CN108111005A - 功率器件的驱动电路及方法 - Google Patents

功率器件的驱动电路及方法 Download PDF

Info

Publication number
CN108111005A
CN108111005A CN201711394841.5A CN201711394841A CN108111005A CN 108111005 A CN108111005 A CN 108111005A CN 201711394841 A CN201711394841 A CN 201711394841A CN 108111005 A CN108111005 A CN 108111005A
Authority
CN
China
Prior art keywords
mos
mos transistor
stage units
power device
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711394841.5A
Other languages
English (en)
Inventor
艾宴清
王寅峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Information Technology
Original Assignee
Shenzhen Institute of Information Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Information Technology filed Critical Shenzhen Institute of Information Technology
Priority to CN201711394841.5A priority Critical patent/CN108111005A/zh
Publication of CN108111005A publication Critical patent/CN108111005A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明公开了一种功率器件的驱动电路及方法,包括:驱动单元,驱动单元包括多个相互并联的驱动器,驱动单元依据驱动信号分别控制每一个驱动器的开闭;MOS分级单元,其输入端电性连接于驱动单元的输出端,MOS分级单元包括多个MOS晶体管,每个MOS晶体管均与一个驱动器串联,多个MOS晶体管的尺寸具有线性比例关系;比较单元,其输入端电性连接于MOS分级单元的输出端,比较单元用于比较流过MOS分级单元的负载电流与设定电流的大小关系,输出二进制信号;计数器,其输入端通信连接于比较单元的输出端,接收二进制信号,并依据二进制信号生成驱动信号,其输出端通信连接于驱动单元的输入端,将驱动信号传输至驱动单元。

