CN108106979B - 一种基于modis和机器学习模型融合的pm2.5反演方法 - Google Patents

一种基于modis和机器学习模型融合的pm2.5反演方法 Download PDF

Info

Publication number
CN108106979B
CN108106979B CN201711395794.6A CN201711395794A CN108106979B CN 108106979 B CN108106979 B CN 108106979B CN 201711395794 A CN201711395794 A CN 201711395794A CN 108106979 B CN108106979 B CN 108106979B
Authority
CN
China
Prior art keywords
modis
pixel
image
inversion
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711395794.6A
Other languages
English (en)
Other versions
CN108106979A (zh
Inventor
刘军
段广拓
陈劲松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN201711395794.6A priority Critical patent/CN108106979B/zh
Publication of CN108106979A publication Critical patent/CN108106979A/zh
Application granted granted Critical
Publication of CN108106979B publication Critical patent/CN108106979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本发明涉及遥感影像处理技术领域,特别涉及一种基于MODIS和机器学习模型融合的PM2.5反演方法;本发明获取MODIS影像和PM2.5监测数据;将PM2.5数据插值成PM2.5插值影像;将MODIS影像进行云检测;构建训练集和测试集;通过训练集和测试集计算出表现指标;做出表现指标的直方图;选择直方图中频度最高的直方图区间所对应的所有模型,作为最优模型组合;将最优模型组合用于整幅MODIS影像,进行模型融合的反演;在本发明中,从遥感影像本身数据出发,通过机器学习算法的手段和模型融合,直接建立遥感影像本身与实测PM2.5的关系,从而达到精度更高的反演结果;本发明避免了误差传递,反演精度高。

Description

一种基于MODIS和机器学习模型融合的PM2.5反演方法
技术领域
本发明涉及遥感影像处理技术领域,特别涉及一种基于MODIS和机器学习模型融合的PM2.5反演方法。
背景技术
气溶胶,又称气胶或烟雾质,是指固体或液体微粒稳定地悬浮于气体介质中形成的分散体系,其一般大小在0.01-10微米之间,可分为自然和人类产生两种;气溶胶会影响气候,包括吸收辐射或散射辐射,另外气溶胶会成为凝结核而影响云的性质等。天空中的云、雾、尘埃,工业上和运输业上用的锅炉和各种发动机里未燃尽的燃料所形成的烟,采矿、采石场磨材和粮食加工时所形成的固体粉尘,人造的掩蔽烟幕和毒烟等都是气溶胶的具体实例。气溶胶的消除,主要靠大气的降水、小粒子间的碰并、凝聚、聚合和沉降过程。
在全球气候变化大背景下,近年京津冀、长江三角洲、珠江三角洲、川渝等城市群雾霾现象频发,北京天津、广州深圳、上海等城市雾霾污染天数占全年总天数的30%~50%,且范围在扩大,雾霾已成为我国一种新的复合型危害性大气污染,这主要是不断增加人为排放的大气气溶胶与气象条件共同作用的结果。雾霾主要由可入肺颗粒物PM2.5(空气动力学直径≤2.5μm的颗粒物)组成,也称细颗粒物,雾霾天中PM2.5颗粒物浓度约占总悬浮颗粒物的56.7%~75.4%,占PM10(空气动力学直径≤10μm的颗粒物)80%~90%以上成分,因此,相比PM10甚至沙尘暴(主要成分为沙尘物质),PM2.5对人体健康危害更大,更易引发哮喘、支气管炎和心血管等方面的疾病。因此,科学的监测PM2.5质量浓度,对研究PM2.5的物理、化学光学特性,进而对揭示雾霾成因及理解空气污染产生机制等都有重要的意义。
目前采用的监测手段为建立地面观测站,如全球自动观测网(AER ONET)、美国环境可视化监测站(IMPROVE),以及美国环保署EPA近4000个空气观测站(SLAMS),这些能对气溶胶进行连续观测,可直接反映污染物地面浓度信息,但地面环境观测站的稀疏不连续性,难以大范围反映PM2.5气溶胶粒子的时空分布、污染源及传输特性等,观测数据不充分及地面仪器昂贵等均制约了PM2.5的有效监测及宏观分析;现在较为先进地监测采用PM2.5的反演进行监测分析,PM2.5的反演指的是其质量浓度的反演,而现有PM2.5的反演的方法,都是先反演大气气溶胶光学厚度AOD,然后再建立气溶胶光学厚度AOD与地面实测PM2.5的统计关系,再用该统计关系得到无地面观测点区域的PM2.5值,在反演AOD过程中,会带来误差,再用AOD建立实测PM2.5的过程,会导致误差的传递,从而影响最终PM2.5的反演精度。
发明内容
为了克服上述所述的不足,本发明的目的是提供一种基于MODIS和机器学习模型融合的PM2.5反演方法,从遥感影像本身数据出发,通过机器学习算法的手段和模型融合,直接建立遥感影像本身与实测PM2.5的关系,从而避免了误差传递,从而达到精度更高的反演结果。
本发明解决其技术问题的技术方案是:
一种基于MODIS和机器学习模型融合的PM2.5反演方法,其中,包括如下步骤:
步骤S1、获取需要反演PM2.5当天的MODIS影像,同时获取PM2.5环境监测站点的PM2.5监测数据;
步骤S2、将监测到的PM2.5数据插值成与MODIS影像的相同分辨率的PM2.5插值影像;
步骤S3、将MODIS影像进行云检测,并将有云的区域标记为0,无云的区域标记为1;
步骤S4、将PM2.5环境监测站点随机按比例m:n分成训练站点和测试站点,分别构建训练集和测试集;
步骤S5、将训练集用于机器学习算法的训练,并将训练的模型用于测试集,计算模型在测试集上的表现指标;
步骤S6、重复步骤S4和步骤S5,得到若干个表现指标的植,按照一定的间隔,做出表现指标的直方图;选择直方图中频度最高的直方图区间所对应的所有模型,作为需要反演的该天的最优模型组合;
步骤S7、将选出的最优模型组合用于整幅MODIS影像,进行模型融合的反演。
作为本发明的一种改进,在步骤S4内,在构建训练集的过程中,对于训练集中的每一个站点,获取该站点在MODIS影像上k*k邻域内的像素;对于在k*k邻域内的每一个像素,若该像素的云检测标记为0,则弃用此像素,若该像素的云检测标记为1,则取其16个发射率(EMI值)、22个辐射率(RAD值)、22个反射率(REF值),以及该像素在PM2.5插值影像上对应的PM2.5的值,从而构成一条记录,则每个站点最多能构成k*k条记录。
作为本发明的进一步改进,在步骤S4内,在构建测试集的过程中,对于测试集中的每一个站点,获取该站点在MODIS影像上的像素,对于该像素,若该像素的云检测标记为0,则弃用此像素,若标记为1,取其16个发射率(EMI值)、22个辐射率(RAD值)、22个反射率(REF值),以及该像素在PM2.5插值影像上对应的PM2.5的值,从而构成一条记录,则每个站点最多能构成1条记录。
作为本发明的更进一步改进,在步骤S5内,表现指标包括相关系数、均方根误差和决定系数。
作为本发明的更进一步改进,在步骤S5内,机器学习算法包括随机森林法、支持向量机法和人工神经网络法。
作为本发明的更进一步改进,在步骤S1内,获取需要反演PM2.5当天的MODIS影像,计算得到16个波段的发射率(EMI值)、22个波段的辐射率(RAD值)和22个波段的反射率(REF值)。
作为本发明的更进一步改进,在步骤S7内,对于MODIS影像上的每一个像素,若该像素的云检测标记为0,则将此像素的PM2.5反演结果置为0,若标记为1,取其16个发射率(EMI值)、22个辐射率(RAD值)、22个反射率(REF值),构成一条记录,并将该记录输入到步骤S6内选出的最优模型中,每个像素的模型输出一个PM2.5预测值,然后依据每个像素的模型的表现指标,对该模型的PM2.5预测值进行加权计算,输出为该像素的PM2.5最终预测值;将整幅MODIS影像的所有像素都计算完毕后,即可得到整幅MODIS影像的PM2.5反演结果。
作为本发明的更进一步改进,在步骤S2内,将监测到的PM2.5数据插值成与MODIS影像的相同分辨率的PM2.5插值影像的插值方法采用最邻近插值法或反距离加权法或克里金插值法。
作为本发明的更进一步改进,在步骤S1内,PM2.5监测数据的获取时间与MODIS影像的获取时间为相同或相近。
作为本发明的更进一步改进,在步骤S7内,加权计算是指按照每个模型的表现指标的值进行线性加权,当前值除以所有值的和,作为当前模型的权重。
在本发明中,从遥感影像本身数据出发,通过机器学习算法的手段和模型融合,直接建立遥感影像本身与实测PM2.5的关系,从而避免了误差传递,从而达到精度更高的反演结果;本发明避免了误差传递,反演精度高。
附图说明
为了易于说明,本发明由下述的较佳实施例及附图作以详细描述。
图1为本发明的步骤流程框图;
图2为本发明按照不同季节随机选取日期进行PM2.5反演产生的反演结果表图;
图3为本发明选取2015年10月17日当天进行AOD反演产生的结果直方图;
图4为本发明选取2015年10月17日当天进行PM2.5反演产生的结果直方图;
图5为本发明选取2015年12月20日当天进行AOD反演产生的结果直方图;
图6为本发明选取2015年12月20日当天进行PM2.5反演产生的结果直方图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明中的具体含义。
如图1所示,本发明的一种基于MODIS和机器学习模型融合的PM2.5反演方法,包括如下步骤:
步骤S1、获取需要反演PM2.5当天的MODIS影像,同时获取PM2.5环境监测站点的PM2.5监测数据;
步骤S2、将监测到的PM2.5数据插值成与MODIS影像的相同分辨率的PM2.5插值影像;
步骤S3、将MODIS影像进行云检测,并将有云的区域标记为0,无云的区域标记为1;
步骤S4、将PM2.5环境监测站点随机按比例m:n分成训练站点和测试站点,分别构建训练集和测试集;
步骤S5、将训练集用于机器学习算法的训练,并将训练的模型用于测试集,计算模型在测试集上的表现指标;
步骤S6、重复步骤S4和步骤S5,得到若干个表现指标的植,按照一定的间隔,做出表现指标的直方图;选择直方图中频度最高的直方图区间所对应的所有模型,作为需要反演的该天的最优模型组合;
步骤S7、将选出的最优模型组合用于整幅MODIS影像,进行模型融合的反演。
在本发明中,从遥感影像本身数据出发,通过机器学习算法的手段和模型融合,直接建立遥感影像本身与实测PM2.5的关系,从而避免了误差传递,从而达到精度更高的反演结果。
其中,在步骤S4内,在构建训练集的过程中,对于训练集中的每一个站点,获取该站点在MODIS影像上k*k邻域内的像素;对于在k*k邻域内的每一个像素,若该像素的云检测标记为0,则弃用此像素,若该像素的云检测标记为1,则取其16个发射率(EMI值)、22个辐射率(RAD值)、22个反射率(REF值),以及该像素在PM2.5插值影像上对应的PM2.5的值,从而构成一条记录,则每个站点最多能构成k*k条记录;在步骤S4内,在构建测试集的过程中,对于测试集中的每一个站点,获取该站点在MODIS影像上的像素,对于该像素,若该像素的云检测标记为0,则弃用此像素,若标记为1,取其16个发射率(EMI值)、22个辐射率(RAD值)、22个反射率(REF值),以及该像素在PM2.5插值影像上对应的PM2.5的值,从而构成一条记录,则每个站点最多能构成1条记录。
在本发明中,在步骤S5内,表现指标包括但不限于相关系数、均方根误差和决定系数。
在本发明中,在步骤S5内,机器学习算法包括但不限于随机森林法、支持向量机法和人工神经网络法。
在本发明中,在步骤S1内,获取需要反演PM2.5当天的MODIS影像,计算得到16个波段的发射率(EMI值)、22个波段的辐射率(RAD值)和22个波段的反射率(REF值)。
在本发明中,在步骤S7内,对于MODIS影像上的每一个像素,若该像素的云检测标记为0,则将此像素的PM2.5反演结果置为0,若标记为1,取其16个发射率(EMI值)、22个辐射率(RAD值)、22个反射率(REF值),构成一条记录,并将该记录输入到步骤S6内选出的最优模型中,每个像素的模型输出一个PM2.5预测值,然后依据每个像素的模型的表现指标,对该模型的PM2.5预测值进行加权计算,输出为该像素的PM2.5最终预测值;将整幅MODIS影像的所有像素都计算完毕后,即可得到整幅MODIS影像的PM2.5反演结果;加权计算是指按照每个模型的表现指标的值进行线性加权,当前值除以所有值的和,作为当前模型的权重。
在本发明中,在步骤S2内,将监测到的PM2.5数据插值成与MODIS影像的相同分辨率的PM2.5插值影像的插值方法采用最邻近插值法或反距离加权法或克里金插值法。
在本发明中,在步骤S1内,PM2.5监测数据的获取时间与MODIS影像的获取时间为相同或相近;在步骤S2内,插值方法采用克里金插值法。
本发明不依赖于AOD,实验表明,精度更高(如下所述)。
本发明通过实施例的实验来进行表明实验结果:
(1)获取需要反演PM2.5当天的MODIS影像,计算得到16个波段的发射率EMI、22个波段的辐射率RAD和22个波段的反射率REF,同时获取当天与MODIS影像获取时间相同或相近时刻的环境监测站的PM2.5监测数据;
(2)将PM2.5数据插值成与MODIS影像同样分辨率的影像,采用的插值方法可以是最邻近插值、反距离加权法、克里金插值法等;将MODIS影像进行云检测,并将有云的区域标记为0,无云的区域标记为1;
(3)将PM2.5监测站点随机按比例m:n分成训练站点和测试站点,构建训练集和测试集;
(4)构成训练集的过程为:对训练集中的每一个站点,获取该站点在影像上k*k邻域内的像素,对于该邻域内的每一个像素,若该像素的云检测标记为0,则弃用此像素,若标记为1,则取其16个EMI值、22个RAD值、22个REF值,以及该像素在PM2.5插值影像上对应的PM2.5的值,构成一条记录,则每个站点最多能构成k*k条记录;
(5)构建测试集的过程为:对测试集中的每一个站点,获取该站点在影像上的像素,对于该像素,若该像素的云检测标记为0,则弃用此像素,若标记为1,取其16个EMI值、22个RAD值、22个REF值,以及该像素在PM2.5插值影像上对应的PM2.5的值,构成一条记录,则每个站点最多能构成1条记录;
(6)将训练集用于机器学习算法的训练,并将训练的模型用于测试集,计算模型在测试集上的表现指标,表现指标包括相关系数、均方根误差等;所述的机器学习算法包括但不限于随机森林、支持向量机、人工神经网络等等;
(7)选择一种机器学习算法和一种表现指标,重复3到6的过程p次,得到p个表现指标值,按照一定的间隔,做出p个表现指标的直方图;选择直方图频度最高的直方图区间所对应的所有模型,作为需要反演的该天的最优多模型组合;
(8)将多模型组合用于整幅MODIS影像,进行多模型融合的反演,具体过程为:对MODIS影像上的每一个像素,若该像素的云检测标记为0,则将此像素的PM2.5反演结果置为0,若标记为1,取其16个EMI值、22个RAD值、22个REF值,构成一条记录,输入到步骤7的多模型中,每个模型输出一个PM2.5预测值,然后依据每个模型的表现指标值,对该模型预测的PM2.5值进行加权计算,输出为该像素的PM2.5最终预测值;将整幅影像的所有像素都计算完毕后,即可得到整幅影像的PM2.5遥感反演结果。
该实施例与AOD反演进行对比,如下:
(一)对比数据处理方式
AOD反演:先计算AOD,然后再通过AOD反演PM2.5,一般用线性模型来反演。
该实施例采用MODIS产品中分辨率最高的3km气溶胶产品,该产品采用最新的C6算法,将暗目标法和深蓝算法的结果进行融合;获取反演当天的MODIS影像,按前述方法生成本发明所需的训练数据,然后获取当天对应的AOD产品,采用克里金插值方法,将AOD产品中的空洞进行填补,并插值成MODIS同样分辨率的影像。
(二)区域选择
实验选取广东省的102个环境监测站点发布的PM2.5监测数据。
(三)方法测试
在真实环境中,出于成本等因素考虑,不可能建立大量密集的PM2.5地面观测站,因此无法对遥感影像上所有像素点的PM2.5反演结果进行验证。为了说明实施例的方法的有效性,基于有限的地面观测站,对实施例的方法进行测试;为了实现对反演结果的验证,本实施例从102个站点中随机选择32个站点作为固定的验证站点,再从剩余的70个站点中随机选择40个站点做训练,30个站点做测试。按照实施例的方法,构建训练集和测试集。对于每一次随机选择的训练集,输入到随机森林模型中进行训练,并基于测试集得到表现指标值,表现指标可以有相关系数、均方根误差、决定系数R2等;本实施例选择决定系数R2作为评价模型好坏的指标,相关系数越高,说明模型越好,按照该方法重复150次,得到150个模型,以及这150个模型的决定系数R2,将这150个决定系数R2按照0.1的间隔,计算直方图,选择直方图频度最高的区间所对应的模型作为最终入选的模型;同样地,作为比较,在上述150次重复过程中,对于每一次重复过程,将40个站点的AOD与对应位置的PM2.5进行线性回归,得到回归系数,用于对当次重复过程的30个测试站点进行预测,计算预测结果与真实观测值的决定系数R2,得到150个决定系数R2,将这150个决定系数R2按照0.1的间隔,计算直方图,选择直方图频度最高的区间所对应的模型作为最终入选的比较模型。
(四)实验结果
按照不同的季节,随机从春夏秋冬等季节中选择云量比较少的日期进行反演,日期为:2015.4.15、2015.4.17、2015.8.8、2015.8.25、2015.8.26、2015.10.15、2015.10.17、2015.12.20、2016.2.6、2016.2.9、2016.3.20,按照前述方法计算均方根误差,结果如图2所示表图,从图2中可以看出,实施例方法的决定系数远高于AOD方法,说明实施例方法能够更好地预测PM2.5的值。
从图3、图4、图5和图6所示,为两个日期预测值的150个决定系数R2的直方图分布,从两个日期的预测结果可以看出,实施例的方法要优于AOD反演法。
(五)方法运行
通过上面的测试,可以看出,实施例方法能够很好地达到预测效果,决定系数比AOD方法要好很多,说明了实施例方法的正确性;将实施例方法应用于实际MODIS遥感影像时,采用同样的方法,只不过在训练过程中不需要建立验证集。方法如下:
(1)将102个站点随机选择70个站点作为训练站点,剩下的32个站点作为测试站点,按照实施例的方法,重复步骤(3)到(6)的过程150次,每重复一次,则得到一个模型,选择的机器学习算法是随机森林算法,选择的表现指标为相关系数,相关系数越大,表明结果越好,也可以选择均方根误差作为表现指标,均方根误差越小,表明结果越好,也可以使用其它指标;得到训练集上150个模型的相关系数、均方根误差、决定系数R2
(2)设置间隔为0.1,计算150个相关系数的直方图,即将0.8-0.9之间的值视为相等,得到10个区间以及每个区间内的频度,选择直方图频度最高的直方图区间所对应的所有模型,作为需要反演的该天的最优多模型;将多模型用于整幅MODIS影像,进行多模型融合的反演,具体过程为:对MODIS影像上的每一个像素,若该像素的云检测标记为0,则将此像素的PM2.5反演结果置为0,若标记为1,取其16个EMI值、22个RAD值、22个REF值,构成一条记录,输入到实施例中步骤(7)的模型中,每个模型输出一个PM2.5预测值,然后依据每个模型的表现指标值,对该模型预测的PM2.5值进行加权计算,输出为该像素的PM2.5最终预测值;将整幅影像的所有像素都计算完毕后,即可得到整幅影像的PM2.5遥感反演结果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于MODIS和机器学习模型融合的PM2.5反演方法,其特征在于,包括如下步骤:
步骤S1、获取需要反演PM2.5当天的MODIS影像,同时获取PM2.5环境监测站点的PM2.5监测数据;
步骤S2、将监测到的PM2.5数据插值成与MODIS影像的相同分辨率的PM2.5插值影像;
步骤S3、将MODIS影像进行云检测,并将有云的区域标记为0,无云的区域标记为1;
步骤S4、将PM2.5环境监测站点随机按比例m:n分成训练站点和测试站点,分别构建训练集和测试集;
步骤S5、将训练集用于机器学习算法的训练,并将训练的模型用于测试集,计算模型在测试集上的表现指标;
步骤S6、重复步骤S4和步骤S5,得到若干个表现指标的植,按照一定的间隔,做出表现指标的直方图;选择直方图中频度最高的直方图区间所对应的所有模型,作为需要反演的该天的最优模型组合;
步骤S7、将选出的最优模型组合用于整幅MODIS影像,进行模型融合的反演;
在步骤S4内,在构建训练集的过程中,对于训练集中的每一个站点,获取该站点在MODIS影像上k*k邻域内的像素;对于在k*k邻域内的每一个像素,若该像素的云检测标记为0,则弃用此像素,若该像素的云检测标记为1,则取其16个发射率(EMI值)、22个辐射率(RAD值)、22个反射率(REF值),以及该像素在PM2.5插值影像上对应的PM2.5的值,从而构成一条记录,则每个站点最多能构成k*k条记录;
在步骤S4内,在构建测试集的过程中,对于测试集中的每一个站点,获取该站点在MODIS影像上的像素,对于该像素,若该像素的云检测标记为0,则弃用此像素,若标记为1,取其16个发射率(EMI值)、22个辐射率(RAD值)、22个反射率(REF值),以及该像素在PM2.5插值影像上对应的PM2.5的值,从而构成一条记录,则每个站点最多能构成1条记录。
2.根据权利要求1所述的一种基于MODIS和机器学习模型融合的PM2.5反演方法,其特征在于,在步骤S5内,表现指标包括相关系数、均方根误差和决定系数。
3.根据权利要求2所述的一种基于MODIS和机器学习模型融合的PM2.5反演方法,其特征在于,在步骤S5内,机器学习算法包括随机森林法、支持向量机法和人工神经网络法。
4.根据权利要求1所述的一种基于MODIS和机器学习模型融合的PM2.5反演方法,其特征在于,在步骤S1内,获取需要反演PM2.5当天的MODIS影像,计算得到16个波段的发射率(EMI值)、22个波段的辐射率(RAD值)和22个波段的反射率(REF值)。
5.根据权利要求1所述的一种基于MODIS和机器学习模型融合的PM2.5反演方法,其特征在于,在步骤S7内,对于MODIS影像上的每一个像素,若该像素的云检测标记为0,则将此像素的PM2.5反演结果置为0,若标记为1,取其16个发射率(EMI值)、22个辐射率(RAD值)、22个反射率(REF值),构成一条记录,并将该记录输入到步骤S6内选出的最优模型中,每个像素的模型输出一个PM2.5预测值,然后依据每个像素的模型的表现指标,对该模型的PM2.5预测值进行加权计算,输出为该像素的PM2.5最终预测值;将整幅MODIS影像的所有像素都计算完毕后,即可得到整幅MODIS影像的PM2.5反演结果。
6.根据权利要求1所述的一种基于MODIS和机器学习模型融合的PM2.5反演方法,其特征在于,在步骤S2内,将监测到的PM2.5数据插值成与MODIS影像的相同分辨率的PM2.5插值影像的插值方法采用最邻近插值法或反距离加权法或克里金插值法。
7.根据权利要求1所述的一种基于MODIS和机器学习模型融合的PM2.5反演方法,其特征在于,在步骤S1内,PM2.5监测数据的获取时间与MODIS影像的获取时间为相同或相近。
8.根据权利要求5所述的一种基于MODIS和机器学习模型融合的PM2.5反演方法,其特征在于,在步骤S7内,加权计算是指按照每个模型的表现指标的值进行线性加权,当前值除以所有值的和,作为当前模型的权重。
CN201711395794.6A 2017-12-21 2017-12-21 一种基于modis和机器学习模型融合的pm2.5反演方法 Active CN108106979B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711395794.6A CN108106979B (zh) 2017-12-21 2017-12-21 一种基于modis和机器学习模型融合的pm2.5反演方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711395794.6A CN108106979B (zh) 2017-12-21 2017-12-21 一种基于modis和机器学习模型融合的pm2.5反演方法

Publications (2)

Publication Number Publication Date
CN108106979A CN108106979A (zh) 2018-06-01
CN108106979B true CN108106979B (zh) 2020-05-19

Family

ID=62212037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711395794.6A Active CN108106979B (zh) 2017-12-21 2017-12-21 一种基于modis和机器学习模型融合的pm2.5反演方法

Country Status (1)

Country Link
CN (1) CN108106979B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108170927B (zh) * 2017-12-22 2021-06-18 深圳先进技术研究院 一种基于modis的pm2.5遥感反演方法
CN109145074A (zh) * 2018-08-29 2019-01-04 广州怡禄电讯科技有限公司 一种基于ArcGIS的普通公路养护工程管理系统
CN109583516A (zh) * 2018-12-24 2019-04-05 天津珞雍空间信息研究院有限公司 一种基于地基和卫星观测的时空连续pm2.5反演方法
CN110595960B (zh) * 2019-08-02 2021-05-14 中国科学院遥感与数字地球研究所 一种基于机器学习的pm2.5浓度遥感估算方法
CN110389087B (zh) * 2019-08-02 2021-03-09 中国科学院遥感与数字地球研究所 一种污染天气下的pm2.5浓度卫星遥感估算方法
CN110595968B (zh) * 2019-08-02 2021-05-18 中国科学院遥感与数字地球研究所 一种基于静止轨道卫星的pm2.5浓度估算方法
CN111723525B (zh) * 2020-06-23 2023-10-31 南通大学 一种基于多源数据和神经网络模型的pm2.5反演方法
CN113408527B (zh) * 2021-06-21 2024-01-12 中国科学院大气物理研究所 一种基于图像融合特征的高效pm2.5浓度预测方法
CN114004163B (zh) * 2021-11-04 2024-05-10 大连理工大学 一种基于modis和长短时记忆网络模型的pm2.5反演方法
CN115617935A (zh) * 2022-10-18 2023-01-17 中国水利水电科学研究院 一种基于融合模型的地下水储量偏差降尺度方法
CN115356249B (zh) * 2022-10-19 2023-01-31 北华航天工业学院 基于机器学习融合模型的卫星偏振pm2.5估算方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927455A (zh) * 2014-04-24 2014-07-16 中国科学院遥感与数字地球研究所 基于高分一号卫星的陆地气溶胶光学性质反演方法
CN104573155A (zh) * 2013-10-17 2015-04-29 中国科学院地理科学与资源研究所 一种高效近地表pm2.5浓度估算方法及估算系统
KR20150116082A (ko) * 2014-04-04 2015-10-15 순천향대학교 산학협력단 다중 회귀 모형을 이용하여 초미세 먼지 노출에 따른 폐기능 저하 예측방법
CN105023043A (zh) * 2015-07-23 2015-11-04 杭州师范大学 一种基于aod的杭州地区pm2.5反演模型
CN105678085A (zh) * 2016-01-12 2016-06-15 环境保护部卫星环境应用中心 一种pm2.5浓度的估算方法及系统
CN106442236A (zh) * 2015-07-30 2017-02-22 中国科学院遥感与数字地球研究所 基于卫星遥感的地面pm2.5反演方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104573155A (zh) * 2013-10-17 2015-04-29 中国科学院地理科学与资源研究所 一种高效近地表pm2.5浓度估算方法及估算系统
KR20150116082A (ko) * 2014-04-04 2015-10-15 순천향대학교 산학협력단 다중 회귀 모형을 이용하여 초미세 먼지 노출에 따른 폐기능 저하 예측방법
CN103927455A (zh) * 2014-04-24 2014-07-16 中国科学院遥感与数字地球研究所 基于高分一号卫星的陆地气溶胶光学性质反演方法
CN105023043A (zh) * 2015-07-23 2015-11-04 杭州师范大学 一种基于aod的杭州地区pm2.5反演模型
CN106442236A (zh) * 2015-07-30 2017-02-22 中国科学院遥感与数字地球研究所 基于卫星遥感的地面pm2.5反演方法及系统
CN105678085A (zh) * 2016-01-12 2016-06-15 环境保护部卫星环境应用中心 一种pm2.5浓度的估算方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODIS气溶胶光学厚度的PM2.5质量浓度遥感反演研究;夏志业;《高原气象》;20151231;第34卷(第6期);第1765-1769页 *

Also Published As

Publication number Publication date
CN108106979A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
CN108106979B (zh) 一种基于modis和机器学习模型融合的pm2.5反演方法
CN108170927B (zh) 一种基于modis的pm2.5遥感反演方法
US10830743B2 (en) Determining the net emissions of air pollutants
Lyu et al. Fusion method combining ground-level observations with chemical transport model predictions using an ensemble deep learning framework: application in China to estimate spatiotemporally-resolved PM2. 5 exposure fields in 2014–2017
Li et al. The impact of observation nudging on simulated meteorology and ozone concentrations during DISCOVER-AQ 2013 Texas campaign
Bigi et al. Long-term trend and variability of atmospheric PM 10 concentration in the Po Valley
CN106446307B (zh) 基于气溶胶地基数据的aod垂直订正效果评价方法及系统
Cottle et al. A pervasive and persistent Asian dust event over North America during spring 2010: lidar and sunphotometer observations
CN110595960B (zh) 一种基于机器学习的pm2.5浓度遥感估算方法
CN112967764B (zh) 多技术耦合的污染物源解析方法、装置
ApSimon et al. The UK Integrated Assessment Model for source apportionment and air pollution policy applications to PM2. 5
CN104819963A (zh) 一种大气垂直能见度的测定方法及监控系统
Huang et al. Source area identification with observation from limited monitor sites for air pollution episodes in industrial parks
Guo et al. A new approach combining a simplified FLEXPART model and a Bayesian-RAT method for forecasting PM 10 and PM 2.5
CN110160924A (zh) 一种颗粒物浓度检测方法
Wu et al. Air quality time series based GARCH model analyses of air quality information for a total quantity control district
Halimi et al. Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps
Khan et al. An outlook of ozone air pollution through comparative analysis of artificial neural network, regression, and sensitivity models
CN115239027B (zh) 空气质量格点化集合预报的方法及装置
Nejadkoorki et al. INTEGRATING PASSIVE SAMPLING AND INTERPOLATION TECHNIQUES TO ASSESS THE SPATIO-TEMPORAL VARIABILITY OF URBAN POLLUTANTS USING LIMITED DATA SETS.
CN115541461A (zh) 一种颗粒物污染溯源方法
CN108627433A (zh) 一种环境气溶胶分粒径黑碳质量分布的测量方法及其系统
Johansson et al. Evaluation of air quality using dynamic land-use regression and fusion of environmental information
JP2012132824A (ja) 拡散物質の発生源推定装置および発生源推定方法
Jia et al. A dynamic dust emission allocation method and holiday profiles applied to emission processing for improving air quality model performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant