CN108111030A - 混合型海上风场直流换流器 - Google Patents

混合型海上风场直流换流器 Download PDF

Info

Publication number
CN108111030A
CN108111030A CN201711288924.6A CN201711288924A CN108111030A CN 108111030 A CN108111030 A CN 108111030A CN 201711288924 A CN201711288924 A CN 201711288924A CN 108111030 A CN108111030 A CN 108111030A
Authority
CN
China
Prior art keywords
wind field
converter
modular multilevel
mixed type
submodule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711288924.6A
Other languages
English (en)
Other versions
CN108111030B (zh
Inventor
蔡旭
常怡然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201711288924.6A priority Critical patent/CN108111030B/zh
Publication of CN108111030A publication Critical patent/CN108111030A/zh
Priority to EP18807841.4A priority patent/EP3514936B1/en
Priority to PCT/CN2018/114938 priority patent/WO2019109781A1/zh
Application granted granted Critical
Publication of CN108111030B publication Critical patent/CN108111030B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • H02J3/1857Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters wherein such bridge converter is a multilevel converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4283Arrangements for improving power factor of AC input by adding a controlled rectifier in parallel to a first rectifier feeding a smoothing capacitor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明混合型海上风场直流换流器,包括:二极管整流器,二极管整流器的交流侧连接至风场内网,二极管整流器的直流侧连接至高压直流;辅助换流器,辅助换流器分别与风场内网及高压直流连接;其中辅助换流器包括:模块化多电平变换器,模块化多电平变换器的交流侧经变压器连接至风场内网;子模块串,子模块串的一端连接至模块化多电平变换器,另一端连接至高压直流输电线路;滤波电路,子模块串的另一端经过滤波电路连接至高压直流输电线路。本发明具有如下的有益效果:与完整电压等级的MMC换流器相比,本发明可以大幅减少子模块与IGBT数量,减少了系统成本。能够在风场启动阶段主动建立风场内网电压,提供风风场的启动功率,实现风场的黑启动。