Description

功率器件的驱动电路及方法
技术领域
本发明属于集成电路领域,更具体地,涉及一种功率器件的驱动电路 及方法。
背景技术
在电源类电路中,尤其是开关电源类电路中,如开关型降压(BUCK), 开关型升压(BOOST),还有马达驱动、D类音频放大器等,都需要驱动一 个功率管。
原来的驱动设计方法都是根据功率、效率及成本的需求,设定好一下 固定Rdson值的MOS,无论这个MOS是P型还是N型的。为了便于说明 问题,在这里,我仅以驱动N型MOS管为例。在大功率的方案中,通常要 求这个Rdson非常小,比如10毫欧,这就意味着MOS管的面积相当大。 而且,通常P型MOS管的面积还会是N型的2~3倍。面积大,也就意味 着寄生的栅源电容很大,为了提升整个系统的电源转换效率,就得降低各 种损耗。
在传统的集成电路系统中,MOS管的尺寸固定,在优化系统效率的时 候,只有一个电流点的MOS管的损耗是最小的。假设这个最小MOS管的 损耗的电流点为最大电流时,那么当系统负载变化,进入中载,或者轻载 时,这个损耗将增大,系统效率必将降低。
因此,有必要提供一种功率器件的驱动电路,可以根据负载电流的变 化来调整MOS的尺寸,用以降低损耗。
发明内容
本发明通过提供一种功率器件的驱动电路,能够根据负载电流的不同 来调整功率器件MOS管的尺寸,以实现系统效率在不同的负载下效率能够 达到多点优化,而不是目前的仅单点优化。
根据本发明的一方面,提出了一种功率器件的驱动电路,该电路包括: 驱动单元,所述驱动单元包括多个相互并联的驱动器,所述驱动单元依据 驱动信号分别控制每一个驱动器的开闭;MOS分级单元,其输入端电性连 接于所述驱动单元的输出端,所述MOS分级单元包括多个MOS晶体管, 每个所述MOS晶体管均与一个所述驱动器串联,所述多个MOS晶体管的 尺寸具有线性比例关系;比较单元,其输入端电性连接于所述MOS分级单 元的输出端,所述比较单元用于比较流过所述MOS分级单元的负载电流与 设定电流的大小关系,输出二进制信号;计数器,其输入端通信连接于所 述比较单元的输出端,接收所述二进制信号,并依据所述二进制信号生成 驱动信号,其输出端通信连接于所述驱动单元的输入端,将所述驱动信号 传输至所述驱动单元。
优选地,所述MOS晶体管的栅极连接于所述驱动单元的输出端,所述 MOS晶体管的源极连接于地电位,所述MOS晶体管的漏极连接于所述比 较单元的输入端。
优选地,所述比较单元包括第一比较器和第二比较器,所述第一比较 器的同相输入端和所述第二比较器的反向输入端连接于所述多个晶体管的 漏极,用于获得MOS晶体管的漏源电压;所述第一比较器的反向输入端和 所述第二比较器的同相输入端连接于稳压器,用于获取参考电压。
优选地,基于所述MOS晶体管的漏源电压,表征所述负载电流。
优选地,所述比较单元比较流过所述MOS分级单元的负载电流与设定 电流的大小关系,输出二进制信号包括:当所述负载电流大于所述设定电 流时,所述第一比较器输出的所述二进制信号为1,所述第二比较器输出的 所述二进制信号为0;当所述负载电流小于所述设定电流时,所述第一比较 器输出的所述二进制信号为0,所述第二比较器输出的所述二进制信号为1。
优选地,所述计数器为加减计数器。
优选地,所述MOS分级单元包括:所述MOS分级单元包括第一MOS 晶体管、第二MOS晶体管和第三MOS晶体管,所述第一MOS晶体管、 第二MOS晶体管和第三MOS晶体管的尺寸比例为1:2:4。
根据本发明的另一方面,提出了一种功率器件的驱动方法,该方法包 括如下步骤:开启功率器件的驱动电路,MOS分级单元以最小尺寸开始工 作;利用比较器获得流过所述MOS分级单元的电流与设定电流的大小关 系,并通过加减计数器来控制多个驱动器的开闭;基于所述多个驱动器的 开闭,控制与其串联的MOS晶体管的通断来调整所述MOS分级单元的尺 寸,使得所述MOS分级单元的损耗最小。
优选地,所述MOS分级单元的损耗为所有的MOS晶体管的损耗之和。
优选地,所述MOS晶体管的损耗包括开关损耗和导通损耗,表示为:
Ploss=f×Cgs×Vgs2+Id2×Rdson (1)
其中,Ploss表示为MOS晶体管的损耗;f为开关频率,Cgs为栅源电 容,Vgs为栅源电压;Id为漏极电流,Rdson为导通源漏电阻,Cgs×Rdson=Z, Z为常数。
本发明的有益效果在于:将流过MOS分级单元的电流与设定电流进行 对比,并基于对比结果,通过加减计数器来控制多个驱动器的开闭,进而 控制了与驱动器串联的MOS晶体管的通断,从而调整了MOS分级单元的 尺寸,使得MOS分级单元的损耗最小,使得系统效率在不同的负载下效率 能够达到多点优化。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
附图说明
通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的 上述以及其它目的、特征和优势将变得更加明显,其中,在本发明示例性 实施方式中,相同的参考标号通常代表相同部件。
图1示出了根据本发明的一个实施例的功率器件的驱动电路原理图。
图2示出了根据本发明的功率器件的驱动方法的流程图。
具体实施方式
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明 的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这 里阐述的实施方式所限制。相反,提供这些实施方式是为了使本发明更加 透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
实施例1
图1示出了根据本发明的一个实施例的功率器件的驱动电路原理图。
如图1所示,根据本发明的功率器件的驱动电路包括:驱动单元101, 驱动单元101包括多个相互并联的驱动器,驱动单元101依据驱动信号分 别控制每一个驱动器的开闭;MOS分级单元102,其输入端电性连接于驱 动单元101的输出端,MOS分级单元102包括多个MOS晶体管,每个MOS 晶体管均与一个驱动器串联,多个MOS晶体管的尺寸具有线性比例关系; 比较单元103,其输入端电性连接于MOS分级单元102的输出端,比较单 元103用于比较流过MOS分级单元102的负载电流与设定电流的大小关 系,输出二进制信号;计数器104,其输入端通信连接于比较单元103的输 出端,接收二进制信号,并依据二进制信号生成驱动信号,其输出端通信 连接于驱动单元101的输入端,将驱动信号传输至驱动单元101。
该实施例通过提供一种功率器件的驱动电路,能够根据负载电流的不 同来调整功率器件MOS管的尺寸,以实现系统效率在不同的负载下效率能 够达到多点优化,而不是目前的仅单点优化。
在一个示例中,MOS晶体管的栅极连接于驱动单元101的输出端,MOS 晶体管的源极连接于地电位,MOS晶体管的漏极连接于比较单元103的输 入端。
具体地,MOS晶体管与驱动器是一一对应的,MOS晶体管的栅极连 接到驱动单元101的输出端,通过控制驱动器的开闭即可控制MOS晶体管 的通断,进而实现了对MOS分级单元102尺寸的调整。
在一个示例中,比较单元103包括第一比较器C1和第二比较器C2, 第一比较器C1的同相输入端和第二比较器C2的反向输入端连接于多个晶 体管的漏极,用于获得MOS晶体管的漏源电压;第一比较器C1的反向输 入端和第二比较器C2的同相输入端连接于稳压器,用于获取参考电压。
具体地,晶体管的源极连接于地电位,第一比较器C1的同相输入端和 第二比较器C2的反向输入端连接于多个晶体管的漏极,检测MOS管的漏 源电压,比较器用于比较漏源电压和参考电压的大小。
在一个示例中,基于MOS晶体管的漏源电压,表征负载电流。
具体地,通过检测MOS管的漏源电压来检测负载电流的变化。
在一个示例中,比较单元103比较流过MOS分级单元102的负载电流 与设定电流的大小关系,输出二进制信号包括:当负载电流大于设定电流 时,第一比较器C1输出的二进制信号为1,第二比较器C2输出的二进制 信号为0;当负载电流小于设定电流时,第一比较器C1输出的二进制信号 为0,第二比较器C2输出的二进制信号为1。
具体地,当负载电流大于设定电流时,第一比较器C1输出的二进制信 号为1,第二比较器C2输出的二进制信号为0,计数器104的控制输出端 发出的新的驱动信号,驱动单元101根据驱动信号分别控制每一个驱动器 的开闭,从而使得MOS分级单元102的尺寸增加;当负载电流小于设定电 流时,第一比较器C1输出的二进制信号为0,第二比较器C2输出的二进 制信号为1,计数器104的控制输出端发出的新的驱动信号,驱动单元101 根据驱动信号分别控制每一个驱动器的开闭,从而使得MOS分级单元102 的尺寸减小。
在一个示例中,计数器104为加减计数器。
具体地,加减计数器又叫可逆计数器,是可以进行正向和反向计数的 计数器,从而可以调整输出的驱动信号的改变,从而调整MOS分级单元 102尺寸的变化。
在一个示例中,MOS分级单元102包括:MOS分级单元102包括第一 MOS晶体管M1、第二MOS晶体管M2和第三MOS晶体管M3,第一MOS 晶体管M1、第二MOS晶体管M2和第三MOS晶体管M3的尺寸比例为 1:2:4。
在图1中,驱动单元101包括3个驱动器,分别是第一驱动器N1、第 二驱动器N2和第三驱动器N3,MOS分级单元102包括3个MOS晶体管, 分别是第一MOS晶体管M1、第二MOS晶体管M2和第三MOS晶体管 M3,MOS分级单元102的尺寸记为1,那么第一MOS晶体管M1占MOS 分级单元102尺寸的比例为1/7,第二MOS晶体管M2为2/7,第三MOS 晶体管M3为4/7,3个MOS晶体管可以将细分为7个均等的级别,第一驱 动器N1的输出端连接第一MOS晶体管M1的栅极,第二驱动器N2的输 出端连接第二MOS晶体管M2的栅极,第三驱动器N3的输出端连接第三MOS晶体管M3的栅极。本领域技术人员应当理解,本实施例中的比例及 分级级数只是其中一个例子,可以此二进制的形式继续细化,比如4个MOS 晶体管尺寸比例为为1:2:4:8,将MOS分级单元的尺寸分为15个级别,任 何采用本发明中的方法,针对特定系统对比例进行优化的比例和分级数, 也应该视为在本发明的保护之内。
加减计数器有三个输出控制端,分别为Q1,Q2和Q3,分别与驱动信 号G1,G2和G3对应,控制第一驱动器N1、第二驱动器N2和第三驱动器 N3的通断,如表1所示。
表1
Q3\G3 Q2\G2 Q1\G1 总的MOS尺寸 可导通部分
0 0 0 1A/7 M2
0 0 1 1A/7 M2
0 1 0 2A/7 M3
0 1 1 3A/7 M2,M3
1 0 0 4A/7 M4
1 0 1 5A/7 M2,M4
1 1 0 6A/7 M3,M4
1 1 1 A M2,M3,M4
开启功率器件的驱动电路,MOS分级单元102以最小尺寸开始工作, 如图1所示,此时加减计数器的输出为0,此时第一MOS晶体管在工作, 第一MOS晶体管M1占MOS分级单元102尺寸的比例为1/7;
利用比较器获得流过MOS分级单元102的负载电流与设定电流的大小 关系,并通过加减计数器来控制多个驱动器的开闭,本领域技术人员应理 解,上面检测电流的方法只是其中之一,其它任何检测电流的方法,如通 过串联电阻,采样MOS等,都不影响本发明的实施;
基于多个驱动器的开闭,控制与其串联的MOS晶体管的通断来调整 MOS分级单元102的尺寸,使得MOS分级单元102的损耗最小。
由实施例可以得出,除了通过调整MOS尺寸减小损耗、提高效率外, 还有3个方面可以降低损耗,提高转换效率:1)在电流变小时,由于MOS 尺寸变小,Rdson增大,那么,在开关管进行导通与关断时的直通损耗也将 减小;2)由于每个驱动器都有可能被关断(每个周期都不导通),那么驱 动他们的损耗也会减小,尤其是大功率的系统中,这几个驱动的自己损耗 也是不小的;3)在大功率系统中,MOS的尺寸大,Rdson非常小,如10 毫欧,其实,这10毫欧应该还包括MOS管的本征Rdson_int(比如5毫欧), 金属连线的等效电阻Rm(比如5毫欧)。假设电流减半,Rdson加倍,如 变成20毫欧,由于金属连线的等效电阻将不变,还是5毫欧,那么MOS 管的本征Rdson_int将变成了15毫欧,那么,MOS管的面积不是只有原来 一半,而是可以只要原来的三分之一,也就Cgs可以减小三分之一,这时 减小驱动,那效果更可观。
本实施例将流过MOS分级单元的电流与设定电流进行对比,并基于对 比结果,通过加减计数器来控制多个驱动器的开闭,进而控制了与驱动器 串联的MOS晶体管的通断,从而调整了MOS分级单元的尺寸,使得MOS 分级单元的损耗最小,使得系统效率在不同的负载下效率能够达到多点优 化。
实施例2
图2示出了根据本发明的功率器件的驱动方法的流程图。
如图2所示,根据本发明的实施例,提供了一种功率器件的驱动方法, 该方法包括如下步骤:步骤201,开启功率器件的驱动电路,MOS分级单 元以最小尺寸开始工作;步骤202,利用比较器获得流过MOS分级单元的 电流与设定电流的大小关系,并通过加减计数器来控制多个驱动器的开闭; 步骤203,基于多个驱动器的开闭,控制与其串联的MOS晶体管的通断来 调整MOS分级单元的尺寸,使得MOS分级单元的损耗最小。
在一个示例中,MOS分级单元的损耗为所有的MOS晶体管的损耗之 和。
在一个示例中,所述MOS晶体管的损耗包括开关损耗和导通损耗,表 示为:
Ploss=f×Cgs×Vgs2+Id2×Rdson (1)
其中,Ploss表示为MOS晶体管的损耗;f为开关频率,Cgs为栅源电 容,Vgs为栅源电压;Id为漏极电流,Rdson为导通源漏电阻,Cgs×Rdson=Z, Z为常数。
在此需要说明的是,漏极电流即为负载电流,下面提到的负载电流均 是指漏极电流。
Cgs×Rdson=Z是MOS晶体管的物理特性,结合公式(1)可得,当且仅 当f×Cgs×Vgs2=Id2×Rdson的时候,Ploss可取得最小值。也就是说,在优化 系统效率的时候,固定的MOS尺寸,只有一个电流点的Ploss是最小的,记 这个最小的损耗为Ploss0,那么Ploss0=f×Cgs0×Vgs2+I02×Rdson0,那么当 系统负载变化,进入中载,或者轻载时,这个损耗将增大,系统效率必将 降低。因此,考虑提出一种功率器件的驱动方法,能够根据负载电流的不同来调整功率器件MOS管的尺寸。
为了便于说明本发明的方法,我们通过检测MOS管的漏源电压Vds来 检测负载电流的变化,而且调整MOS管尺寸的目标是维护Vds不变为一个 常数。
在传统的集成电路系统中,MOS管的尺寸固定,当负载电流变小为I1时,栅源电容和Rdson值不变,此时的损耗表示为:
Ploss1a=f×Cgs0×Vgs2+I12×Rdson0 (2)
其中,f为开关频率;Cgs0为栅源电容;Vgs为栅源电压;Rdson0为漏 极电流为I0时的导通源漏电阻。
采用本发明提出的方法,负载电流变小为I1时,根据MOS晶体管的物 理特性可得,此时的损耗为:
Ploss1b=f×Cgs1×Vgs2+I12×Rdson1 (3)
其中,f为开关频率;Cgs1为栅源电容;Vgs为栅源电压;Rdson1为漏 极电流为I1时的导通源漏电阻。
根据MOS晶体管的物理特性,可得,
Cgs0×Rdson0=Cgs1×Rdson1=Z (4)
其中,Cgs0为漏极电流为I0时的栅源电容;Rdson0为漏极电流为I0时 的导通源漏电阻;Cgs1为漏极电流为I1时的栅源电容;Rdson1为漏极电流为 I1时的导通源漏电阻,Z为常数。
将公式(4)代入到公式(3)中,可得:
利用公式(2)和公式(5),比较这两个损耗,可得:
可得
因为f×Cgs0×Vgs2=I02×Rdson0,所以两者之间的损耗差值Δ可化简为:
其中,Δ为损耗差值,I0为负载电流;Rdson0为漏极电流为I0时的导 通源漏电阻。
由公式(8)可以看出,Δ≥0,当且仅当I1=I0时,Δ=0,也即本发明 所采取的方法,损耗一定会小于传统的方法。如果MOS管的尺寸能够与每 一个负载电流点,都能够有一个一一对应的尺寸,那么系统的效率将会在 整个负载范围内,都能够得到一个最佳的效率。但是由于电路成本及MOS 管设计的离散性,决定的MOS管的尺寸在实际设计中很难做成一个连续变 化的,但是可以细分成几个级别,细分的级别越多,越可以近似都认为连 续,实现最佳效率的负载点也就越多。
本实施例将流过MOS分级单元的电流与设定电流进行对比,并基于对 比结果,通过加减计数器来控制多个驱动器的开闭,进而控制了与驱动器 串联的MOS晶体管的通断,从而调整了MOS分级单元的尺寸,使得MOS 分级单元的损耗最小,使得系统效率在不同的负载下效率能够达到多点优 化。
本领域技术人员应理解,上面对本发明的实施例的描述的目的仅为了 示例性地说明本发明的实施例的有益效果,并不意在将本发明的实施例限 制于所给出的任何示例。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽 性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范 围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更 都是显而易见的。

Claims (10)

1.一种功率器件的驱动电路,其特征在于,该电路包括:
驱动单元,所述驱动单元包括多个相互并联的驱动器,所述驱动单元依据驱动信号分别控制每一个驱动器的开闭;
MOS分级单元,其输入端电性连接于所述驱动单元的输出端,所述MOS分级单元包括多个MOS晶体管,每个所述MOS晶体管均与一个所述驱动器串联,所述多个MOS晶体管的尺寸具有线性比例关系;
比较单元,其输入端电性连接于所述MOS分级单元的输出端,所述比较单元用于比较流过所述MOS分级单元的负载电流与设定电流的大小关系,输出二进制信号;
计数器,其输入端通信连接于所述比较单元的输出端,接收所述二进制信号,并依据所述二进制信号生成驱动信号,其输出端通信连接于所述驱动单元的输入端,将所述驱动信号传输至所述驱动单元。
2.根据权利要求1所述的功率器件的驱动电路,其特征在于,所述MOS晶体管的栅极连接于所述驱动单元的输出端,所述MOS晶体管的源极连接于地电位,所述MOS晶体管的漏极连接于所述比较单元的输入端。
3.根据权利要求2所述的功率器件的驱动电路,其特征在于,所述比较单元包括第一比较器和第二比较器,
所述第一比较器的同相输入端和所述第二比较器的反向输入端连接于所述多个晶体管的漏极,用于获得MOS晶体管的漏源电压;
所述第一比较器的反向输入端和所述第二比较器的同相输入端连接于稳压器,用于获取参考电压。
4.根据权利要求3所述的功率器件的驱动电路,其特征在于,基于所述MOS晶体管的漏源电压,表征所述负载电流。
5.根据权利要求1所述的功率器件的驱动电路,其特征在于,所述比较单元比较流过所述MOS分级单元的负载电流与设定电流的大小关系,输出二进制信号包括:
当所述负载电流大于所述设定电流时,所述第一比较器输出的所述二进制信号为1,所述第二比较器输出的所述二进制信号为0;
当所述负载电流小于所述设定电流时,所述第一比较器输出的所述二进制信号为0,所述第二比较器输出的所述二进制信号为1。
6.根据权利要求1所述的功率器件的驱动电路,其特征在于,所述计数器为加减计数器。
7.根据权利要求1所述的功率器件的驱动电路,其特征在于,所述MOS分级单元包括第一MOS晶体管、第二MOS晶体管和第三MOS晶体管,所述第一MOS晶体管、第二MOS晶体管和第三MOS晶体管的尺寸比例为1:2:4。
8.一种功率器件的驱动方法,利用权利要求1-7任一所述的功率器件的驱动电路,该方法包括如下步骤:
开启功率器件的驱动电路,MOS分级单元以最小尺寸开始工作;
利用比较器获得流过所述MOS分级单元的电流与设定电流的大小关系,并通过加减计数器来控制多个驱动器的开闭;
基于所述多个驱动器的开闭,控制与其串联的MOS晶体管的通断来调整所述MOS分级单元的尺寸,使得所述MOS分级单元的损耗最小。
9.根据权利要求8所述的功率器件的驱动方法,其特征在于,所述MOS分级单元的损耗为所有的MOS晶体管的损耗之和。
10.根据权利要求9所述的功率器件的驱动方法,其特征在于,所述MOS晶体管的损耗包括开关损耗和导通损耗,表示为:
Ploss=f×Cgs×Vgs2+Id2×Rdson (1)
其中,Ploss表示为MOS晶体管的损耗;f为开关频率,Cgs为栅源电容,Vgs为栅源电压;Id为漏极电流,Rdson为导通源漏电阻,Cgs×Rdson=Z,Z为常数。
CN201711394841.5A 2017-12-21 2017-12-21 功率器件的驱动电路及方法 Pending CN108111005A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711394841.5A CN108111005A (zh) 2017-12-21 2017-12-21 功率器件的驱动电路及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711394841.5A CN108111005A (zh) 2017-12-21 2017-12-21 功率器件的驱动电路及方法

Publications (1)

Publication Number Publication Date
CN108111005A true CN108111005A (zh) 2018-06-01

Family

ID=62210752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711394841.5A Pending CN108111005A (zh) 2017-12-21 2017-12-21 功率器件的驱动电路及方法

Country Status (1)

Country Link
CN (1) CN108111005A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995224A (zh) * 2019-03-25 2019-07-09 西安交通大学 一种单外部驱动的mosfet管串联高压模块

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383560A (zh) * 2007-09-05 2009-03-11 财团法人工业技术研究院 直流电压转换器
CN102403885A (zh) * 2011-11-17 2012-04-04 深圳市联赢激光股份有限公司 一种大功率激光电源用多分频脉冲宽度调制控制电路
CN102420526A (zh) * 2011-12-15 2012-04-18 无锡中星微电子有限公司 一种电源转换器
CN104008735A (zh) * 2014-06-18 2014-08-27 深圳市华星光电技术有限公司 Led背光驱动电路以及液晶显示器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383560A (zh) * 2007-09-05 2009-03-11 财团法人工业技术研究院 直流电压转换器
CN102403885A (zh) * 2011-11-17 2012-04-04 深圳市联赢激光股份有限公司 一种大功率激光电源用多分频脉冲宽度调制控制电路
CN102420526A (zh) * 2011-12-15 2012-04-18 无锡中星微电子有限公司 一种电源转换器
CN104008735A (zh) * 2014-06-18 2014-08-27 深圳市华星光电技术有限公司 Led背光驱动电路以及液晶显示器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐超等: "中功率管栅极驱动电路的设计", 《河北工业大学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995224A (zh) * 2019-03-25 2019-07-09 西安交通大学 一种单外部驱动的mosfet管串联高压模块

Similar Documents

Publication Publication Date Title
US10554128B2 (en) Multi-level boost converter
CN103575964B (zh) 一种功率开关管的过流检测电路和方法
US10778098B2 (en) Power supply system, a switched tank converter, and methods thereof
CN104321964B (zh) 用于动态误差向量大小加强的集成启动偏置增强
CN106027028B (zh) 电子驱动电路和方法
CN109004838B (zh) 高耐压反激变换器
CN109067210B (zh) 一种自适应延时补偿有源整流器电路
CN102281005A (zh) 开关电源线电压补偿电路
CN110086455A (zh) 一种新型开关电路结构
CN102480276B (zh) 折叠式共源共栅运算放大器
CN109302171A (zh) 具动态电平调制栅极电压的驱动控制器
CN108111005A (zh) 功率器件的驱动电路及方法
CN207638634U (zh) 一种nmos管高端开关驱动电路
CN104836548B (zh) 能够对输入信号的占空比失真进行补偿的输入电路
CN111030232B (zh) 充电电路、电子设备和充电控制方法
CN104699158A (zh) 恒流源供电电路
US20150326121A1 (en) Method and circuitry for sensing and controlling a current
CN208241310U (zh) 一种过流保护电路及装置
CN117040242A (zh) 微弱能量收集的低功耗boost电路
CN101876834B (zh) 跟踪电源装置和控制方法
CN104300952B (zh) 绿色开关电源芯片的自适应驱动电路
CN102931833A (zh) 一种模拟电路中的高压转低压电路
CN105676939B (zh) 应用于无线充电控制芯片的可调精确过温保护电路
CN205450864U (zh) 应用于无线充电控制芯片的可调精确过温保护电路
CN105227166B (zh) 一种mos管背栅电压控制电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180601