CN108110093A - 硅衬底GaN基LED外延生长方法 - Google Patents

硅衬底GaN基LED外延生长方法 Download PDF

Info

Publication number
CN108110093A
CN108110093A CN201711351075.4A CN201711351075A CN108110093A CN 108110093 A CN108110093 A CN 108110093A CN 201711351075 A CN201711351075 A CN 201711351075A CN 108110093 A CN108110093 A CN 108110093A
Authority
CN
China
Prior art keywords
gan
layer
growth
epitaxial
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201711351075.4A
Other languages
English (en)
Inventor
张勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan East Sun Metal Products Co Ltd
Original Assignee
Foshan East Sun Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan East Sun Metal Products Co Ltd filed Critical Foshan East Sun Metal Products Co Ltd
Priority to CN201711351075.4A priority Critical patent/CN108110093A/zh
Publication of CN108110093A publication Critical patent/CN108110093A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)

Abstract

本发明提出了一种硅衬底GaN基LED外延生长方法,采用Thomas Swan的LP‑MOCVD系统,选用Si(111)为衬底,三甲基镓(TMGa)、三甲基铝(TMAl)、三甲基铟(TMIn)及高纯NH3分别为Ga、Al、In及N源,H2和N2为载气,硅烷(SiH4)和二茂镁(CP2Mg)分别为n型和p型掺杂剂;在生长前要对Si衬底进行清洗,以去除污染物和杂质,获得干净的表面。外延生长出了硅衬底GaN基LED外延片,并采用DCXRD对其结晶质量进行测试分析。结果表明:InGaN/GaN多量子阱的界面较平整,结晶质量较好;同时,采用两种方法计算获得的量子阱周期厚度基本一致。

Description

硅衬底GaN基LED外延生长方法
技术领域
本发明涉及硅衬底GaN基LED外延生长方法。
背景技术
虽然GaN是很理想的半导体器件材料,但一直缺乏合适的衬底,因此一直得不到质量很好的GaN外延层,目前用于器件的GaN材料是通过蓝宝石或SiC衬底外延出来的。可是这两种衬底也存在着明显的不足,蓝宝石是绝缘体,硬度高和导热性差,加工困难;而SiC成本很高,使器件的生产成本很高。如用Si作衬底,相对上述两种衬底材料有着很大的优势,主要有面积大,成本低,高质量,导电、导热性能良好等优点。因此,在Si衬底上生长GaN薄膜的研究受到了广泛关注。但用Si作衬底还存在着很多困难,GaN外延层和Si晶体存在着较大的晶格失配,使外延层出现大量位错;GaN和Si晶体还存在着很大的热失配,在反应结束时从高温下降到室温,这种热失配将在外延层产生巨大的张应力,从而引起外延片的龟裂。为了解决龟裂,采用了各种缓冲层技术,如AlN、GaN、AlGaN、ZnO、GaAs等,以及采用掩膜技术和侧向外延技术等。
发明内容
有鉴于此,本发明的目的在于提出一种硅衬底GaN基LED外延生长方法,采用AlN缓冲层后原位生长SiN掩膜层,随后外延生长高质量GaN薄膜,并在此基础上外延生长出GaN基发光二极管(LED)外延片。
根据上述发明目的,本发明通过以下技术方案来实现:
一种硅衬底GaN基LED外延生长方法,采用Thomas Swan的LP-MOCVD系统,选用Si(111)为衬底,三甲基镓(TMGa)、三甲基铝(TMAl)、三甲基铟(TMIn)及高纯NH3分别为Ga、Al、In及N源,H2和N2为载气,硅烷(SiH4)和二茂镁(CP2Mg)分别为n型和p型掺杂剂;在生长前要对Si衬底进行清洗,以去除污染物和杂质,获得干净的表面;
外延生长过程如下:样品1先在1100℃、H2气氛下氢化10min,以清洁硅片表面;在氢化处理后,降温到1060℃生长AlN缓冲层和高温GaN层,在高温GaN层生长过程中两次插入LT-AlN插入层;样品2仅在AlN缓冲层后原位沉积一SiN层,该SiN层作为随后高温GaN外延生长的掩膜层,可降低GaN薄膜的位错密度,其他外延条件与样品1一致,通过SiN层的生长可获得1.7μm无龟裂GaN外延层。
采用原位沉积SiN掩膜层横向外延生长GaN薄膜的方法,获得了1.7μm无裂纹的GaN薄膜,降低了薄膜的位错密度,其(0002)面的FWHM降低到403arcsec,并改善了其表面平整度。在此研究的基础上,外延生长出了硅衬底GaN基LED外延片,并采用DCXRD对其结晶质量进行测试分析。结果表明:InGaN/GaN多量子阱的界面较平整,结晶质量较好;同时,采用两种方法计算获得的量子阱周期厚度基本一致。
附图说明
图1为硅衬底GaN基LED的外延片结构示意图;
图2为样品1、2的DCXRD摇摆曲线;
图3为样品1、2的AFM图像;
图4为InGaN/GaN MQWs的DCXRD(0002)面摇摆曲线;
图5为Si衬底GaN基LED室温光致发光谱。
具体实施方式
为让本领域的技术人员更加清晰直观的了解本发明,下面将对本发明作进一步的说明。
一种硅衬底GaN基LED外延生长方法,采用Thomas Swan的LP-MOCVD系统,选用Si(111)为衬底,三甲基镓(TMGa)、三甲基铝(TMAl)、三甲基铟(TMIn)及高纯NH3分别为Ga、Al、In及N源,H2和N2为载气,硅烷(SiH4)和二茂镁(CP2Mg)分别为n型和p型掺杂剂;在生长前要对Si衬底进行清洗,以去除污染物和杂质,获得干净的表面;
外延生长过程如下:样品1先在1100℃、H2气氛下氢化10min,以清洁硅片表面;在氢化处理后,降温到1060℃生长AlN缓冲层和高温GaN层,在高温GaN层生长过程中两次插入LT-AlN插入层;样品2仅在AlN缓冲层后原位沉积一SiN层,该SiN层作为随后高温GaN外延生长的掩膜层,可降低GaN薄膜的位错密度,其他外延条件与样品1一致,通过SiN层的生长可获得1.7μm无龟裂GaN外延层。
在此基础上进行LED全结构的生长,其结构示意图如图1所示。整个生长过程,反应室压力始终保持在13333Pa,降温过程为台阶梯度式慢降温。
采用日本Seiko Instruments Inc.公司的SPA300HV原子力显微镜(AFM)分析表面形貌,PHILIPS公司的PW3040/00高分辨率双晶X-射线双晶衍射仪(DCXRD)分析GaN的结晶质量。采用英国Accent公司的RPM2000光致发光谱(PL)测量薄膜的发光光谱,其激发光源为266nm,4倍频Nd:YAG激光器。
2结果与讨论
采用X-射线双晶衍射仪的三轴晶系统测试样品1、2,从三轴晶系统的扫描曲线中均可得到清晰的GaN(0002)衍射峰。图2为样品1、2的(0002)DCXRD摇摆曲线。GaN(0002)面半峰全宽(FWHM)大小表征了GaN薄膜的螺位错密度的大小。其FWHM越小,表明晶体的生长质量较好,位错密度较低,低的位错密度对于器件的性能有很大的提高。由图2可见,样品1(0002)面的FWHM为465arcsec,而样品2(0002)面的FWHM降低到403arcsec,样品2的结晶质量比样品1的更好。这说明原位沉积SiN作为掩膜层来横向外延生长GaN,可降低GaN薄膜的位错密度,提高其晶体质量。SiN原位淀积后,在表面形成微小尺寸的颗粒,并随机分布,在其上继续生长GaN薄膜。外延只能在那些没有被SiN颗粒覆盖的窗口区进行,生长由二维向三维转变,这是一种选区生长。同时,由于SiN颗粒尺寸很小,GaN很快生长到SiN的上边缘,横向外延随之发生,直至岛状生长完全合并,继续进行二维生长。在横向外延生长过程中,其部分线位错会弯曲90°,使其不能到达薄膜表面,这样可降低位错密度,提高薄膜晶体质量。
图3为样品1、2的原子力显微(AFM)图像,取样尺寸为30μm×30μm。样品1的均方根粗糙度(RMS)为18.7nm;样品2的RMS为3.4nm,样品2的表面比样品1的更平整,也即表明,插入SiN掩膜层外延生长的GaN薄膜的表面平整度更优。
由于SiN插入层可降低GaN薄膜的位错密度,提高其晶体质量,且采用此法可获得厚1.7μm无裂纹的GaN薄膜。在此研究的基础上外延生长出如图1所示的GaN基LED的外延片,整个外延片的厚度约为1.9μm。图4为InGaN/GaN MQWs的DCXRD(0002)面摇摆曲线,图中最强的衍射峰来自GaN层;除了GaN的衍射峰外,从图中还可清楚地观察到来自于InGaN/GaN多量子阱衍射的卫星峰。通常情况下,界面过渡越陡峭,所观察到的卫星峰就越多;然而,当量子阱中存在缺陷,如失配位错,界面起伏及周期厚度不均时,会使卫星峰展宽,并导致卫星峰间的干涉条纹消失(又称厚度条纹或Pendellosung条纹)。从图中可看出多个卫星峰,同时也能观察到明显的干涉条纹,故该多量子阱结晶质量良好。
由超晶格或多层膜的衍射动力学理论可推导出从卫星峰来计算多量子阱的每个周期的厚度
式中:L为阱厚(tw)和垒厚(tb)之和;γH为入射线的方向余弦;λ为X-射线的波长(0.15405nm):ΔθM为相邻两卫星峰间的间距;θB为晶体GaN(0002)面的布喇格衍射角。由于我们采用的是对称衍射,则γH=sinθB,因此式(1)可简化为
L=λ/(2ΔθMcosθB)
根据式(2)及图4可计算出量子阱周期厚度为12.4nm。
根据相邻卫星峰间的这些条纹是量子阱总周期厚度的干涉条纹,同理可推导出计算量子阱总周期厚度(针对对称衍射的情况)
式中N为周期个数;ΔθMM为相邻两个干涉条纹间的间距。利用式(3)及图4可计算出量子阱总周期厚度为62.5nm。从计算结果看,其量子阱周期厚度为12.4nm,总周期厚度为62.5nm;因周期数为5,因此,从总周期厚度推算出周期厚度为12.5nm,二者相差很小,进一步证实了直接计算出的周期厚度基本正确。图5为室温下GaN基LED的光致发光光谱曲线。由图可见,其峰值波长为469.2nm,但其半峰全宽较宽,说明其晶体质量不是很好,并存在着较大的张应力。
尽管GaN基LED的结晶质量和发光质量不高,但在硅衬底上,外延层总厚度为1.9μm的情况下,能外延生长出蓝光的GaN基LED已是一个突破。这是因为过去一般认为只有在外延层厚度不小于3.0μm的基础上才能成功外延出GaN基LED外延片。
结束语
采用原位沉积SiN掩膜层横向外延生长GaN薄膜的方法,获得了1.7μm无裂纹的GaN薄膜,降低了薄膜的位错密度,其(0002)面的FWHM降低到403arcsec,并改善了其表面平整度。在此研究的基础上,外延生长出了硅衬底GaN基LED外延片,并采用DCXRD对其结晶质量进行测试分析。结果表明:InGaN/GaN多量子阱的界面较平整,结晶质量较好;同时,采用两种方法计算获得的量子阱周期厚度基本一致。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种硅衬底GaN基LED外延生长方法,其特征在于,采用Thomas Swan的LP-MOCVD系统,选用Si(111)为衬底,三甲基镓、三甲基铝、三甲基铟及高纯NH3分别为Ga、Al、In及N源,H2和N2为载气,硅烷和二茂镁分别为n型和p型掺杂剂;在生长前要对Si衬底进行清洗,以去除污染物和杂质,获得干净的表面;
外延生长过程如下:样品1先在1100℃、H2气氛下氢化10min,以清洁硅片表面;在氢化处理后,降温到1060℃生长AlN缓冲层和高温GaN层,在高温GaN层生长过程中两次插入LT-AlN插入层;样品2仅在AlN缓冲层后原位沉积一SiN层,该SiN层作为随后高温GaN外延生长的掩膜层,可降低GaN薄膜的位错密度,其他外延条件与样品1一致,通过SiN层的生长可获得1.7μm无龟裂GaN外延层。
CN201711351075.4A 2017-12-15 2017-12-15 硅衬底GaN基LED外延生长方法 Withdrawn CN108110093A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711351075.4A CN108110093A (zh) 2017-12-15 2017-12-15 硅衬底GaN基LED外延生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711351075.4A CN108110093A (zh) 2017-12-15 2017-12-15 硅衬底GaN基LED外延生长方法

Publications (1)

Publication Number Publication Date
CN108110093A true CN108110093A (zh) 2018-06-01

Family

ID=62217208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711351075.4A Withdrawn CN108110093A (zh) 2017-12-15 2017-12-15 硅衬底GaN基LED外延生长方法

Country Status (1)

Country Link
CN (1) CN108110093A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224193A (zh) * 2021-04-12 2021-08-06 华南理工大学 结合嵌入电极与钝化层结构的InGaN/GaN多量子阱蓝光探测器及其制备方法与应用
WO2023034078A1 (en) * 2021-09-03 2023-03-09 Macom Technology Solutions Holdings, Inc. Semiconductor material wafers optimized for linear amplifiers
CN116885067A (zh) * 2023-09-06 2023-10-13 江西兆驰半导体有限公司 发光二极管外延片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
彭冬生等: "硅衬底GaN基LED外延生长的研究", 《压电与声光》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224193A (zh) * 2021-04-12 2021-08-06 华南理工大学 结合嵌入电极与钝化层结构的InGaN/GaN多量子阱蓝光探测器及其制备方法与应用
WO2022218141A1 (zh) * 2021-04-12 2022-10-20 华南理工大学 结合嵌入电极与钝化层结构的 InGaN/GaN 多量子阱蓝光探测器及其制备方法与应用
WO2023034078A1 (en) * 2021-09-03 2023-03-09 Macom Technology Solutions Holdings, Inc. Semiconductor material wafers optimized for linear amplifiers
CN116885067A (zh) * 2023-09-06 2023-10-13 江西兆驰半导体有限公司 发光二极管外延片及其制备方法

Similar Documents

Publication Publication Date Title
US9142723B2 (en) Semiconductor wafer comprising gallium nitride layer having one or more silicon nitride interlayer therein
Enslin et al. Metamorphic Al0. 5Ga0. 5N: Si on AlN/sapphire for the growth of UVB LEDs
Schenk et al. Growth of thick, continuous GaN layers on 4-in. Si substrates by metalorganic chemical vapor deposition
Ma et al. Improved GaN-based LED grown on silicon (111) substrates using stress/dislocation-engineered interlayers
JP2007294518A (ja) 窒化物系半導体基板及びその製造方法並びに窒化物系半導体発光デバイス用エピタキシャル基板
US10522346B2 (en) Production of a semiconductor support based on group III nitrides
KR102606231B1 (ko) 섬아연광 구조 iii족 질화물
Liu et al. Effects of AlN interlayer on growth of GaN-based LED on patterned silicon substrate
Bak et al. Effect of Al pre-deposition on AlN buffer layer and GaN film grown on Si (111) substrate by MOCVD
Yoshida et al. High-crystalline-quality AlN grown on SiC substrates by controlling growth mode
CN108110093A (zh) 硅衬底GaN基LED外延生长方法
Jayasakthi et al. Structural and optical characterization of AlGaN/GaN layers
Azman et al. The optimization of n-type and p-type m-plane GaN grown on m-plane sapphire substrate by metal organic chemical vapor deposition
Anuar et al. Crystal quality and surface structure tuning of semi-polar (11–22) GaN on m-plane sapphire via in-situ multiple ammonia treatment
EP2904630A1 (en) Semiconductor material
He et al. Fast growth of crack-free thick AlN film on sputtered AlN/sapphire by introducing high-density nano-voids
Su et al. Effect of initial condition on the quality of GaN film and AlGaN/GaN heterojunction grown on flat sapphire substrate with ex-situ sputtered AlN by MOCVD
Demir et al. AlGaN/AlN MOVPE heteroepitaxy: pulsed co-doping SiH4 and TMIn
Xu et al. Structural and optical properties of AlxGa1− xN (0.33≤ x≤ 0.79) layers on high-temperature AlN interlayer grown by metal organic chemical vapor deposition
Nishikawa et al. 200-mm GaN-on-Si based blue light-emitting diode wafer with high emission uniformity
Dagher et al. Pendeo-epitaxy of GaN on SOI nano-pillars: Freestanding and relaxed GaN platelets on silicon with a reduced dislocation density
Sun et al. Effect of NH3 flow rate on m-plane GaN growth on m-plane SiC by metalorganic chemical vapor deposition
Omar et al. Enhanced indium adsorption and surface evolution of semi-polar (11–22) LED via a strain periodic alternating superlattice (SPAS-L)
Zhou et al. The effect of dislocation-related V-shaped pits preparation on the strain of AlN templates
Arslan et al. The electrical, optical, and structural properties of GaN epitaxial layers grown on Si (111) substrate with SiNx interlayers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20180601