Description

混合型海上风场直流换流器
技术领域
本发明属于电力系统中柔性直流输电、电力电子技术领域,涉及一种应用于海上风场直流输电的换流器拓扑,特别是一种混合型海上风场直流换流器。
背景技术
基于模块化多电平变换器(Modular Multilevel Converter,MMC)的柔性直流输电技术快速发展,MMC采用子模块构建高压大容量的AC/DC变换器,具有低谐波、低损耗等优点,成为直流输电技术中最具吸引力的变换器拓扑。但随着电压等级的提高,MMC的子模块数量大幅增加,对于电压等级为几百千伏的直流输电系统,MMC换流器需要由上千个子模块组建,控制系统非常复杂,并且换流器的体积与重量比较庞大,换流器制造成本较高。对于海上风场的直流输电应用,海上平台建设成本高昂,进一步提高了系统成本。
二极管整流器成本低,无需控制系统,可以大幅减小换流器的成本、体积与重量,但采用二极管整流器面临很大的技术挑战。首先,二极管整流器无法主动建立风场内网的电压,常规风力发电变流器的控制策略将无法适用;其次,风电机组需要消耗电能,二极管整流器不具备逆变功能,不能满足风场黑启动要求;另外,二极管整流器会产生较大的电流谐波,并且无法为风场提供无功支撑。
现有文献1,作者:徐政,薛英林,张哲任.《大容量架空线柔性直流输电关键技术及前景展望[J]》.中国电机工程学报,2014,34(29):5051-5062,该技术采用了全部为MMC换流器的方案,该方案需要较多的模块数量、IGBT器件,因此系统成本较高。
现有文献2,作者:Ramon B,Salvador A,Johel R,et al.《Distributed Voltageand Frequency Control of offshore Wind Farms Connected with a Diode-BasedHVDC Link[J]》.IEEE Transactions on Power Electronics,2010,25(12):2095-3105.该技术采用了二极管整流器的方案,由于二极管整流器无法主动建立风场内网的电压,因此需要设计特殊的风力发电变流器控制策略。
发明内容
本发明的目的在于提供一种能够满足风场黑启动要求,能够补偿电流谐波,对风场提供无功补偿且系统成本低的混合型海上风场直流换流器。
为了解决上述技术问题,本发明混合型海上风场直流换流器,包括:二极管整流器,所述二极管整流器的交流侧连接至风场内网,所述二极管整流器的直流侧连接至高压直流;辅助换流器,所述辅助换流器分别与风场内网及高压直流连接;其中所述辅助换流器包括:模块化多电平变换器,所述模块化多电平变换器的交流侧经变压器连接至风场内网;子模块串,所述子模块串的一端连接至所述模块化多电平变换器,另一端连接至高压直流输电线路;滤波电路,所述子模块串的另一端经过所述滤波电路连接至高压直流输电线路。
优选地,所述滤波电路包括滤波电感和滤波电容;其中所述子模块串的另一端经过所述滤波电感连接至高压直流输电线路;所述滤波电容连接在所述模块化多电平变换器的输入端正极与输入端负极之间。
优选地,所述模块化多电平变换器由半桥子模块构成。
优选地,所述模块化多电平变换器中每个桥臂的半桥子模块的数量为8个,所述模块化多电平变换器中每个桥臂的电感为1mH,所述模块化多电平变换器的直流输出电压额定值为16kV,所述模块化多电平变换器的交流输出电压额定值为6kV。
优选地,所述子模块串包括45个半桥子模块。
优选地,所述半桥子模块的额定电压为2kV。
优选地,所述子模块串的直流输出电压额定值为84kV。
优选地,所述滤波电感为50mH,所述滤波电容为150μF。
优选地,所述子模块串的绝缘栅双极型晶体管开关频率为200Hz,所述模块化多电平变换器的绝缘栅双极型晶体管开关频率为1000Hz。
优选地,所述二极管整流器为12脉动二极管整流器、24脉动二极管整流器或多重化二极管整流器。
与现有技术相比,本发明具有如下的有益效果:
1)与完整电压等级的MMC换流器相比,本发明可以大幅减少子模块与IGBT数量,减少了系统成本。
2)能够在风场启动阶段主动建立风场内网电压,提供风风场的启动功率,实现风场的黑启动。
3)辅助换流器中的小容量低压MMC能在风场稳定发送阶段提供无功补偿与谐波电流补偿,改善了基于二极管整流器系统的性能。
附图说明
图1为本发明混合型海上风场直流换流器原理图;
图2为本发明混合型海上风场直流换流器风场输出电流示意图;
图3为本发明混合型海上风场直流换流器辅助换流器交流侧电流示意图;
图4为本发明混合型海上风场直流换流器二极管整流器交流侧电流示意图。
图中:
1-半桥子模块 2-滤波电感 3-滤波电容
具体实施方式
为了充分说明本发明解决技术问题所实施使用的技术方案,下面结合实施例和附图对发明做详细说明,但本发明的技术方案、技术方案的实施方式以及保护范围并不仅仅限于此。
本发明混合型海上风场直流换流器由两大部分构成:
第一部分为二极管整流器及其连接变压器,图1中采用了12脉动二极管整流器,也可以采用24脉动或更高多重化的二极管整流器,二极管整流器的交流侧连接至风场内网,二极管整流器的直流侧连接至高压直流(High Voltage Direct Current,HVDC)输电线路。
第二部分为辅助换流器,辅助换流器由3部分构成:
1.低压小容量MMC,该部分与常规MMC换流器结构相同,采用半桥子模块1构成,但电压等级与功率容量较小,小容量低压MMC的交流侧经变压器连接至风场内网,直流侧经过子模块串与滤波电路至高压直流输电线路。
2.子模块串,子模块串由一系列半桥子模块1串连构成,一端连接至小容量低压MMC,另一端经过滤波电路连接至高压直流输电线路。
3.滤波电路,滤波电路由滤波电感2和滤波电容3构成,滤波电路安装在辅助换流器的直流侧,阻止换流器内部的高频电流进入高压直流线路。辅助换流器的交流侧经变压器与二极管整流器变压器并联接入风场内网,直流侧经子模块串和滤波电路接入高压直流输电线路。
为了实现风场的黑启动与正常发电,换流器的运行分为三个阶段:1.在风场启动阶段,由辅助换流器建立风场内网交流电压,并控制风场内网电压低于二极管整流器的整流阈值电压,此时二极管整流器不工作,风场的启动功率由辅助换流器提供,风电机组按照常规控制策略启动并网;2.风电机组开始发电,风场由负载转变为电源,输出功率不断增加,当风场完成启动后由辅助换流器抬升风场内网电压达到二极管整流器的整流阈值,使风场输出功率由辅助换流器转移到二极管整流器,并对辅助换流器的交流侧电压幅值进行控制,使辅助换流器保持在零功率运行状态;3.风场进入稳态发电阶段,全部有功功率由二极管整流器输送,此时辅助换流器为零功率运行状态,辅助换流器中的小容量低压MMC起到补偿风场内部无功功率和补偿电流的谐波的功能。
针对一个160MW的海上风场设计如图1所示的直流输电换流站,HVDC线路电压为100kV,辅助换流流器中半桥子模块1的额定电压为2kV,子模块串的半桥子模块1数量为45,子模块串的直流输出电压额定值为84kV,低压小容量MMC中每个桥臂的半桥子模块1数量为8,低压小容量MMC中每个桥臂电感为1mH,低压小容量MMC的直流输出电压额定值为16kV,低压小容量MMC的交流输出电压额定值为6kV,辅助换流器的滤波电感2和滤波电容3分别为50mH和150μF,子模块串的IGBT开关频率为200Hz,低压小容量MMC的IGBT开关频率为1000Hz,子模块串与辅助MMC均采用载波移相调制。在MatLab仿真平台中对本设计案例进行仿真验证,图2、图3、图4分别给出了风场输出电流、辅助换流器交流侧电流、二极管整流器交流侧电流的仿真结果,风场在0.2s进入启动阶段,由辅助换流器向风场返送功率,输送约为2MW,在0.7s时机组开始发电,换流站端口功率逐渐反向,在1.1s时风场进入发电状态,在1.7s辅助换流站输送功率约为2.5MW,此时判断风场启动完成,由辅助换流器抬升系统电压,使发电功率由辅助换流器转移至二极管整流器,辅助换流器对风场进行无功补偿与谐波电流补偿,系统在4.7s达到10%额定发电功率。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

1.一种混合型海上风场直流换流器,其特征在于,包括:
二极管整流器,所述二极管整流器的交流侧连接至风场内网,所述二极管整流器的直流侧连接至高压直流;
辅助换流器,所述辅助换流器分别与风场内网及高压直流连接;其中
所述辅助换流器包括:
模块化多电平变换器,所述模块化多电平变换器的交流侧经变压器连接至风场内网;
子模块串,所述子模块串的一端连接至所述模块化多电平变换器,另一端连接至高压直流输电线路;
滤波电路,所述子模块串的另一端经过所述滤波电路连接至高压直流输电线路。
2.根据权利要求1所述的混合型海上风场直流换流器,其特征在于,所述滤波电路包括滤波电感和滤波电容;其中
所述子模块串的另一端经过所述滤波电感连接至高压直流输电线路;
所述滤波电容连接在所述模块化多电平变换器的输入端正极与输入端负极之间。
3.根据权利要求1所述的混合型海上风场直流换流器,其特征在于,所述模块化多电平变换器由半桥子模块构成。
4.根据权利要求3所述的混合型海上风场直流换流器,其特征在于,所述模块化多电平变换器中每个桥臂的半桥子模块的数量为8个,所述模块化多电平变换器中每个桥臂的电感为1mH,所述模块化多电平变换器的直流输出电压额定值为16kV,所述模块化多电平变换器的交流输出电压额定值为6kV。
5.根据权利要求4所述的混合型海上风场直流换流器,其特征在于,所述子模块串包括45个半桥子模块。
6.根据权利要求5所述的混合型海上风场直流换流器,其特征在于,所述半桥子模块的额定电压为2kV。
7.根据权利要求6所述的混合型海上风场直流换流器,其特征在于,所述子模块串的直流输出电压额定值为84kV。
8.根据权利要求1所述的混合型海上风场直流换流器,其特征在于,所述滤波电感为50mH,所述滤波电容为150μF。
9.根据权利要求1所述的混合型海上风场直流换流器,其特征在于,所述子模块串的绝缘栅双极型晶体管开关频率为200Hz,所述模块化多电平变换器的绝缘栅双极型晶体管开关频率为1000Hz。
10.根据权利要求1所述的混合型海上风场直流换流器,其特征在于,所述二极管整流器为12脉动二极管整流器、24脉动二极管整流器或多重化二极管整流器。
CN201711288924.6A 2017-12-07 2017-12-07 混合型海上风场直流换流器 Active CN108111030B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201711288924.6A CN108111030B (zh) 2017-12-07 2017-12-07 混合型海上风场直流换流器
EP18807841.4A EP3514936B1 (en) 2017-12-07 2018-11-11 Hybrid dc converter for offshore wind farm
PCT/CN2018/114938 WO2019109781A1 (zh) 2017-12-07 2018-11-11 混合型海上风场直流换流器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711288924.6A CN108111030B (zh) 2017-12-07 2017-12-07 混合型海上风场直流换流器

Publications (2)

Publication Number Publication Date
CN108111030A true CN108111030A (zh) 2018-06-01
CN108111030B CN108111030B (zh) 2020-09-15

Family

ID=62208188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711288924.6A Active CN108111030B (zh) 2017-12-07 2017-12-07 混合型海上风场直流换流器

Country Status (3)

Country Link
EP (1) EP3514936B1 (zh)
CN (1) CN108111030B (zh)
WO (1) WO2019109781A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019109781A1 (zh) * 2017-12-07 2019-06-13 上海交通大学 混合型海上风场直流换流器
CN110323958A (zh) * 2019-07-04 2019-10-11 中国科学院电工研究所 电流源型混合式海上风场直流换流器
CN110380445A (zh) * 2019-06-26 2019-10-25 上海交通大学 混合直流换流器及其故障穿越方法
CN110556864A (zh) * 2019-09-09 2019-12-10 广东安朴电力技术有限公司 一种远程输电变流站及输电系统
CN113178884A (zh) * 2021-03-30 2021-07-27 国网上海市电力公司 混合直流换流器的预充电方法及系统
CN113612376A (zh) * 2021-07-02 2021-11-05 广东电网有限责任公司阳江供电局 海上风电直流送出系统的启动方法
CN113922410A (zh) * 2021-10-26 2022-01-11 国网上海市电力公司 混合直流送出系统及其低电压故障穿越方法
CN113938033A (zh) * 2021-10-19 2022-01-14 哈尔滨工程大学 基于双辅助单相变压器电流注入电路的24脉波整流器
CN114362559A (zh) * 2021-12-06 2022-04-15 深圳供电局有限公司 混合直流电源电路及配电系统
CN114567012A (zh) * 2022-03-17 2022-05-31 南京南瑞继保电气有限公司 风电直流送出系统及其控制方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107862405B (zh) * 2017-10-27 2021-03-02 广东电网有限责任公司电力调度控制中心 计及微网作为黑启动电源的电力系统网架重构优化方法
CN110795861B (zh) * 2019-11-11 2023-03-31 国网青海省电力公司电力科学研究院 一种对换流站支柱绝缘子屏蔽球地刀口参数的优化方法
CN113131510B (zh) * 2020-01-16 2022-09-27 新疆金风科技股份有限公司 风电场的高电压穿越控制方法、系统、mmc及机侧变流器
CN113067369B (zh) * 2021-02-25 2022-11-15 中国能源建设集团广东省电力设计研究院有限公司 一种海上风电联合发供电系统的柴油发电机组配置方法
CN113033017B (zh) * 2021-04-14 2022-01-18 中国华能集团清洁能源技术研究院有限公司 一种双转子永磁发电机电磁耦合损耗模拟装置和方法
CN113394819B (zh) * 2021-06-30 2022-11-22 国网山东省电力公司电力科学研究院 孤岛海上风电场混合直流并网系统的协调控制方法及系统
CN113972688A (zh) * 2021-10-22 2022-01-25 国网山东省电力公司电力科学研究院 海上风电经dr-mmc并联混合直流送出系统启动方法
CN114447974B (zh) * 2022-03-23 2023-01-20 国网经济技术研究院有限公司 一种海上风电不控整流直流输电系统
CN116231721B (zh) * 2023-05-09 2023-07-21 长江三峡集团实业发展(北京)有限公司 一种基于岸上高低阀的海上风电直流送出系统及控制方法
CN116260348B (zh) * 2023-05-09 2023-07-21 四川大学 一种基于mmc的大容量电解制氢混合整流器及控制方法
CN116722578B (zh) * 2023-08-10 2023-11-03 长江三峡集团实业发展(北京)有限公司 面向混联结构的海上风电直流送出系统、启动方法及装置
CN117713570A (zh) * 2024-02-05 2024-03-15 国网浙江省电力有限公司电力科学研究院 一种海上风电hvdc换流器、控制方法、设备及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024569A (zh) * 2015-07-22 2015-11-04 上海交通大学 适用于低调制比应用的分叉结构模块化多电平变换器
CN107968587A (zh) * 2017-11-06 2018-04-27 上海交通大学 混合型海上风场直流换流器的辅助换流器及控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3226077B2 (ja) * 1994-09-09 2001-11-05 東洋電機製造株式会社 多重化整流装置
GB2427512A (en) * 2005-06-23 2006-12-27 Alstom Electrical power converters
CN102222929B (zh) * 2011-06-24 2014-04-30 梁一桥 单向功率传输的直流输电系统
KR101425400B1 (ko) * 2013-08-29 2014-08-13 한국전력공사 초고압직류송전용 컨버터
CN103532161B (zh) * 2013-09-23 2016-09-28 武汉大学 基于辅助电源的混合直流输电系统拓扑结构及启动方法
KR101666712B1 (ko) * 2014-05-13 2016-10-14 엘에스산전 주식회사 모듈형 멀티레벨 컨버터
CN104967141B (zh) * 2015-06-26 2017-12-26 许继电气股份有限公司 一种混合直流输电系统
CN106972519B (zh) * 2017-04-27 2019-07-12 湖南大学 直流输电系统直流侧谐振的有源阻尼控制装置及方法
CN108111030B (zh) * 2017-12-07 2020-09-15 上海交通大学 混合型海上风场直流换流器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024569A (zh) * 2015-07-22 2015-11-04 上海交通大学 适用于低调制比应用的分叉结构模块化多电平变换器
CN107968587A (zh) * 2017-11-06 2018-04-27 上海交通大学 混合型海上风场直流换流器的辅助换流器及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NGUYEN, THANHHAI 等: "《Control of Offshore Wind Farms Based on HVDC》", 《2012 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE)》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019109781A1 (zh) * 2017-12-07 2019-06-13 上海交通大学 混合型海上风场直流换流器
CN110380445B (zh) * 2019-06-26 2021-09-14 上海交通大学 混合直流换流器及其故障穿越方法
CN110380445A (zh) * 2019-06-26 2019-10-25 上海交通大学 混合直流换流器及其故障穿越方法
CN110323958A (zh) * 2019-07-04 2019-10-11 中国科学院电工研究所 电流源型混合式海上风场直流换流器
CN110323958B (zh) * 2019-07-04 2020-07-31 中国科学院电工研究所 电流源型混合式海上风场直流换流器
CN110556864A (zh) * 2019-09-09 2019-12-10 广东安朴电力技术有限公司 一种远程输电变流站及输电系统
WO2021047058A1 (zh) * 2019-09-09 2021-03-18 广东安朴电力技术有限公司 一种远程输电变流站及输电系统
CN113178884A (zh) * 2021-03-30 2021-07-27 国网上海市电力公司 混合直流换流器的预充电方法及系统
CN113612376A (zh) * 2021-07-02 2021-11-05 广东电网有限责任公司阳江供电局 海上风电直流送出系统的启动方法
CN113938033A (zh) * 2021-10-19 2022-01-14 哈尔滨工程大学 基于双辅助单相变压器电流注入电路的24脉波整流器
CN113938033B (zh) * 2021-10-19 2023-06-30 哈尔滨工程大学 基于双辅助单相变压器电流注入电路的24脉波整流器
CN113922410A (zh) * 2021-10-26 2022-01-11 国网上海市电力公司 混合直流送出系统及其低电压故障穿越方法
CN114362559A (zh) * 2021-12-06 2022-04-15 深圳供电局有限公司 混合直流电源电路及配电系统
CN114567012A (zh) * 2022-03-17 2022-05-31 南京南瑞继保电气有限公司 风电直流送出系统及其控制方法
CN114567012B (zh) * 2022-03-17 2023-10-13 南京南瑞继保电气有限公司 风电直流送出系统及其控制方法

Also Published As

Publication number Publication date
EP3514936A4 (en) 2019-10-02
CN108111030B (zh) 2020-09-15
WO2019109781A1 (zh) 2019-06-13
EP3514936B1 (en) 2020-09-16
EP3514936A1 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
CN108111030A (zh) 混合型海上风场直流换流器
Azmi et al. Grid interfacing of multimegawatt photovoltaic inverters
CN105576982A (zh) 非隔离型直流变压器
CN108471246B (zh) 一种用于降低模块化多电平换流器开关器件承压的控制方法
CN108566108A (zh) 一种基于桥式多电平开关电容模块的两级式九电平逆变器
CN104852583A (zh) 一种用于中低压直流配电的高频链多电平直流变压器
CN116316782A (zh) 一种混合轻型海上风电直流输电系统和方法
CN108631326A (zh) 基于Buck型三电平交交变换器的无功和谐波补偿装置
Marangalu et al. A new five-level switched-capacitor-based transformer-less common-grounded grid-tied inverter
Li et al. A new voltage source converter-HVDC transmission system based on an inductive filtering method
CN111371116B (zh) 一种基于混合型模块化多电平变换器的电力电子变压器
CN106208131B (zh) 用于新能源接入和主动配电网的多电平变流器拓扑结构
CN112688355A (zh) 应用于海上风电场的混合型直流换流器及其控制方法
Xia et al. Cooperative control strategy of fundamental frequency modulation-based current source converters for offshore wind farms
CN115207959B (zh) 一种基于lcc和全桥mmc-statcom混合串联的海上风电直流输电系统
CN204578373U (zh) 一种用于中低压直流配电的高频链多电平直流变压器
CN109980967A (zh) 降低全桥型mmc子模块电容值的方法与系统
CN106998067B (zh) 用于补偿高压直流输电系统特征谐波的交流有源滤波器
de Almeida et al. A bidirectional single-stage three-phase rectifier with high-frequency isolation and power factor correction
CN107546984A (zh) 一种集成滤波变压器的大功率模块化高压直流变换器
CN205945092U (zh) 一种基于混合多电平变换器的分布式电源并网电路
de Almeida et al. Modulation technique for a single-stage three-phase bidirectional AC/DC converter with PFC and high-frequency isolation
CN212435603U (zh) 一种混合式海上风场变流器拓扑结构
Jin et al. General average model of T-type three-level converter for active compensation circuit of distribution network
CN212543375U (zh) 一种基于直接矩阵变换器进行组网的交流微电网系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant