一种码字生成装置、通信基站、基站控制器及无线通信网络
技术领域
本发明涉及无线通信技术领域,尤其涉及一种码字生成装置、通信基站及无线通信网络。
背景技术
码分多址移动通信系统,即CDMA(Code Division Multiple Access)移动通信系统,是一种具有划时代意义的无线通信系统。CDMA技术的原理是基于扩频技术,即将需传送的具有一定信号带宽信息数据,用一个带宽远大于信号带宽的高速伪随机码进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。
CDMA系统是基于码分技术的通信系统,系统为每个用户分配各自特定的码字序列,码字序列之间具有很好的正交性,采用这些正交性很好的码字序列对用户承载的信息进行编码,这样才能将不同用户承载的信息进行区分,CDMA系统中码字正交性的优劣直接影响CDMA系统的抗干扰能力。
目前CDMA系统的用户容量受到正交码字的制约是比较明显的,具体来说,采用现有技术生成的正交序列的数量难以满足用户数量增长的趋势,这样限制了小区内用户的数量,制约了CDMA系统的容量,限制了CMDA系统的发展。
发明内容
因此,为解决现有技术存在的技术缺陷和不足,本发明提供了一种码字生成装置,应用于CDMA无线通信系统中,包括:
序列生成单元,用于生成正交序列集;
存储单元,电连接所述序列生成单元,用于存储所述正交序列集;
读取单元,电连接所述存储单元,用于在控制信号的作用下读取所述正交序列集;
收发单元,电连接所述读取单元,用于接收和发送采用所述正交序列集进行编码的用户信息。
在本发明的一种实施方式中,所述序列生成单元包括:
选择子单元,用于选择自然数m和k,且m、k之间满足:m=2k+6;
第一构造子单元,连接所述选择子单元,用于构造5谱值布尔函数;
第二构造子单元,连接所述第一构造子单元,用于利用所述5谱值布尔函数构造16个正交序列集;
分配子单元,连接所述第二构造子单元,用于按照设定规则将所述正交序列集分配给蜂窝小区,并使蜂窝小区内的序列均相互正交,并且所述蜂窝小区内的序列与相邻蜂窝小区内的序列均相互正交。
在本发明的一种实施方式中,所述5谱值布尔函数的walsh谱值为{0,2m/2,-2m/2,2(m/2)+1,-2(m/2)+1},并且,所述5谱值布尔函数对应的5谱值序列的长度为2m。
在本发明的一种实施方式中,所述第一构造子单元具体用于:
对于i=0,1,令
是任意双射,则所述5谱值布尔函数f∈Β
m构造为:
在本发明的一种实施方式中,所述第二构造子单元包括:
分割模块,用于将维度为2m×2m的哈达玛矩阵按设定规则分成第一正交序列集,所述第一正交序列集包括8个正交序列集,并且,所述8个正交序列集的任一个正交序列集均有2m-3个序列;
乘法模块,连接所述分割模块,用于将所述5谱值序列与所述8个正交序列集中的每一个正交序列集的对应位分别相乘以形成第二正交序列集,所述第二正交序列集包括8个正交序列集;
求并模块,连接所述乘法模块,用于求取将所述第一正交序列集中的8个正交序列集和所述第二正交序列集中的8个正交序列集的并集,以得到所述并集中的16个正交序列集。
在本发明的一种实施方式中,两个相间蜂窝小区各自采用的正交序列集的最大相关值为2m/2。
本发明还提供一种通信基站,包括以上任一种实施方式提供的码字生成装置。
本发明还提供一种基站控制器,包括以上任一种实施方式提供的码字生成装置。
本发明还提供一种无线通信网络,包括以上任一种实施方式提供的通信基站或包括以上任一种实施方式提供的基站控制器。
本发明提供的码字生成装置、通信基站及无线通信网络能增加小区内用户的数量,降低相邻小区的信号干扰,提高了通信的质量。
通过以下参考附图的详细说明,本发明的其它方面和特征变得明显。但是应当知道,该附图仅仅为解释的目的设计,而不是作为本发明的范围的限定,这是因为其应当参考附加的权利要求。还应当知道,除非另外指出,不必要依比例绘制附图,它们仅仅试图概念地说明此处描述的结构和流程。
附图说明
下面将结合附图,对本发明的具体实施方式进行详细的说明。
图1为本发明提供一种的码字生成装置结构示意图;
图2为本发明提供的一种序列生成单元结构示意图;
图3为本发明提供的一种第二构造子单元结构示意图;
图4为本发明提供一种CDMA系统中正交序列集的构造方法的流程图;
图5为本发明实施例提供的为多个小区分配正交序列的方法示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
实施例一
请参见图1,图1为本发明提供一种的码字生成装置结构示意图,应用于CDMA无线通信系统中,其包括:
序列生成单元,用于生成正交序列集;
存储单元,电连接所述序列生成单元,用于存储所述正交序列集;
读取单元,电连接所述存储单元,用于在控制信号的作用下读取所述正交序列集;
收发单元,电连接所述读取单元,用于接收和发送采用所述正交序列集进行编码的用户信息。
进一步地,在上述实施方式的基础上,请参见图2,图2为本发明提供的一种序列生成单元结构示意图,其包括:
选择子单元,用于选择自然数m和k,且m、k之间满足:m=2k+6;
第一构造子单元,连接所述选择子单元,用于构造5谱值布尔函数;
第二构造子单元,连接所述第一构造子单元,用于利用所述5谱值布尔函数构造16个正交序列集;
分配子单元,连接所述第二构造子单元,用于按照设定规则将所述正交序列集分配给蜂窝小区,并使蜂窝小区内的序列均相互正交,并且所述蜂窝小区内的序列与相邻蜂窝小区内的序列均相互正交。
进一步地,在上述实施方式的基础上,所述5谱值布尔函数的walsh谱值为{0,2m /2,-2m/2,2(m/2)+1,-2(m/2)+1},并且,所述5谱值布尔函数对应的5谱值序列的长度为2m。
进一步地,在上述实施方式的基础上,所述第一构造子单元具体用于:
对于i=0,1,令
是任意双射,则所述5谱值布尔函数f∈Β
m构造为:
进一步地,在上述实施方式的基础上,请参见图3,图3为本发明提供的一种第二构造子单元结构示意图,其包括:
分割模块,用于将维度为2m×2m的哈达玛矩阵按设定规则分成第一正交序列集,所述第一正交序列集包括8个正交序列集,并且,所述8个正交序列集的任一个正交序列集均有2m-3个序列;
乘法模块,连接所述分割模块,用于将所述5谱值序列与所述8个正交序列集中的每一个正交序列集的对应位分别相乘以形成第二正交序列集,所述第二正交序列集包括8个正交序列集;
求并模块,连接所述乘法模块,用于求取将所述第一正交序列集中的8个正交序列集和所述第二正交序列集中的8个正交序列集的并集,以得到所述并集中的16个正交序列集。
进一步地,在上述实施方式的基础上,两个相间蜂窝小区各自采用的正交序列集的最大相关值为2m/2。
本发明还提供一种通信基站,包括以上任一种实施方式提供的码字生成装置。
本发明还提供一种基站控制器,包括以上任一种实施方式提供的码字生成装置。
本发明还提供一种无线通信网络,包括以上任一种实施方式提供的通信基站或包括以上任一种实施方式提供的基站控制器。
本发明提供的码字生成装置、通信基站及无线通信网络能增加小区内用户的数量,降低相邻小区的信号干扰,提高了通信的质量。
实施例二
本实施例在实施例一的基础上,首先对本发明所采用的技术背景做如下介绍。
首先本发明介绍一些与布尔函数和序列相关的概念和工具。其中,主要工具是walsh变换。
设
是m维向量空间,
是在GF(2)上的一个有限域,
是特征为2的一个有限域,其中,GF(2)为近世代数中的有限域,m元布尔函数f(x)表示为某个
到
上的映射,这里
令B
m表示所有m元布尔函数的集合。为了方便,我们用“+”以及∑
i来代替
和
中的加法运算。任何布尔函数f∈B
m可以由其代数正规型表示:
其中
f(x)的代数次数是使得λ
b≠0的wt(b)的最小值,记为deg(f),其中wt(b)为b的汉明重量。当deg(f)=1时,f叫做仿射函数。
其中加法为模2运算。
任意
上的线性函数可以用内积ω·x来定义。其中ω=(ω
1,…,ω
m),
并且每个ω区分不同的线性函数。包含所有的m元线性函数的集合定义为
因此
令Bm表示所有m元布尔函数的集合,对于任意的f∈Bm,其Walsh谱定义如下:
定义
为函数f的支撑集。如果一个m元函数f∈B
m的真值表中的0和1的个数相等则称为平衡函数,即#supp(f)=2
m-1,或者是
Wf(0m)=0,
其中0m表示的是m长的0向量。
函数f∈Bm的序列是一个长度N=2m的(1,-1)序列,定义为
令r
j,0≤j≤2
m-1是
的第j列,则r
j是一个线性序列,我们通常称作集合:
H={rj|0≤j≤2m-1},
是一个哈达玛序列集,显而易见,
定义1.令f1,f2∈Bm。如果满足:
若集合S的
是两两正交的,则称S是基为κ的正交序列集。令S
1,S
2是正交序列集,对于任意的
总有
则称S
1,S
2是正交的,用S
1⊥S
2表示。
正交序列以下重要的性质:
对任意两个不同的线性函数
W
l+l′(0
m)=0,那么
总成立,即H是一个正交序列集。
定义2:如果对于任意
W
f(α)∈{0,±2
λ},其中λ≥m/2是一个正整数,那么这个函数f称为Plateaued函数。当
这个函数称为semi-bent函数。若f是Plateaued函数(semi-bent函数),那么f称为Plateaued序列(semi-bent序列)。
定义3:对于任意正整数,m=s+t,一个Maiorana-McFarland函数定义为:
当s≤t并且φ是单设,那么Maiorana-McFarland类函数是Plateaued函数。特别的,当s=t且φ是双射,那么我们就得到了bent函数的Maiorana-McFarland类。
定义4:一个m变元t维的向量函数是一个映射函数
也可以视t元布尔函数集F(x)=(f
1,…,f
t)。如果分量函数f
1,…,f
t的任意非零线性组合是一个谱值取自于{0,±2
λ}的三值Plateaued布尔函数,那么称F为一个向量Plateaued函数。当
F称为向量semi-bent函数。如果分量函数f
1,…,f
t的任意非零线性组合是一个谱值取自{±2
m/2}二值bent函数,那么称F为一个向量bent函数,其中m为偶数且t≤m/2。
实施例三
本实施例在实施例二的基础上,对本发明的原理和实现方式做详细介绍。
请参考图4,图4为本发明提供一种CDMA系统中正交序列集的构造方法的流程图,本方法具体可由本发明提供的码字生成装置执行,执行步骤如下:
步骤a:选择自然数m和k,且m、k之间满足:m=2k+6;
步骤b:构造5谱值布尔函数;
步骤c:利用所述5谱值布尔函数构造16个正交序列集;
步骤d:将所述正交序列集分配给蜂窝小区,并使蜂窝小区内的序列均相互正交,并且所述蜂窝小区内的序列与相邻蜂窝小区内的序列均相互正交。
进一步地,在上述实施方式的基础上,所述5谱值布尔函数的walsh谱值为{0,2m /2,-2m/2,2(m/2)+1,-2(m/2)+1},并且,所述5谱值布尔函数对应的5谱值序列的长度为2m。
进一步地,在上述实施方式的基础上,构造5谱值布尔函数包括:
令为k维向量空间,并且:
对于i=0,1,令是任意双射,则所述5谱值布尔函数f∈Βm构造为:
具体地,利用所述5谱值布尔函数构造16个正交序列集,可以为:
将维度为2m×2m的哈达玛矩阵按设定规则分成第一正交序列集,所述第一正交序列集包括8个正交序列集,并且,所述8个正交序列集的任一个正交序列集均有2m-3个序列;
将所述5谱值序列与所述8个正交序列集中的每一个正交序列集的对应位分别相乘以形成第二正交序列集,所述第二正交序列集包括8个正交序列集;
求取将所述第一正交序列集中的8个正交序列集和所述第二正交序列集中的8个正交序列集的并集,以得到所述并集中的16个正交序列集。
通过上述方式构造16个相互正交的序列集。具体地,对于任意给定的
令:
实施例四
本实施例对实施例三中的提供的正交序列集的生成方式的效果做出进一步说明。
i)
是正交序列集,每个维度大小为2
m-3,且对于任意α≠α′,有
以下对上述结论成立的原因做出说明。
对于任意的α≠α',有H
α⊥H
α′,并且
是正交序列集,维数为2
m-3,对于任意
由于
令我们分别将这两个代数和表示为
与
定义X
m-3=(x
1,…,x
m-3),则我们将第一个求和写成
具体来分析一下α+α′=0情形。由Φ0的定义线性函数Φ0(X0)·X0′与变元xm-2,xm-1,xm相互独立。因此,我们可以写成:
并且由于Φ
0是双射,则对于任意
存在唯一的X
0∈E
0使得:
Φ0(X0)=(β+β′)k+1
其中(β+β′)
k+1意味着我们考虑剩下的k+1维,
因此,
另一方面,
由于Φ
1(X
1)·X
1′包含变元x
m-2,x
m-1,x
m中的某一个(由于T
1的定义)。因此,考虑α+α′=0,函数:
Φ1(X1)·X1′+(β+β′)·Xm-3
情形α+α′∈{001,010,011,100}可被相似的分析,这种情形下
由于出现了x
m-2,x
m-1,x
m,由于T
1的定义,
最后一种情形α+α′∈{101,,考虑公式1Φ
i(X
i)·X
i′+(α+α′)·(x
m-2,x
m-1,x
m),由于出现了变元x
m-2,x
m-1,x
m,因此对任意的β,β',两个求和式
与
均为零,因此,上述结论是成立的。
值得指出的是,在以上论述的过程中,
等于
例如,如果k=1则有
实施例五
本实施例对在上述实施例的基础上,对生成的正交序列分配给多个小区的分配方法做出说明,在一种实施方式中,分配过程可由码字生成装置的分配子单元具体执行。
在一种实施方式中,在上述实施例的基础上,两个相间蜂窝小区各自采用的正交序列集的最大相关值为2m/2。
请参见表1,表1给出了以上实施方式中H
α与
之间的互相关值。
表1正交序列集的互相关值
请参见图5,图5为本发明实施例提供的为多个小区分配正交序列的方法示意图。采用如图5所述的方法,可使两个相间蜂窝小区各自采用的正交序列集的最大相关值为2
m /2,降低了小区之间的干扰。具体的,设相邻两个小区之间的距离为1,即如图5中相邻两个正六边形的中心点之间的距离为1,则图5中CDMA系统的复用距离D=4。采用这种分配方式保证了相邻蜂窝的正交性。当且仅当蜂窝间的距离为
时,两条序列的互相关值大小为±2
m /2+1。
综上,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制,本发明的保护范围应以所附的权利要求为准。