permanent magnet is demagnetized and the rotor position estimation is inaccurate according to the embodiment of the present invention.

具体实施方式Detailed ways

如图1所示,本实施例永磁同步电机的容错预测定子磁链控制方法的实施步骤包括:As shown in Figure 1, the implementation steps of the fault-tolerant predictive stator flux linkage control method for permanent magnet synchronous motors in this embodiment include:

1)获取任意的k时刻永磁同步电机的转速ω(k)及d轴电压ud(k)、q轴电压uq(k)、d轴电流id(k)以及q轴电流iq(k);1) Obtain the speed ω(k) of the permanent magnet synchronous motor at any time k, the d-axis voltage u d (k), the q-axis voltage u q (k), the d-axis current id (k) and the q-axis current i q (k);

2)将转速ω(k)及d轴电压ud(k)、q轴电压uq(k)、d轴电流id(k)以及q轴电流iq(k)输入预设的定子磁链滑模观测器中得到负载转矩外部扰动d轴定子磁链q轴定子磁链转子位置角度偏差及永磁体失磁率 2) Input the rotational speed ω(k), d-axis voltage u d (k), q-axis voltage u q (k), d-axis current i d (k) and q-axis current i q (k) into the preset stator magnetic The load torque is obtained in the chain sliding mode observer external disturbance d-axis stator flux linkage q-axis stator flux linkage Rotor position angle deviation and permanent magnet loss rate

3)根据定子磁链滑模观测器中得到的负载转矩外部扰动转子位置角度偏差永磁体失磁率及转速指令值ωref和电机响应转速ω(k)通过预设的容错预测转速控制器进行容错预测转速控制计算k时刻的q轴定子磁链指令值 3) According to the load torque obtained in the stator flux sliding mode observer external disturbance Rotor position angle deviation Permanent magnet loss rate And the speed command value ω ref and the motor response speed ω(k) are used to perform fault-tolerant predictive speed control through the preset fault-tolerant predictive speed controller to calculate the q-axis stator flux command value at time k

4)设定k时刻的d轴定子磁链指令值其中ψro为永磁体磁链,使用拉格朗日展开式计算k+2时刻的d、q轴定子磁链指令值 4) Set the d-axis stator flux linkage command value at time k Where ψ ro is the permanent magnet flux linkage, and the Lagrangian expansion is used to calculate the d and q axis stator flux command values at k+2

5)根据d轴定子磁链指令值q轴定子磁链指令值定子磁链滑模观测器中得到的d轴定子磁链q轴定子磁链转子位置角度偏差永磁体失磁率通过预设的容错预测定子磁链控制器进行容错预测定子磁链控制计算d轴指令电压q轴指令电压 5) According to the command value of the d-axis stator flux linkage q-axis stator flux linkage command value The d-axis stator flux obtained in the stator flux sliding mode observer q-axis stator flux linkage Rotor position angle deviation Permanent magnet loss rate Fault-tolerant predictive stator flux control through the preset fault-tolerant predictive stator flux controller to calculate the d-axis command voltage and q- axis command voltage

6)将d轴指令电压q轴指令电压经逆Park变换后获得两相静止坐标系下的α相指令电压uα(k+1)和β相指令电压uβ(k+1);6) Set the d-axis command voltage and q- axis command voltage After the inverse Park transformation, the α-phase command voltage u α (k+1) and the β-phase command voltage u β (k+1) in the two-phase stationary coordinate system are obtained;

7)将两相静止坐标系下的α相指令电压uα(k+1)和β相指令电压uβ(k+1)经SVPWM模块调制后生成用于驱动永磁同步电机工作的6路PWM脉冲信号。7) The α-phase command voltage u α (k+1) and the β-phase command voltage u β (k+1) under the two-phase static coordinate system are modulated by the SVPWM module to generate 6 circuits for driving the permanent magnet synchronous motor. PWM pulse signal.

本实施例中,步骤2)的详细步骤包括:In the present embodiment, the detailed steps of step 2) include:

2.1)建立如式(1)所示的永磁体失磁和转子位置估计不准情况下的永磁同步电机状态方程;2.1) Establish the permanent magnet synchronous motor state equation under the condition of permanent magnet demagnetization and rotor position estimation inaccurate as shown in formula (1);

式(1)中,x为d轴定子磁链、q轴定子磁链及转速组成的矢量,为矩阵x的积分,A,B,D,C,E为状态方程系数项矩阵,u为d轴电压、q轴电压及q轴定子磁链组成的矩阵,fψ为永磁体磁链项,fa为不确定项,x1为d轴电流、q轴电流及转速组成的矢量,式(1)中各个参量的函数表达式如式(1-1)~式(1-4)所示;In formula (1), x is the vector composed of d-axis stator flux linkage, q-axis stator flux linkage and rotational speed, is the integral of matrix x, A, B, D, C, E are the matrix of state equation coefficient items, u is the matrix composed of d-axis voltage, q-axis voltage and q-axis stator flux linkage, f ψ is the permanent magnet flux linkage item, f a is an uncertain item, x 1 is a vector composed of d-axis current, q-axis current and rotational speed, and the function expressions of each parameter in formula (1) are shown in formula (1-1) ~ formula (1-4) ;

fω=3npro△ψrq+△ψrdψq+△ψrd△ψrq] (1-4)f ω =3n pro △ψ rq + △ψ rd ψ q + △ψ rd △ψ rq ] (1-4)

式(1-1)~式(1-4)中,ψd为d轴定子磁链、ψq为q轴定子磁链,ω为永磁同步电机的转速,id为d轴电流,iq为q轴电流,ud为d轴电压,uq为q轴电压,ψro为永磁体磁链,△ψrd为永磁体失磁后d轴虚拟磁链变量,△ψrq为永磁体失磁后q轴虚拟磁链变量,TL为负载转矩,fω为不确定项,Ld为d轴电感值,Lq为q轴电感值,R为定子电阻值,np为极对数,J为转动惯量;In formula (1-1) ~ formula (1-4), ψ d is the d-axis stator flux linkage, ψ q is the q-axis stator flux linkage, ω is the speed of permanent magnet synchronous motor, i d is the d-axis current, i q is the q-axis current, u d is the d-axis voltage, u q is the q-axis voltage, ψ ro is the flux linkage of the permanent magnet, △ψ rd is the virtual flux linkage variable of the d-axis after the permanent magnet is demagnetized, △ψ rq is the permanent magnet The q-axis virtual flux linkage variable after demagnetization, T L is the load torque, f ω is the uncertain item, L d is the d-axis inductance value, L q is the q-axis inductance value, R is the stator resistance value, n p is the pole logarithm, J is moment of inertia;

2.2)针对永磁同步电机状态方程,选取如式(2)所示的滑模面;2.2) For the permanent magnet synchronous motor state equation, select the sliding mode surface shown in formula (2);

式(2)中,e为d轴定子磁链、q轴定子磁链及转速组成的矢量x及其观测值之间的差值,为d轴定子磁链、q轴定子磁链及转速组成的矢量x的观测值,为d轴电流、q轴电流及转速组成的矢量x1的观测值,E为(1-3)所示的状态方程系数项矩阵E,为q轴电流id的观测值,为q轴电流iq的观测值,为d轴定子磁链ψd的观测值、为q轴定子磁链ψq的观测值,为永磁同步电机的转速ω的观测值,e1为d轴定子磁链ψd及其观测值之差,e2为q轴定子磁链ψq及其观测值之差,e3为永磁同步电机的转速ω及其观测值之差;In formula (2), e is the vector x composed of d-axis stator flux linkage, q-axis stator flux linkage and rotational speed and its observed value the difference between is the observed value of the vector x composed of d-axis stator flux linkage, q-axis stator flux linkage and rotational speed, is the observed value of vector x1 composed of d-axis current, q-axis current and rotational speed, E is the state equation coefficient term matrix E shown in (1-3), is the observed value of the q-axis current id , is the observed value of the q-axis current i q , is the observed value of d-axis stator flux linkage ψ d , is the observed value of the q-axis stator flux linkage ψ q , is the observed value of the rotational speed ω of the permanent magnet synchronous motor, e 1 is the d-axis stator flux linkage ψ d and its observed value The difference, e 2 is the q-axis stator flux linkage ψ q and its observed value The difference, e 3 is the speed ω of the permanent magnet synchronous motor and its observed value Difference;

2.3)设计如式(3)所示的定子磁链滑模观测器;2.3) Design the stator flux linkage sliding mode observer as shown in formula (3);

式(3)中,为d轴定子磁链、q轴定子磁链及转速组成的矢量x的观测值,为d轴定子磁链、q轴定子磁链及转速组成的矢量x的观测值,sgn(·)为符号函数,A,B,C,E为式(1)的状态方程系数项,u为d轴电压、q轴电压及q轴定子磁链组成的矩阵,fψ为永磁体磁链项,ω为永磁同步电机的转速,e为d轴定子磁链、q轴定子磁链及转速组成的矢量x及其观测值之间的差值,L的函数表达式如式(3-1)所示,H为待设计的矩阵且其的函数表达式如式(3-2)所示;In formula (3), is the observed value of vector x composed of d-axis stator flux linkage, q-axis stator flux linkage and rotational speed, is the observed value of the vector x composed of d-axis stator flux linkage, q-axis stator flux linkage and rotational speed, sgn( ) is a sign function, A, B, C, E are the coefficient items of the state equation in formula (1), and u is The matrix composed of d-axis voltage, q-axis voltage and q-axis stator flux linkage, f ψ is the permanent magnet flux linkage item, ω is the speed of permanent magnet synchronous motor, e is the d-axis stator flux linkage, q-axis stator flux linkage and speed A vector consisting of x and its observations The difference between L, the function expression of L is shown in formula (3-1), H is the matrix to be designed and its function expression is shown in formula (3-2);

式(3-2)中,h1,h2,h3为待设计的矩阵H的对角线元素;In formula (3-2), h 1 , h 2 , h 3 are the diagonal elements of the matrix H to be designed;

2.4)设计可供调用的符号函数;2.4) Design symbolic functions that can be called;

2.5)求解如式(4)可得d轴定子磁链的观测值和q轴定子磁链的观测值;2.5) Solving formula (4) can obtain the observed value of the d-axis stator flux linkage and the observed value of the q-axis stator flux linkage;

式(4)中,为k+1时刻d轴定子磁链观测值,为k+1时刻q轴定子磁链观测值,R为定子电阻值,Ld为d轴电感值,Lq为q轴电感值,Ts为采样周期,为k时刻d轴定子磁链ψd(k)的观测值,为k时刻q轴定子磁链ψq(k)的观测值,为k+1时刻的转速,为k时刻永磁同步电机的转速的观测值,ω(k)为k时刻永磁同步电机的转速,ud(k)为k时刻d轴电压,uq(k)为k时刻q轴电压,ψro为永磁体磁链,e1(k)为k时刻d轴定子磁链ψd(k)及其观测值之差,e2(k)为k时刻q轴定子磁链ψq(k)及其观测值之差,e3(k)为k时刻永磁同步电机的转速及其观测值之差,sgn(·)为步骤2.4)设计的符号函数,h1,h2,h3为待设计的矩阵H的对角线元素,np为极对数,J为转动惯量;In formula (4), is the observed value of the d-axis stator flux linkage at time k+1, is the observed value of q-axis stator flux linkage at time k+1, R is the stator resistance value, L d is the d-axis inductance value, L q is the q-axis inductance value, T s is the sampling period, is the observed value of d-axis stator flux linkage ψ d (k) at time k, is the observed value of q-axis stator flux linkage ψ q (k) at time k, is the rotational speed at time k+1, is the observed value of the speed of the permanent magnet synchronous motor at time k, ω(k) is the speed of the permanent magnet synchronous motor at time k, u d (k) is the d-axis voltage at time k, u q (k) is the q-axis voltage at time k , ψ ro is the permanent magnet flux linkage, e 1 (k) is the d-axis stator flux linkage ψ d (k) and its observed value at time k difference, e 2 (k) is the q-axis stator flux linkage ψ q (k) and its observed value at time k difference, e 3 (k) is the rotational speed of the permanent magnet synchronous motor and its observed value at time k difference, sgn( ) is the sign function designed in step 2.4), h 1 , h 2 , h 3 are the diagonal elements of the matrix H to be designed, n p is the pole logarithm, and J is the moment of inertia;

2.6)求解如式(5)~(11),得到负载转矩的观测值外部扰动的观测值转子位置角度偏差的观测值及永磁体失磁率的观测值 2.6) Solve formulas (5) to (11) to obtain the observed value of load torque Observations of External Disturbances Observed value of rotor position angle deviation and the observed value of loss rate of permanent magnet

式(5)~(11)中,为d轴虚拟磁链变量的观测值,为q轴虚拟磁链变量的观测值,h1,h2,h3为待设计的矩阵H的对角线元素,e1(k)为k时刻d轴定子磁链ψd(k)及其观测值之差,e2(k)为k时刻q轴定子磁链ψq(k)及其观测值之差,e3(k)为k时刻永磁同步电机的转速及其观测值之差,sgn(·)为步骤2.4)设计的符号函数,为负载转矩观测值,J为转动惯量,ω(k)为k时刻永磁同步电机的转速,np为极对数,为外部扰动观测值,Lq为q轴电感值,ψro为永磁体磁链,为永磁体失磁后d轴虚拟磁链变量△ψrd的观测值,为永磁体失磁后q轴虚拟磁链变量△ψrq的观测值,ψq(k)为k时刻q轴定子磁链,为转子位置角度偏差观测值,为永磁体失磁后磁链的观测值,为永磁体失磁率观测值。In formula (5)~(11), is the observed value of d-axis virtual flux linkage variable, is the observed value of the q-axis virtual flux linkage variable, h 1 , h 2 , h 3 are the diagonal elements of the matrix H to be designed, e 1 (k) is the d-axis stator flux linkage ψ d (k) and its observed value difference, e 2 (k) is the q-axis stator flux linkage ψ q (k) and its observed value at time k difference, e 3 (k) is the rotational speed of the permanent magnet synchronous motor and its observed value at time k The difference, sgn( ) is the sign function designed in step 2.4), is the load torque observation value, J is the moment of inertia, ω(k) is the speed of the permanent magnet synchronous motor at time k, n p is the number of pole pairs, is the external disturbance observation value, L q is the q-axis inductance value, ψ ro is the flux linkage of the permanent magnet, is the observed value of d-axis virtual flux linkage variable △ψ rd after the permanent magnet is demagnetized, is the observed value of the q-axis virtual flux linkage variable △ψ rq after the permanent magnet loses magnetism, ψ q (k) is the q-axis stator flux linkage at time k, is the observed value of rotor position angle deviation, is the observed value of the flux linkage after the permanent magnet is demagnetized, is the observed value of the permanent magnet loss rate.

本实施例中,步骤2.4)中设计的符号函数的函数表达式如式(12)所示;In the present embodiment, the functional expression of the sign function designed in step 2.4) is as shown in formula (12);

式(12)中,ν为符号函数的输入参量,p为微小常数。In formula (12), ν is the input parameter of the sign function, and p is a tiny constant.

本实施例中,步骤3)中通过预设的容错预测转速控制器进行容错预测转速控制计算k时刻的q轴定子磁链指令值的函数表达式如式(13)所示;In this embodiment, in step 3), the preset fault-tolerant predictive speed controller is used to perform fault-tolerant predictive speed control to calculate the q-axis stator flux linkage command value at time k The function expression of is shown in formula (13);

式(13)中,为k时刻的q轴定子磁链指令值,ωref(k+1)为k+1时刻的转速指令值,ω(k)为k时刻永磁同步电机的转速,np为极对数,ψro为永磁体磁链,Tds为采样周期Ts的倍数,J为转动惯量,Lq为q轴电感值,为永磁体失磁后d轴虚拟磁链变量△ψrd的观测值,ψq(k-1)为k-1时刻q轴定子磁链,为负载转矩观测值,为外部扰动观测值。In formula (13), is the q-axis stator flux command value at time k, ω ref (k+1) is the speed command value at time k+1, ω(k) is the speed of permanent magnet synchronous motor at time k, n p is the number of pole pairs, ψ ro is the flux linkage of the permanent magnet, T ds is the multiple of the sampling period T s , J is the moment of inertia, L q is the q-axis inductance value, is the observed value of d-axis virtual flux linkage variable △ψ rd after the permanent magnet loses magnetism, ψ q (k-1) is the q-axis stator flux linkage at k-1 time, is the load torque observation value, is the observed value of the external disturbance.

本实施例中,步骤4)中使用拉格朗日展开式计算k+2时刻的d、q轴定子磁链指令值的函数表达式如式(14)所示;In this embodiment, in step 4), the Lagrangian expansion is used to calculate the d and q axis stator flux command values at k+2 The function expression of is shown in formula (14);

式(14)中,为k+2时刻的d轴定子磁链指令值,为k+1时刻的d轴定子磁链指令值,为k时刻的d轴定子磁链指令值,ψro为永磁体磁链,Ld为d轴电感值,为k时刻的d轴电流指令值;为k+2时刻的q轴定子磁链指令值,为k时刻的q轴定子磁链指令值,为k-1时刻的q轴定子磁链指令值,为k-2时刻的q轴定子磁链指令值。In formula (14), is the d-axis stator flux command value at time k+2, is the d-axis stator flux command value at time k+1, is the d-axis stator flux command value at time k, ψ ro is the permanent magnet flux linkage, L d is the d-axis inductance value, is the d-axis current command value at time k; is the q-axis stator flux command value at time k+2, is the q-axis stator flux command value at time k, is the q-axis stator flux command value at time k-1, is the q-axis stator flux command value at time k-2.

本实施例中,步骤5)中通过预设的容错预测定子磁链控制器进行容错预测定子磁链控制计算d轴指令电压q轴指令电压的函数表达式如式(15)所示;In this embodiment, in step 5), the preset fault-tolerant predictive stator flux linkage controller is used to perform fault-tolerant predictive stator flux linkage control to calculate the d-axis command voltage and q- axis command voltage The function expression of is shown in formula (15);

式(15)中,ud(k+1)为k+1时刻的d轴电压,为k+1时刻的q轴电压,为k+2时刻的d轴定子磁链指令值,为k+2时刻的q轴定子磁链指令值,R为定子电阻值,Ld为d轴电感值,Lq为q轴电感值,Ts为采样周期,为k+1时刻d轴定子磁链观测值,为k+1时刻q轴定子磁链观测值,ω(k)为k时刻永磁同步电机的转速,ψro为永磁体磁链,为永磁体失磁率观测值,为转子位置角度偏差观测值。In formula (15), u d (k+1) is the d-axis voltage at time k+1, is the q-axis voltage at time k+1, is the d-axis stator flux command value at time k+2, is the q-axis stator flux command value at k+2, R is the stator resistance value, L d is the d-axis inductance value, L q is the q-axis inductance value, T s is the sampling period, is the observed value of the d-axis stator flux linkage at time k+1, is the observed value of the q-axis stator flux linkage at time k+1, ω(k) is the speed of the permanent magnet synchronous motor at time k, ψ ro is the flux linkage of the permanent magnet, is the observed value of the loss rate of the permanent magnet, is the observed value of the rotor position angle deviation.

如图2所示,应用本实施例一种用于永磁同步电机系统的容错预测定子磁链控制方法的系统包括永磁同步电机1、信号采集模块2、定子磁链滑模观测器3、容错预测速度控制器4、拉格朗日运算模块5、容错预测定子磁链控制器6、逆park变换7、SVPWM调制模块8、逆变器9。其中,信号采集模块2的输入端与永磁同步电机1链接,信号采集模块2的输出端与定子磁链滑模观测器3的输入端链接,定子磁链滑模观测器3的输出端分别与容错预测速度控制器4的输入端和容错预测定子磁链控制器6的输入端链接,容错预测速度控制器4的输出端与拉格朗日运算模块5的输入端链接,拉格朗日运算模块5的输出端与容错预测定子磁链控制器6的输入端链接,容错预测定子磁链控制器6的输出端与逆park变换7的输入端链接,逆park变换7的输出端与SVPWM调制模块8的输入端链接,SVPWM调制模块8的输出端与逆变器9的输入端链接,逆变器9的输出端与永磁同步电机1链接,其中:As shown in Figure 2, the system applying a fault-tolerant predictive stator flux linkage control method for a permanent magnet synchronous motor system in this embodiment includes a permanent magnet synchronous motor 1, a signal acquisition module 2, a stator flux sliding mode observer 3, Fault-tolerant predictive speed controller 4, Lagrangian operation module 5, fault-tolerant predictive stator flux controller 6, inverse park transformation 7, SVPWM modulation module 8, inverter 9. Wherein, the input end of the signal acquisition module 2 is linked with the permanent magnet synchronous motor 1, the output end of the signal acquisition module 2 is linked with the input end of the stator flux linkage sliding mode observer 3, and the output ends of the stator flux linkage sliding mode observer 3 are respectively It is linked with the input end of the fault-tolerant predictive speed controller 4 and the input end of the fault-tolerant predictive stator flux controller 6, and the output end of the fault-tolerant predictive speed controller 4 is linked with the input end of the Lagrangian operation module 5, and the Lagrange The output terminal of the calculation module 5 is linked with the input terminal of the fault-tolerant predictive stator flux controller 6, the output terminal of the fault-tolerant predictive stator flux controller 6 is linked with the input terminal of the inverse park transformation 7, and the output terminal of the inverse park transformation 7 is connected with the SVPWM The input end of the modulation module 8 is connected, the output end of the SVPWM modulation module 8 is connected with the input end of the inverter 9, and the output end of the inverter 9 is connected with the permanent magnet synchronous motor 1, wherein:

信号采集模块2用于获取永磁同步电机的转速ω(k)、d轴电压ud(k)、q轴电压uq(k)、d轴电流id(k)以及q轴电流iq(k);The signal acquisition module 2 is used to acquire the rotational speed ω(k), the d-axis voltage u d (k), the q-axis voltage u q (k), the d-axis current i d (k) and the q-axis current i q of the permanent magnet synchronous motor (k);

定子磁链滑模观测器3用于观测负载转矩外部扰动d轴定子磁链q轴定子磁链转子位置角度偏差及永磁体失磁率 The stator flux sliding mode observer 3 is used to observe the load torque external disturbance d-axis stator flux linkage q-axis stator flux linkage Rotor position angle deviation and permanent magnet loss rate

容错预测速度控制器4用于获取k时刻的q轴定子磁链指令值 The fault-tolerant predictive speed controller 4 is used to obtain the q-axis stator flux linkage command value at time k

拉格朗日运算模块5用于获取k+2时刻的d、q轴定子磁链指令值 The Lagrangian operation module 5 is used to obtain the d and q axis stator flux linkage command values at k+2 time

容错预测定子磁链控制器6用于获取d轴指令电压q轴指令电压 The fault-tolerant predictive stator flux controller 6 is used to obtain the d-axis command voltage and q- axis command voltage

逆park变换7用于获取两相静止坐标系下的α相指令电压uα(k+1)和β相指令电压uβ(k+1);The inverse park transformation 7 is used to obtain the α-phase command voltage u α (k+1) and the β-phase command voltage u β (k+1) in the two-phase stationary coordinate system;

SVPWM调制模块8用于调制生成驱动逆变器工作的6路PWM脉冲信号。The SVPWM modulation module 8 is used to modulate and generate 6 channels of PWM pulse signals to drive the inverter to work.

图3为转子位置估计不准的情况下转矩控制性能实验示意图,其中Te表示永磁同步电机的电磁转矩,iabc表示永磁同步电机的三相定子电流;永磁同步电机的运行分为以下三个阶段:第一阶段,永磁同步电机正常运行;第二阶段,发生转子位置估计不准的情况,且位置偏差角为正;第三阶段,发生转子位置估计不准的情况,且位置偏差角为负;由图3可知,在第一个阶段,永磁同步电机正常运行时的电磁转矩为800N;第二个阶段与第三个阶段中,转子位置估计不准的情况下,采用本发明的方法后永磁同步电机的转矩性能与正常情况下的转矩性能一样优越,由此可知,在转子位置估计不准的情况下,采用本发明提出的方法能很好地抑制转矩的脉动。Figure 3 is a schematic diagram of the torque control performance experiment under the condition that the estimation of the rotor position is inaccurate, where T e represents the electromagnetic torque of the permanent magnet synchronous motor, and i abc represents the three-phase stator current of the permanent magnet synchronous motor; the operation of the permanent magnet synchronous motor It is divided into the following three stages: the first stage, the permanent magnet synchronous motor is running normally; the second stage, the rotor position is inaccurately estimated, and the position deviation angle is positive; the third stage, the rotor position is inaccurately estimated , and the position deviation angle is negative; it can be seen from Figure 3 that in the first stage, the electromagnetic torque of the permanent magnet synchronous motor is 800N during normal operation; in the second and third stages, the rotor position estimation is not accurate Under normal circumstances, after adopting the method of the present invention, the torque performance of the permanent magnet synchronous motor is as superior as the torque performance under normal conditions. It can be seen from this that, under the inaccurate situation of rotor position estimation, the method proposed by the present invention can be very Good suppression of torque ripple.

图4为永磁体失磁的情况下转矩控制性能实验示意图,其中Te,iabc的定义与图4完全相同;永磁同步电机的运行分为以下三个阶段:第一阶段,永磁同步电机正常运行;第二阶段,永磁体发生失磁故障;第三阶段,永磁同步电机恢复至正常运行;由图4可知,在第一个阶段与第三个阶段,永磁同步电机正常运行时的电磁转矩为800N;第二个阶段中,永磁体发生失磁故障的情况下,采用本发明的方法后永磁同步电机的转矩性能与正常情况下的转矩性能一样优越,由此可知,在永磁体发生失磁故障的情况下,采用本发明提出的方法能很好地抑制转矩的脉动。Figure 4 is a schematic diagram of the torque control performance experiment under the condition of permanent magnet demagnetization, where the definitions of T e and i abc are exactly the same as those in Figure 4; the operation of the permanent magnet synchronous motor is divided into the following three stages: the first stage, the permanent magnet The synchronous motor is running normally; in the second stage, the permanent magnet has a demagnetization fault; in the third stage, the permanent magnet synchronous motor returns to normal operation; it can be seen from Figure 4 that in the first stage and the third stage, the permanent magnet synchronous motor is normal The electromagnetic torque during operation is 800N; In the second stage, under the situation that the permanent magnet loses magnetism fault, the torque performance of the permanent magnet synchronous motor after adopting the method of the present invention is as superior as the torque performance under normal conditions, It can be seen that, in the case of a permanent magnet demagnetization failure, the method proposed by the present invention can well suppress the torque ripple.

图5为永磁体失磁和转子位置估计不准的情况下转矩控制性能实验示意图,其中Te,iabc的定义与图4完全相同;永磁同步电机的运行分为以下三个阶段:第一阶段,永磁同步电机正常运行;第二阶段,同时发生永磁体失磁和转子位置估计不准的情况,但位置偏差角为正;第三阶段,同时发生永磁体失磁和转子位置估计不准的情况,但位置偏差角为负;由图5可知,在第一个阶段,永磁同步电机正常运行时的电磁转矩为800N;第二个阶段与第三个阶段中,永磁体失磁和转子位置估计不准的情况下,采用本发明的方法后永磁同步电机的转矩性能与正常情况下的转矩性能一样优越,由此可知,在永磁体失磁和转子位置估计不准的情况下,采用本发明提出的方法能很好地抑制转矩的脉动。Figure 5 is a schematic diagram of the torque control performance experiment under the condition of permanent magnet demagnetization and inaccurate rotor position estimation, where the definition of T e , i abc is exactly the same as that in Figure 4; the operation of the permanent magnet synchronous motor is divided into the following three stages: In the first stage, the permanent magnet synchronous motor operates normally; in the second stage, the permanent magnet demagnetization and the inaccurate estimation of the rotor position occur simultaneously, but the position deviation angle is positive; in the third stage, the permanent magnet demagnetization and the rotor position occur simultaneously The estimation is inaccurate, but the position deviation angle is negative; it can be seen from Figure 5 that in the first stage, the electromagnetic torque of the permanent magnet synchronous motor is 800N during normal operation; in the second and third stages, the permanent magnet synchronous motor Under the inaccurate situation of magnet demagnetization and rotor position estimation, the torque performance of the permanent magnet synchronous motor after adopting the method of the present invention is as superior as the torque performance under normal conditions, thus it can be seen that in the permanent magnet demagnetization and rotor position In the case of inaccurate estimation, the method proposed by the invention can well suppress the ripple of the torque.

综上所述,本实施例永磁同步电机的容错预测定子磁链控制方法采用双闭环控制且设计了定子磁链滑模观测器、容错预测转速控制器以及容错预测定子磁链控制器,双闭环的外环为容错预测转速控制器、内环为容错预测定子磁链控制器,定子磁链滑模观测器根据永磁同步电机的转速、电压、电流可同时观测出负载转矩、外部扰动、定子磁链、转子位置估计偏差角及永磁体失磁率;所述容错预测转速控制器根据定子磁链滑模观测器输出的观测值、转速的指令值及电机的响应速度计算出q轴定子磁链指令值;所述容错预测定子磁链控制器根据定子磁链滑模观测器输出的观测值和容错预测转速控制器输出的q轴定子磁链指令值计算出d、q轴指令电压,进而实现对永磁同步电机的控制,通过上述技术手段,不仅可以有效地消除永磁体失磁及转子位置估计不准时产生的电流偏差,而且还可有效抑制转矩的脉动。In summary, the fault-tolerant predictive stator flux linkage control method of the permanent magnet synchronous motor in this embodiment adopts double closed-loop control and designs a stator flux linkage sliding mode observer, a fault-tolerant predictive speed controller, and a fault-tolerant predictive stator flux controller. The outer loop of the closed loop is a fault-tolerant predictive speed controller, and the inner loop is a fault-tolerant predictive stator flux controller. The stator flux sliding mode observer can simultaneously observe the load torque and external disturbance according to the speed, voltage, and current of the permanent magnet synchronous motor. , stator flux linkage, rotor position estimation deviation angle and permanent magnet loss rate; the fault-tolerant predictive speed controller calculates the q-axis stator according to the observed value output by the stator flux linkage sliding mode observer, the command value of the rotational speed and the response speed of the motor Flux linkage command value; the fault-tolerant prediction stator flux linkage controller calculates the d and q-axis command voltages according to the observed value output by the stator flux linkage sliding mode observer and the q-axis stator flux linkage command value output by the fault-tolerant prediction speed controller, Furthermore, the control of the permanent magnet synchronous motor is realized. Through the above-mentioned technical means, not only the current deviation caused by the permanent magnet demagnetization and the inaccurate estimation of the rotor position can be effectively eliminated, but also the torque ripple can be effectively suppressed.

本实施例还提供一种永磁同步电机的容错预测定子磁链控制系统,包括计算机系统,该计算机系统被编程以执行本实施例前述永磁同步电机的容错预测定子磁链控制方法的步骤,该计算机系统可以根据需要基于CPU、DSP、FPGA等处理器实现。This embodiment also provides a fault-tolerant predictive stator flux linkage control system for a permanent magnet synchronous motor, including a computer system, which is programmed to execute the steps of the fault-tolerant predictive stator flux linkage control method for a permanent magnet synchronous motor described above in this embodiment, The computer system can be implemented based on CPU, DSP, FPGA and other processors as required.

以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above descriptions are only preferred implementations of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, and all technical solutions under the idea of the present invention belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications without departing from the principles of the present invention should also be regarded as the protection scope of the present invention.

Claims (7)

1. a kind of fault-tolerant prediction stator flux regulation method of permanent magnet synchronous motor, it is characterised in that implementation steps include:
1) rotational speed omega (k) and d shaft voltages u of arbitrary k moment permanent magnet synchronous motor are obtainedd(k), q shaft voltages uq(k), d axis electricity Flow id(k) and q shaft currents iq(k);
2) by rotational speed omega (k) and d shaft voltages ud(k), q shaft voltages uq(k), d shaft currents id(k) and q shaft currents iq(k) input is pre- If stator magnetic linkage sliding mode observer in obtain load torqueExternal disturbanceD axis stator magnetic linkagesQ axis stators Magnetic linkageRotor position angle deviationAnd permanent magnet loss of excitation rate
3) according to the load torque obtained in stator magnetic linkage sliding mode observerExternal disturbanceRotor position angle deviation Permanent magnet loss of excitation rateAnd rotational speed command value ωrefIt is controlled with motor response rotational speed omega (k) by default fault-tolerant prediction rotating speed Device carries out the q axis stator magnetic linkage command values that fault-tolerant prediction rotating speed control calculates the k moment
4) the d axis stator magnetic linkage command values at k moment are setWherein ψroFor permanent magnet flux linkage, Lagrange is used Expansion calculates d, q axis stator magnetic linkage command value at k+2 moment
5) according to d axis stator magnetic linkage command valuesQ axis stator magnetic linkage command valuesStator magnetic linkage sliding formwork is observed The d axis stator magnetic linkages obtained in deviceQ axis stator magnetic linkagesRotor position angle deviationPermanent magnet loss of excitation RateFault-tolerant prediction stator flux regulation is carried out by default fault-tolerant prediction stator flux regulation device and calculates d axis command voltagesWithqAxis command voltage
6) by d axis command voltagesWithqAxis command voltageThe static seat of two-phase is obtained after inverse Park conversion α phase command voltages u under mark systemα(k+1) and β phase command voltages uβ(k+1);
7) by the α phase command voltages u under two-phase rest frameα(k+1) and β phase command voltages uβ(k+1) through SVPWM module tune The 6 road pwm pulse signals that permanent magnet synchronous motor is driven to work are generated after system.
2. the fault-tolerant prediction stator flux regulation method of permanent magnet synchronous motor according to claim 1, which is characterized in that step Rapid detailed step 2) includes:
2.1) the permanent magnet synchronous motor state in the case of permanent magnet loss of excitation and rotor position estimate of the foundation as shown in formula (1) are not allowed Equation;
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mi>x</mi> <mo>+</mo> <mi>B</mi> <mi>u</mi> <mo>+</mo> <msub> <mi>Cf</mi> <mi>&amp;psi;</mi> </msub> <mo>+</mo> <msub> <mi>Df</mi> <mi>a</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>x</mi> <mo>=</mo> <msub> <mi>Ex</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>&amp;psi;</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
In formula (1), x is the vector of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed composition,For the integration of matrix x, A, B, D, C, E are State Equation Coefficients item matrix, the matrix that u is d shaft voltages, q shaft voltages and q axis stator magnetic linkage form, fψFor permanent magnet Magnetic linkage item, faFor indeterminate, x1For the vector of d shaft currents, q shaft currents and rotating speed composition, the function of each parameter in formula (1) Shown in expression formula such as formula (1-1)~formula (1-4);
<mrow> <mi>x</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>u</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mi>q</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>f</mi> <mi>&amp;psi;</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;&amp;psi;</mi> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;&amp;psi;</mi> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>T</mi> <mi>L</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>f</mi> <mi>&amp;omega;</mi> </msub> <mrow> <mn>2</mn> <msub> <mi>L</mi> <mi>q</mi> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> </mrow> </mtd> <mtd> <mi>&amp;omega;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>&amp;omega;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>q</mi> </msub> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>B</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mrow> <mn>3</mn> <msubsup> <mi>n</mi> <mi>p</mi> <mn>2</mn> </msubsup> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>C</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>D</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&amp;omega;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>&amp;omega;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msub> <mi>n</mi> <mi>p</mi> </msub> <mi>J</mi> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>E</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>L</mi> <mi>d</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>L</mi> <mi>q</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
fω=3nproΔψrq+Δψrdψq+ΔψrdΔψrq] (1-4)
In formula (1-1)~formula (1-4), ψdFor d axis stator magnetic linkage, ψqFor q axis stator magnetic linkages, ω is the rotating speed of permanent magnet synchronous motor, idFor d shaft currents, iqFor q shaft currents, udFor d shaft voltages, uqFor q shaft voltages, ψroFor permanent magnet flux linkage, Δ ψrdIt is lost for permanent magnet D axis Virtual shipyard variable after magnetic, Δ ψrqFor q axis Virtual shipyard variable, T after permanent magnet loss of excitationLFor load torque, fωIt is uncertain , LdFor d axle inductance values, LqFor q axle inductance values, R is stator resistance value, npFor number of pole-pairs, J is rotary inertia;
2.2) for permanent magnet synchronous motor state equation, choose the sliding-mode surface as shown in formula (2);
<mrow> <mi>e</mi> <mo>=</mo> <mi>x</mi> <mo>-</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>E</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>e</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mi>q</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;omega;</mi> <mo>-</mo> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>E</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>q</mi> </msub> <mo>-</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&amp;omega;</mi> <mo>-</mo> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
In formula (2), e is the vector x and its observation of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed compositionBetween difference,For d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed composition vector x observation,For d shaft currents, q shaft currents and rotating speed The vector x of composition1Observation, E be (1-3) shown in State Equation Coefficients item matrix E,For q shaft currents idObservation, For q shaft currents iqObservation,For d axis stator magnetic linkages ψdObservation,For q axis stator magnetic linkages ψqObservation,For forever The observation of the rotational speed omega of magnetic-synchro motor, e1For d axis stator magnetic linkages ψdAnd its observationDifference, e2For q axis stator magnetic linkages ψq And its observationDifference, e3For the rotational speed omega and its observation of permanent magnet synchronous motorDifference;
2.3) stator magnetic linkage sliding mode observer of the design as shown in formula (3);
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>+</mo> <mi>B</mi> <mi>u</mi> <mo>+</mo> <msub> <mi>Cf</mi> <mi>&amp;psi;</mi> </msub> <mo>+</mo> <mi>&amp;omega;</mi> <mi>L</mi> <mi>e</mi> <mo>+</mo> <mi>&amp;omega;</mi> <mi>H</mi> <mi> </mi> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>E</mi> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>f</mi> <mi>&amp;psi;</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
In formula (3),For the observation of the vector x of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed compositionFor d axis stator magnets The observation of the vector x of chain, q axis stator magnetic linkage and rotating speed composition, sgn () are sign function, and A, B, C, E are the shape of formula (1) State system of equations is several, the matrix that u is d shaft voltages, q shaft voltages and q axis stator magnetic linkage form, fψFor permanent magnet flux linkage item, ω is The rotating speed of permanent magnet synchronous motor, e are the vector x and its observation of d axis stator magnetic linkage, q axis stator magnetic linkage and rotating speed compositionBetween Difference, shown in the function expression such as formula (3-1) of L, H is matrix to be designed and its function expression such as formula (3-2) institute Show;
<mrow> <mi>L</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>H</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>h</mi> <mn>1</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>h</mi> <mn>2</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>h</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
In formula (3-2), h1,h2,h3For the diagonal entry of matrix H to be designed;
2.4) sign function for calling is designed;
2.5) observation of d axis stator magnetic linkages and the observation of q axis stator magnetic linkages can be obtained such as formula (4) by solving;
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>u</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>+</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>e</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mi>sgn</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>q</mi> </msub> </mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>u</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>e</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mi>sgn</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <msubsup> <mi>n</mi> <mi>p</mi> <mn>2</mn> </msubsup> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> </mrow> </mfrac> <msub> <mi>&amp;psi;</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>h</mi> <mn>3</mn> </msub> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mi>sgn</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
In formula (4),For k+1 moment d axis stator flux observer values,For k+1 moment q axis stator flux observers Value, R be stator resistance value, LdFor d axle inductance values, LqFor q axle inductance values, TsFor the sampling period,For k moment d axis stator magnets Chain ψd(k) observation,For k moment q axis stator magnetic linkages ψq(k) observation,For the rotating speed at k+1 moment, For the observation of the rotating speed of k moment permanent magnet synchronous motors, ω (k) is the rotating speed of k moment permanent magnet synchronous motors, ud(k) it is the k moment D shaft voltages, uq(k) it is k moment q shaft voltages, ψroFor permanent magnet flux linkage, e1(k) it is k moment d axis stator magnetic linkages ψd(k) and its see Measured valueDifference, e2(k) it is k moment q axis stator magnetic linkages ψq(k) and its observationDifference, e3(k) it is k moment permanent magnetism The rotating speed and its observation of synchronous motorDifference, sgn () be step 2.4) design sign function, h1,h2,h3To wait to set The diagonal entry of the matrix H of meter, npFor number of pole-pairs, J is rotary inertia;
2.6) solution such as formula (5)~(11), obtain the observation of load torqueThe observation of external disturbanceRotor-position The observation of angular deviationAnd the observation of permanent magnet loss of excitation rate
<mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mi>J</mi> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>n</mi> <mi>p</mi> </msub> </mfrac> <msub> <mi>h</mi> <mn>3</mn> </msub> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>3</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>&amp;omega;</mi> </msub> <mrow> <mn>2</mn> <msub> <mi>L</mi> <mi>q</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>&amp;omega;</mi> </msub> <mo>=</mo> <mn>3</mn> <msub> <mi>n</mi> <mi>p</mi> </msub> <mo>&amp;lsqb;</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <msub> <mi>&amp;psi;</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>&amp;Delta;</mi> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mo>=</mo> <msup> <mi>tan</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>-</mo> <mo>|</mo> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>q</mi> </mrow> </msub> </mrow> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mover> <mi>&amp;lambda;</mi> <mo>^</mo> </mover> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> </mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> </mfrac> <mo>&amp;times;</mo> <mn>100</mn> <mi>%</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
In formula (5)~(11),For the observation of d axis Virtual shipyard variables,For the observation of q axis Virtual shipyard variables, h1,h2,h3For the diagonal entry of matrix H to be designed, e1(k) it is k moment d axis stator magnetic linkages ψd(k) and its observation Difference, e2(k) it is k moment q axis stator magnetic linkages ψq(k) and its observationDifference, e3(k) it is k moment permanent magnet synchronous motors Rotating speed and its observationDifference, sgn () be step 2.4) design sign function,For load torque observation, J is Rotary inertia, ω (k) be k moment permanent magnet synchronous motors rotating speed, npFor number of pole-pairs,For external disturbance observation, LqFor q axis Inductance value, ψroFor permanent magnet flux linkage,For d axis Virtual shipyard variable Δ ψ after permanent magnet loss of excitationrdObservation,For forever Q axis Virtual shipyard variable Δ ψ after magnet loss of excitationrqObservation, ψq(k) it is k moment q axis stator magnetic linkages,For rotor position angle Deviation observation is spent,For the observation of magnetic linkage after permanent magnet loss of excitation,For permanent magnet loss of excitation rate observation.
3. the fault-tolerant prediction stator flux regulation method of permanent magnet synchronous motor according to claim 2, which is characterized in that step Shown in the function expression such as formula (12) of the sign function of rapid 2.4) middle design;
<mrow> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>e</mi> <mrow> <mi>p</mi> <mi>v</mi> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <msup> <mi>e</mi> <mrow> <mi>p</mi> <mi>v</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
In formula (12), ν is the input parameter of sign function, and p is small constant.
4. the fault-tolerant prediction stator flux regulation method of permanent magnet synchronous motor according to claim 1, which is characterized in that step It is rapid 3) in pass through it is default it is fault-tolerant prediction rotational speed governor carry out it is fault-tolerant prediction rotating speed control calculate the k moment q axis stator magnetic linkages Command valueFunction expression such as formula (13) shown in;
<mrow> <msubsup> <mi>&amp;psi;</mi> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>&amp;omega;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <msubsup> <mi>n</mi> <mi>p</mi> <mn>2</mn> </msubsup> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> <mo>+</mo> <mn>6</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> <msub> <mi>n</mi> <mi>p</mi> </msub> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> </mrow> <mrow> <mn>4</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> </mrow> </mfrac> <msub> <mi>&amp;psi;</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>n</mi> <mi>p</mi> </msub> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> </mrow> <mi>J</mi> </mfrac> <msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>n</mi> <mi>p</mi> </msub> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> </mrow> </mfrac> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>&amp;omega;</mi> </msub> </mrow> <mfrac> <mrow> <mn>9</mn> <msubsup> <mi>n</mi> <mi>p</mi> <mn>2</mn> </msubsup> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> <mo>+</mo> <mn>6</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> <msub> <mi>n</mi> <mi>p</mi> </msub> <mi>&amp;Delta;</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> </mrow> <mrow> <mn>4</mn> <msub> <mi>JL</mi> <mi>q</mi> </msub> </mrow> </mfrac> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
In formula (13),For the q axis stator magnetic linkage command values at k moment, ωref(k+1) it is the rotational speed command value at k+1 moment, ω (k) be k moment permanent magnet synchronous motors rotating speed, npFor number of pole-pairs, ψroFor permanent magnet flux linkage, TdsFor sampling period TsTimes Number, J are rotary inertia, LqFor q axle inductance values,For d axis Virtual shipyard variable Δ ψ after permanent magnet loss of excitationrdObservation, ψq (k-1) it is k-1 moment q axis stator magnetic linkages,For load torque observation,For external disturbance observation.
5. the fault-tolerant prediction stator flux regulation method of permanent magnet synchronous motor according to claim 1, which is characterized in that step Rapid 4) middle d, q axis stator magnetic linkage command value that the k+2 moment is calculated using Lagrangian expansion's Shown in function expression such as formula (14);
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;psi;</mi> <mi>d</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&amp;psi;</mi> <mi>d</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&amp;psi;</mi> <mi>d</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>L</mi> <mi>d</mi> </msub> <msubsup> <mi>i</mi> <mi>d</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;psi;</mi> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>3</mn> <msubsup> <mi>&amp;psi;</mi> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>3</mn> <msubsup> <mi>&amp;psi;</mi> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&amp;psi;</mi> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
In formula (14),For the d axis stator magnetic linkage command values at k+2 moment,For the d axis stator magnets at k+1 moment Chain command value,For the d axis stator magnetic linkage command values at k moment, ψroFor permanent magnet flux linkage, LdFor d axle inductance values,For The d shaft current command values at k moment;For the q axis stator magnetic linkage command values at k+2 moment,Determine for the q axis at k moment Sub- magnetic linkage command value,For the q axis stator magnetic linkage command values at k-1 moment,For the q axis stator magnets at k-2 moment Chain command value.
6. the fault-tolerant prediction stator flux regulation method of permanent magnet synchronous motor according to claim 1, which is characterized in that step It is rapid 5) in pass through default fault-tolerant prediction stator flux regulation device and carry out fault-tolerant prediction stator flux regulation and calculate d axis command voltagesWithqAxis command voltageFunction expression such as formula (15) shown in;
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>s</mi> </msub> </mfrac> <msubsup> <mi>&amp;psi;</mi> <mi>d</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>s</mi> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>d</mi> </msub> </mfrac> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>-</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mover> <mi>&amp;lambda;</mi> <mo>^</mo> </mover> </mrow> <mo>)</mo> </mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <mrow> <mi>&amp;Delta;</mi> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>s</mi> </msub> </mfrac> <msubsup> <mi>&amp;psi;</mi> <mi>q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>R</mi> <msub> <mi>L</mi> <mi>q</mi> </msub> </mfrac> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>s</mi> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;psi;</mi> <mrow> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mover> <mi>&amp;lambda;</mi> <mo>^</mo> </mover> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mrow> <mi>&amp;Delta;</mi> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mn>1</mn> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
In formula (15), ud(k+1) it is the d shaft voltages at k+1 moment,For the q shaft voltages at k+1 moment,For k+ The d axis stator magnetic linkage command values at 2 moment,For the q axis stator magnetic linkage command values at k+2 moment, R is stator resistance value, Ld For d axle inductance values, LqFor q axle inductance values, TsFor the sampling period,For k+1 moment d axis stator flux observer values,For k+1 moment q axis stator flux observer values, ω (k) is the rotating speed of k moment permanent magnet synchronous motors, ψroFor permanent magnet magnetic Chain,For permanent magnet loss of excitation rate observation,For rotor position angle deviation observation.
7. a kind of fault-tolerant prediction stator flux regulation system of permanent magnet synchronous motor, including computer system, it is characterised in that:Institute State the fault-tolerant prediction stator that computer system is programmed to perform in claim 1~6 permanent magnet synchronous motor described in any one The step of flux linkage control method.
CN201810030764.3A 2018-01-12 2018-01-12 Fault-tolerant predictive stator flux linkage control method and system for permanent magnet synchronous motor Active CN108111077B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810030764.3A CN108111077B (en) 2018-01-12 2018-01-12 Fault-tolerant predictive stator flux linkage control method and system for permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810030764.3A CN108111077B (en) 2018-01-12 2018-01-12 Fault-tolerant predictive stator flux linkage control method and system for permanent magnet synchronous motor

Publications (2)

Publication Number Publication Date
CN108111077A true CN108111077A (en) 2018-06-01
CN108111077B CN108111077B (en) 2019-07-26

Family

ID=62220013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810030764.3A Active CN108111077B (en) 2018-01-12 2018-01-12 Fault-tolerant predictive stator flux linkage control method and system for permanent magnet synchronous motor

Country Status (1)

Country Link
CN (1) CN108111077B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809183A (en) * 2018-06-15 2018-11-13 常熟开关制造有限公司(原常熟开关厂) A kind of motor control method and control device
CN108923709A (en) * 2018-06-26 2018-11-30 湖南大学 A kind of cascade robust Fault-Tolerant forecast Control Algorithm of permanent magnet synchronous motor
CN111130413A (en) * 2020-01-03 2020-05-08 湖南大学 Multiphase energy storage permanent magnet motor stator flux linkage prediction control method, system and medium
CN112311290A (en) * 2020-10-26 2021-02-02 江苏大学 Robust prediction permanent magnet synchronous hub motor sensorless controller
CN112886889A (en) * 2021-01-15 2021-06-01 湖南大学 Modular multi-winding permanent magnet motor system parameter immune prediction control method and system
US11031891B1 (en) 2021-02-23 2021-06-08 King Abdulaziz University Predictive flux control for induction motor drives with modified disturbance observer for improved transient response
CN117060795A (en) * 2023-08-18 2023-11-14 湖南第一师范学院 Permanent magnet synchronous motor control method and system based on reference voltage prediction model

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030218887A1 (en) * 2002-04-30 2003-11-27 Kojori Hassan A. Synchronous and bi-directional variable frequency power conversion systems
CN101149423A (en) * 2007-11-02 2008-03-26 清华大学 Real-time detection and analysis method and device for permanent magnet magnetic field distortion of permanent magnet synchronous motor
CN106059428A (en) * 2016-07-07 2016-10-26 东南大学 Model prediction control method of three-phase four-switch inverter driven permanent magnet synchronous motor
CN106849779A (en) * 2017-03-21 2017-06-13 合肥工业大学 Switched reluctance machines dead-beat current PWM duty cycle control method
CN107482976A (en) * 2017-09-25 2017-12-15 湖南大学 Method and device for fault-tolerant predictive control of loss-of-excitation faults for permanent magnet synchronous motors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030218887A1 (en) * 2002-04-30 2003-11-27 Kojori Hassan A. Synchronous and bi-directional variable frequency power conversion systems
CN101149423A (en) * 2007-11-02 2008-03-26 清华大学 Real-time detection and analysis method and device for permanent magnet magnetic field distortion of permanent magnet synchronous motor
CN106059428A (en) * 2016-07-07 2016-10-26 东南大学 Model prediction control method of three-phase four-switch inverter driven permanent magnet synchronous motor
CN106849779A (en) * 2017-03-21 2017-06-13 合肥工业大学 Switched reluctance machines dead-beat current PWM duty cycle control method
CN107482976A (en) * 2017-09-25 2017-12-15 湖南大学 Method and device for fault-tolerant predictive control of loss-of-excitation faults for permanent magnet synchronous motors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张昌凡 等: "一种永磁同步电机失磁故障容错预测控制算法", 《电工技术学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809183A (en) * 2018-06-15 2018-11-13 常熟开关制造有限公司(原常熟开关厂) A kind of motor control method and control device
CN108809183B (en) * 2018-06-15 2020-07-31 常熟开关制造有限公司(原常熟开关厂) Motor control method and control device
CN108923709A (en) * 2018-06-26 2018-11-30 湖南大学 A kind of cascade robust Fault-Tolerant forecast Control Algorithm of permanent magnet synchronous motor
CN108923709B (en) * 2018-06-26 2021-04-13 湖南大学 A Cascade Robust Fault-tolerant Predictive Control Method for Permanent Magnet Synchronous Motors
CN111130413A (en) * 2020-01-03 2020-05-08 湖南大学 Multiphase energy storage permanent magnet motor stator flux linkage prediction control method, system and medium
CN111130413B (en) * 2020-01-03 2021-06-04 湖南中聚福能源科技有限公司 Multiphase energy storage permanent magnet motor stator flux linkage prediction control method, system and medium
CN112311290A (en) * 2020-10-26 2021-02-02 江苏大学 Robust prediction permanent magnet synchronous hub motor sensorless controller
CN112311290B (en) * 2020-10-26 2022-03-22 江苏大学 A Robust Predictive Sensorless Controller for Permanent Magnet Synchronous In-wheel Motors
CN112886889A (en) * 2021-01-15 2021-06-01 湖南大学 Modular multi-winding permanent magnet motor system parameter immune prediction control method and system
CN112886889B (en) * 2021-01-15 2022-05-17 湖南大学 Modular multi-winding permanent magnet motor system parameter immune prediction control method and system
US11031891B1 (en) 2021-02-23 2021-06-08 King Abdulaziz University Predictive flux control for induction motor drives with modified disturbance observer for improved transient response
CN117060795A (en) * 2023-08-18 2023-11-14 湖南第一师范学院 Permanent magnet synchronous motor control method and system based on reference voltage prediction model

Also Published As

Publication number Publication date
CN108111077B (en) 2019-07-26

Similar Documents

Publication Publication Date Title
CN108111077A (en) The fault-tolerant prediction stator flux regulation method and system of permanent magnet synchronous motor
CN107482976B (en) Loss of excitation failure tolerant forecast Control Algorithm and device for permanent magnet synchronous motor
CN103872951B (en) Permanent magnet synchronous motor torque control method based on sliding mode flux linkage observer
WO2020147162A1 (en) One-phase short-circuit fault-tolerant direct torque control method for five-phase permanent-magnet motor
Zhou et al. Sensorless BLDC motor commutation point detection and phase deviation correction method
CN113271048B (en) Open-circuit unified fault-tolerant control method for five-phase permanent magnet fault-tolerant motor control driving system
WO2011145334A1 (en) Control device without a rotation sensor
CN104836504B (en) The adaptive fusion method of salient-pole permanent-magnet synchronous motor precision torque output
CN107863915B (en) Sensorless Direct Torque Control System for Synchronous Reluctance Motor Based on Power Compensation
Bai et al. HF-based sensorless control of a FTPMM in ship shaftless rim-driven thruster system
CN113114078B (en) Position-sensorless control method of multiphase permanent magnet synchronous motor
CN106026803A (en) Speed sensorless control method based on sliding-mode observer
CN108377117B (en) Compound current control system and method for permanent magnet synchronous motor based on predictive control
Li et al. Current sensorless predictive control based on extended Kalman filter for PMSM drives
CN111987961A (en) Position-sensorless direct torque control method for permanent magnet synchronous motor
CN107786140A (en) A kind of robust Fault-Tolerant forecast Control Algorithm and device for considering loss of excitation failure
CN106026817A (en) Speed sensorless control system based on sliding-mode observer of Kalman filter
KR102676718B1 (en) Control method and control system of motor rotation speed
CN108964527A (en) PMSM method for suppressing torque ripple under Stator current vector orientation
CN104953916A (en) Novel speed controller based on speed regulating system of permanent magnet synchronous motor
CN107276479A (en) A kind of two-phase orthogonal winding permagnetic synchronous motor rotating speed determines method
Xiong et al. New adaptive sliding-mode observer design for sensorless control of PMSM in electric vehicle drive system
CN105915144B (en) A kind of permanent magnet synchronous motor rotary speed tracing control method
CN113315430A (en) Sliding mode control method of six-phase permanent magnet synchronous motor without position sensor
Sadoughi et al. Comparison and simulation of rotor flux estimators in stationary and rotating reference frame in the vector control of induction motors for low-speed applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201225

Address after: Room 3002, management committee complex building, Yuelu high tech Zone, No.8, bachelor street, Yuelu District, Changsha City, Hunan Province

Patentee after: Hunan zhongjufu Energy Technology Co.,Ltd.

Address before: Yuelu District City, Hunan province 410082 Changsha Lushan Road No. 2

Patentee before: HUNAN University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240201

Address after: 410082 Yuelu District Lushan South Road Lushan Gate, Changsha City, Hunan Province

Patentee after: HUNAN University

Country or region after: China

Address before: Room 3002, management committee complex building, Yuelu high tech Zone, No.8, bachelor street, Yuelu District, Changsha City, Hunan Province

Patentee before: Hunan zhongjufu Energy Technology Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right