CN108092511A - A kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator - Google Patents

A kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator Download PDF

Info

Publication number
CN108092511A
CN108092511A CN201711249735.8A CN201711249735A CN108092511A CN 108092511 A CN108092511 A CN 108092511A CN 201711249735 A CN201711249735 A CN 201711249735A CN 108092511 A CN108092511 A CN 108092511A
Authority
CN
China
Prior art keywords
switching tube
diode
electrically connected
energy storage
storage capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711249735.8A
Other languages
Chinese (zh)
Inventor
吴庚雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201711249735.8A priority Critical patent/CN108092511A/en
Publication of CN108092511A publication Critical patent/CN108092511A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • F42C19/12Primers; Detonators electric

Abstract

The invention discloses a kind of booster driving circuits of the non-coating detonation semiconductive bridge for electric detonator, including data input pin INA, data input pin INB, diode D1, diode D2, filtering energy storage capacitor C1, timer U1, switching tube Q1, switching tube Q2, switching tube Q3, diode D3, two multiplication of voltage energy storage capacitor C2 and semiconductive bridge B1, resistance R1, resistance R2.Two times of boostings of voltage of slightly below 20V can be boosted to 60V by the booster circuit using the scheme of twice of boosting or three times boosting close to 40V or three times.Ensureing that voltage is very high, while semiconductive bridge ignition intensity can be effectively ensured, moreover it is possible to ensure that the response time is fully short, ensure that the burst time precision of electric detonator.

Description

A kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator
Technical field:
The present invention relates to electric detonator semiconductive bridge field, more particularly to a kind of non-coating detonation half for electric detonator The booster driving circuit of conducting bridge.
Background technology:
It is that the electricity consumption igniter wire ignition priming that ignites realizes explosion function in the core of electric detonator.By semiconductive bridge conduct Electric bridge silk has the advantages of security is good, fast response time.But semiconductive bridge firing energy and driving voltage are closely related, It is too small less than the following spark of the voltage of 20V, it is necessary to which that directly coating priming on surface can just ignite.Because priming is very clever Quick, the technological operation of surface coating is very dangerous in process of production.And the product after coating is difficult to through vibration-testing, Security is poor.In order to ensure safety, it is necessary to using non-coating design structure, detonating, medicinal strengthening cap protects, and partly Conducting bridge pulls open several millimeters of distance.Only with the high voltage drive semiconductive bridge of more than 35V, it is only possible to generate sufficiently large fire Flower draws right priming.In some practical applications, in order to pursue reliability, high voltage is even required to reach more than 50V.However The wiring of high voltage drive electric detonator is likely to occur the safety issues such as electric leakage.In addition, with digitlization high voltage drive electronics Detonator proposes higher requirement to the pressure-resistant index of related component, and difficulty is brought to actual product design.
The information for being disclosed in the background section is merely intended to increase the understanding of the general background to the present invention, without answering When being considered as recognizing or imply that the information structure has been the prior art well known to persons skilled in the art in any form.
The content of the invention:
It is an object of the invention to provide a kind of boostings of the non-coating detonation semiconductive bridge for electric detonator to drive electricity Road, so as to overcome it is above-mentioned in the prior art the defects of.
To achieve the above object, the present invention provides a kind of boostings of the non-coating detonation semiconductive bridge for electric detonator Driving circuit, including data input pin INA, data input pin INB, diode D1, diode D2, filtering energy storage capacitor C1, fixed When device U1, switching tube Q1, switching tube Q2, switching tube Q3, diode D3, two multiplication of voltage energy storage capacitor C2 and semiconductive bridge B1, resistance R1, resistance R2;
Data input pin INA is electrically connected with resistance R1, and the A ends of resistance R1 and diode D2, the A ends of timer U1 are electrically connected It connects;Data input pin INB is electrically connected with resistance R2, and resistance R2 is electrically connected with the A ends of diode D1, the B ends of timer U1;
It is store with the VCC2 ends of timer U1, the K ends of diode D1, the K ends of diode D2, filtering at the VCC1 ends of timer U1 Can capacitance C1+end, the A ends of diode D3, the S ends of switching tube Q2 be electrically connected;
The OUT terminal of timer U1 is electrically connected with the G ends of switching tube Q1;
The GND ends of timer U1 and the S ends of switching tube Q1, the S ends of switching tube Q3, filtering energy storage capacitor C1-end is electrically connected It connects;
The TEST ends of timer U1 and the D ends of switching tube Q1, the G ends of switching tube Q2, the G ends of switching tube Q3, semiconductive bridge The lower end electrical connection of B1;
The D ends of switching tube Q2 and the D ends of switching tube Q3, two multiplication of voltage energy storage capacitor C2-end is electrically connected;
The K ends of diode D3 and two multiplication of voltage energy storage capacitor C2+end, the upper end of semiconductive bridge B1 be electrically connected.
Preferably, in technical solution, resistance R3, switching tube Q4, switching tube Q5, diode D5 and voltage-stabiliser tube D4 are further included;
The GND ends of timer U1, the S ends of switching tube Q1, the S ends of switching tube Q3, filtering energy storage capacitor C1-end is also with opening Close the S ends electrical connection of pipe Q5;
The K ends of diode D3, two multiplication of voltage energy storage capacitor C2+end with resistance R3, the S ends of switching tube Q4, the A of diode D5 The upper end of semiconductive bridge B1 is accessed after the electrical connection of end;
The TEST ends of timer U1, the D ends of switching tube Q1, the G ends of switching tube Q2, switching tube Q3 G ends with semiconductor G ends while the lower end electrical connection of bridge B1 also with the A ends of voltage-stabiliser tube D4, switching tube Q5 are electrically connected;
Resistance R3 is electrically connected with the G ends of switching tube Q4, the K ends of voltage-stabiliser tube D4;
The D ends of switching tube Q4 and the D ends of switching tube Q5, three multiplication of voltage energy storage capacitor C3-end is electrically connected;
The K ends of diode D5, the upper end of semiconductive bridge B1 and three multiplication of voltage energy storage capacitor C3+end is electrically connected.
Preferably, in technical solution, input terminal INA and data input pin INB pass through the output that twisted-pair feeder accesses initiator End, initiator are exported close to 20V voltages.
Compared with prior art, the present invention has the advantages that:
The booster circuit of the present invention, can be the voltage two of slightly below 20V using the scheme of twice of boosting or three times boosting Boosting boosts to 60V close to 40V or three times again.Ensureing that voltage is very high, semiconductive bridge ignition intensity can be effectively ensured Simultaneously, moreover it is possible to ensure that the response time is fully short, less than 0.2 microsecond, ensure that the burst time precision of electric detonator.
Description of the drawings:
Fig. 1 is the circuit diagram of embodiments of the present invention one;
Fig. 2 is the circuit diagram of embodiments of the present invention two.
Specific embodiment:
The specific embodiment of the present invention is described in detail below, it is to be understood that protection scope of the present invention is not It is restricted by specific implementation.
Unless otherwise explicitly stated, otherwise in entire disclosure and claims, term " comprising " or its change It changes such as "comprising" or " including " etc. and will be understood to comprise stated element or component, and do not exclude other members Part or other components.
Embodiment one, as shown in Figure 1, two times of boosting driving electricity of the non-coating detonation semiconductive bridge for electric detonator Road, including data input pin INA, data input pin INB, diode D1, diode D2, filtering energy storage capacitor C1, timer U1, Switching tube Q1, switching tube Q2, switching tube Q3, diode D3, two multiplication of voltage energy storage capacitor C2 and semiconductive bridge B1, resistance R1, resistance R2;
Data input pin INA is electrically connected with resistance R1;
Data input pin INB is electrically connected with resistance R2;
Resistance R1 is electrically connected with the A ends of diode D2, the A ends of timer U1;
Resistance R2 is electrically connected with the A ends of diode D1, the B ends of timer U1;
It is store with the VCC2 ends of timer U1, the K ends of diode D1, the K ends of diode D2, filtering at the VCC1 ends of timer U1 Can capacitance C1+end, the A ends of diode D3, the S ends of switching tube Q2 be electrically connected;
The OUT terminal of timer U1 is electrically connected with the G ends of switching tube Q1;
The GND ends of timer U1 and the S ends of switching tube Q1, the S ends of switching tube Q3, filtering energy storage capacitor C1-end is electrically connected It connects;
The TEST ends of timer U1 and the D ends of switching tube Q1, the G ends of switching tube Q2, the G ends of switching tube Q3, semiconductive bridge The lower end electrical connection of B1;
The D ends of switching tube Q2 and the D ends of switching tube Q3, two multiplication of voltage energy storage capacitor C2-end is electrically connected;
The K ends of diode D3 and two multiplication of voltage energy storage capacitor C2+end, the upper end of semiconductive bridge B1 be electrically connected;
The Digital Control instruction sent from initiator close to 20V voltages is input to data input pin using twisted-pair feeder is differential INA and data input pin INB, is passed to timer U1, while diode D1 and the instruction of diode D2 rectifications Digital Control can be with The power supply for circuit power supply is obtained, filtering energy storage capacitor C1 both ends can be obtained close to 20V voltages.
The operation principle of the embodiment is:When circuit has been connected and has not yet ignited, the OUT terminal of timer U1 is to switching tube The G ends output low-voltage of Q1, ends switching tube Q1, the voltage close to 20V is added in out by diode D3 and semiconductive bridge B1 The G ends of pipe Q2 and switching tube Q3 are closed, switching tube Q3 is allowed to turn on while ending switching tube Q2, realize two multiplication of voltage energy storage capacitor C2 It is in parallel with filtering energy storage capacitor C1, therefore two multiplication of voltage energy storage capacitor C2 can charge until both end voltage is close to 20V voltages, periodically The TEST ends of device U1 can detect whether semiconductive bridge B1 breaks damage.
Timer U1 receives detonation order, after the time delays of setting, to the high electricity of G ends output of switching tube Q1 Pressure turns on switching tube Q1, the lower end of semiconductive bridge B1 is linked together with filtering the negative terminal of energy storage capacitor C1, switching tube Q1 While conducting switching tube Q2 can turn on, and force switch pipe Q3 ends, when switching tube Q2 is turned on, two multiplication of voltage energy storage capacitors The voltage reversal of C2, which is added on diode D3, ends diode D3, as a result two multiplication of voltage energy storage capacitor C2 and filtering energy storage capacitor C1 It discharges together to semiconductive bridge B1 after series connection, the voltage being added at this time on semiconductive bridge B1 is approximately equal to filtering energy storage capacitor C1 With two multiplication of voltage energy storage capacitor C2 sums, that is, two multiplication of voltages are close to 40V.
Embodiment two, as shown in Fig. 2, the three times boosting driving electricity of the non-coating detonation semiconductive bridge for electric detonator Road, three times step-up method include data input pin INA, data input pin INB, the diode D1 of rectification, two poles of rectification Pipe D2, filtering energy storage capacitor C1, timer U1, switching tube Q1, switching tube Q2, switching tube Q3, diode D3, two multiplication of voltage energy storages electricity Hold C2, resistance R3, voltage-stabiliser tube D4, switching tube Q4, switching tube Q5, diode D5, three multiplication of voltage energy storage capacitor C3 and semiconductive bridge B1, Resistance R1, resistance R2;
Data input pin INA is electrically connected with resistance R1;
Data input pin INB is electrically connected with resistance R2;
Resistance R1 is electrically connected with the A ends of diode D2, the A ends of timer U1;
Resistance R2 is electrically connected with the A ends of diode D1, the B ends of timer U1;
It is store with the VCC2 ends of timer U1, the K ends of diode D1, the K ends of diode D2, filtering at the VCC1 ends of timer U1 Can capacitance C1+end, the A ends of diode D3, the S ends of switching tube Q2 be electrically connected;
The OUT terminal of timer U1 is electrically connected with the G ends of switching tube Q1;
The GND ends of timer U1 and the S ends of switching tube Q1, the S ends of switching tube Q3, filtering energy storage capacitor C1-end, switch The S ends electrical connection of pipe Q5;
The TEST ends of timer U1 and the D ends of switching tube Q1, the G ends of switching tube Q2, the G ends of switching tube Q3, switching tube Q5 G ends, the A ends of voltage-stabiliser tube D4, semiconductive bridge B1 lower end electrical connection;
The D ends of switching tube Q2 and the D ends of switching tube Q3, two multiplication of voltage energy storage capacitor C2-end is electrically connected;
The K ends of diode D3 and two multiplication of voltage energy storage capacitor C2+end, the S ends of resistance R3, switching tube Q4, the A of diode D5 End electrical connection;
Resistance R3 is electrically connected with the G ends of switching tube Q4, the K ends of voltage-stabiliser tube D4;
The D ends of switching tube Q4 and the D ends of switching tube Q5, three multiplication of voltage energy storage capacitor C3-end is electrically connected;
The K ends of diode D5 and three multiplication of voltage energy storage capacitor C3+end, the upper end of semiconductive bridge B1 be electrically connected.
The operation principle of the embodiment is:The Digital Control instruction close to 20V voltages is sent using multiple twin from initiator Line is differential to be input to data input pin INA and data input pin INB, is passed to timer U1, while diode D1 and diode D2 The instruction of rectification Digital Control can obtain the power supply for circuit power supply, and filtering energy storage capacitor C1 both ends can be obtained close to 20V Voltage.
When circuit has been connected and has not yet ignited, the OUT terminal of timer U1 exports low-voltage to the G ends of switching tube Q1, makes Switching tube Q1 ends, and the voltage close to 20V is added in switching tube Q2, switch by diode D3, diode D5 and semiconductive bridge B1 The G ends of pipe Q3, switching tube Q5, while D4 and R3 sends nearly 20 volts of voltage at the G ends of switching tube Q4, makes switching tube Q2 and switch Pipe Q4 allows switching tube Q3 and switching tube Q5 to turn on while cut-off, realize two multiplication of voltage energy storage capacitor C2, three multiplication of voltage energy storage capacitor C3 It is all in parallel with filtering energy storage capacitor C1, therefore two multiplication of voltage energy storage capacitor C2 and three multiplication of voltage energy storage capacitor C3 can charge until two For terminal voltage close to 20V voltages, the TEST ends of timer U1 can detect whether semiconductive bridge B1 breaks damage.
Timer U1 receives detonation order, after the time delays of setting, to the high electricity of G ends output of switching tube Q1 Pressure turns on switching tube Q2, the lower end of semiconductive bridge B1 is linked together with filtering the negative terminal of energy storage capacitor C1, switching tube Q2 While force switch pipe Q3 and switching tube Q5 cut-offs are understood while conducting, and make switching tube Q2 conductings, switching tube Q4 is because of G ends Voltage can also be turned on less than S ends, and when switching tube Q2 is turned on, the voltage reversal of two multiplication of voltage energy storage capacitor C2, which is added on diode D3, to be made Diode D3 ends, and when switching tube Q4 is turned on, the voltage reversal of three multiplication of voltage energy storage capacitor C3, which is added on diode D5, makes diode D5 ends, and realizing two multiplication of voltage energy storage capacitor C2, three multiplication of voltage energy storage capacitor C3, these three capacitances connect it with filtering energy storage capacitor C1 It discharges together to semiconductive bridge B1 afterwards, the voltage being added at this time on semiconductive bridge B1 is approximately equal to three capacitance end of charge voltage Sum, that is, three times crimp nearly 60V.
Booster circuit proposed by the present invention, can be the slightly below electricity of 20V using the scheme of twice of boosting or three times boosting Two times of boostings of pressure boost to 60V close to 40V or three times.Ensureing that voltage is very high, semiconductive bridge can be effectively ensured and be under fire by force While spending, moreover it is possible to ensure that the response time is fully short, less than 0.2 microsecond, ensure that the burst time precision of electric detonator.Using The non-coating semiconductive bridge electric detonator that this circuit drives are ignited, not only simple production process, but also security is good are more important Be to realize with less than 20 volts of low voltage drive.
The description of the foregoing specific exemplary embodiment to the present invention is in order to illustrate and illustration purpose.These descriptions It is not wishing to limit the invention to disclosed precise forms, and it will be apparent that according to the above instruction, can much be changed And variation.The purpose of selecting and describing the exemplary embodiment is that explain that the certain principles of the present invention and its reality should With so that those skilled in the art can realize and utilize the present invention a variety of exemplary implementation schemes and Various chooses and changes.The scope of the present invention is intended to be limited by claims and its equivalents.

Claims (3)

1. a kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator, it is characterised in that:Including data Input terminal INA, data input pin INB, diode D1, diode D2, filtering energy storage capacitor C1, timer U1, switching tube Q1, open Close pipe Q2, switching tube Q3, diode D3, two multiplication of voltage energy storage capacitor C2, semiconductive bridge B1, resistance R1, resistance R2;
Data input pin INA is electrically connected with resistance R1, and resistance R1 is electrically connected with the A ends of diode D2, the A ends of timer U1;Number It is electrically connected according to input terminal INB with resistance R2, resistance R2 is electrically connected with the A ends of diode D1, the B ends of timer U1;
The VCC1 ends of timer U1 and the VCC2 ends of timer U1, the K ends of diode D1, the K ends of diode D2, filtering energy storage electricity Hold C1+end, the A ends of diode D3, switching tube Q2 S ends be electrically connected;
The OUT terminal of timer U1 is electrically connected with the G ends of switching tube Q1;
The GND ends of timer U1 and the S ends of switching tube Q1, the S ends of switching tube Q3, filtering energy storage capacitor C1-end is electrically connected;
The TEST ends of timer U1 and the D ends of switching tube Q1, the G ends of switching tube Q2, the G ends of switching tube Q3, semiconductive bridge B1 Lower end is electrically connected;
The D ends of switching tube Q2 and the D ends of switching tube Q3, two multiplication of voltage energy storage capacitor C2-end is electrically connected;
The K ends of diode D3 and two multiplication of voltage energy storage capacitor C2+end, the upper end of semiconductive bridge B1 be electrically connected.
2. a kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator according to claim 1, It is characterized in that:Further include resistance R3, switching tube Q4, switching tube Q5, diode D5 and voltage-stabiliser tube D14;
The GND ends of timer U1, the S ends of switching tube Q1, the S ends of switching tube Q3, filtering energy storage capacitor C1-end also and switching tube The S ends electrical connection of Q5;
The K ends of diode D3, two multiplication of voltage energy storage capacitor C2+end with resistance R3, the S ends of switching tube Q4, diode D5 A ends electricity The upper end of semiconductive bridge B1 is accessed after connection;
The TEST ends of timer U1, the D ends of switching tube Q1, the G ends of switching tube Q2, switching tube Q3 G ends with semiconductive bridge B1 Lower end electrical connection while G ends also with the A ends of voltage-stabiliser tube D4, switching tube Q5 be electrically connected;
Resistance R3 is electrically connected with the G ends of switching tube Q4, the K ends of voltage-stabiliser tube D4;
The D ends of switching tube Q4 and the D ends of switching tube Q5, three multiplication of voltage energy storage capacitor C3-end is electrically connected;
The K ends of diode D5, the upper end of semiconductive bridge B1 and three multiplication of voltage energy storage capacitor C3+end is electrically connected.
3. a kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator according to claim 1, It is characterized in that:The input terminal INA and data input pin INB accesses the output terminal of initiator by twisted-pair feeder, and initiator is defeated Go out close to 20V voltages.
CN201711249735.8A 2017-12-01 2017-12-01 A kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator Pending CN108092511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711249735.8A CN108092511A (en) 2017-12-01 2017-12-01 A kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711249735.8A CN108092511A (en) 2017-12-01 2017-12-01 A kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator

Publications (1)

Publication Number Publication Date
CN108092511A true CN108092511A (en) 2018-05-29

Family

ID=62172492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711249735.8A Pending CN108092511A (en) 2017-12-01 2017-12-01 A kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator

Country Status (1)

Country Link
CN (1) CN108092511A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267364A (en) * 1997-06-19 2000-09-20 恩赛-比克福德公司 Electronic circuitry for timing and delay circuit
US6401621B1 (en) * 2000-11-06 2002-06-11 The United States Of America As Represented By The Secretary Of The Army Electronic safe and arm apparatus for initiating a pyrotechnic
US6470803B1 (en) * 1997-12-17 2002-10-29 Prime Perforating Systems Limited Blasting machine and detonator apparatus
US20040020392A1 (en) * 2002-03-13 2004-02-05 Devries Derek Electronic switching system for a detonation device, method of operation and explosive device including same
CN1484366A (en) * 2002-07-31 2004-03-24 日本电气株式会社 Electric charge pump type boosted circuit
CN207442700U (en) * 2017-12-01 2018-06-01 吴庚雨 A kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267364A (en) * 1997-06-19 2000-09-20 恩赛-比克福德公司 Electronic circuitry for timing and delay circuit
US6470803B1 (en) * 1997-12-17 2002-10-29 Prime Perforating Systems Limited Blasting machine and detonator apparatus
US6401621B1 (en) * 2000-11-06 2002-06-11 The United States Of America As Represented By The Secretary Of The Army Electronic safe and arm apparatus for initiating a pyrotechnic
US20040020392A1 (en) * 2002-03-13 2004-02-05 Devries Derek Electronic switching system for a detonation device, method of operation and explosive device including same
CN1484366A (en) * 2002-07-31 2004-03-24 日本电气株式会社 Electric charge pump type boosted circuit
CN207442700U (en) * 2017-12-01 2018-06-01 吴庚雨 A kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. W. BICKES JR.: "Explosive Systems Utilizing Semiconductor Bridge, SCB, Technology", 《PROPELLANTS, EXPLOSIVES, PYROTECHNICS》, vol. 21, no. 3, pages 146 - 149 *
王维: "电子延期非电雷管的研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, pages 017 - 5 *

Similar Documents

Publication Publication Date Title
CN207442700U (en) A kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator
CN101873755B (en) Discharge lamp lighting device and illuminator
CN205748139U (en) A kind of detonation chain for electric detonator
CN105043173B (en) Delayed ignition controls circuit
CN109185919A (en) Pulse firing control circuit, pulse igniter and household electrical appliance
CN106523189A (en) Rocket firing control system
JP5897099B1 (en) Ignition device
CN101711340B (en) Detonator ignition protection circuit
CN108092511A (en) A kind of booster driving circuit of non-coating detonation semiconductive bridge for electric detonator
CN201218699Y (en) Electronic detonator component
JP2012062798A (en) Ignition device for internal combustion engine
CN202562380U (en) Electronic delay ignition control circuit
CN204228006U (en) A kind of electric detonator interface
CN217032216U (en) Safe type electron detonator control module
CN102518514B (en) Ionic current detection circuit based on automotive ignition system
CN103411484A (en) Safe ignition control circuit of electronic detonator
CN208805117U (en) Electric detonator control module with antistatic and high voltage
CN113758385A (en) Electronic detonator system without initiating explosive
CN209991883U (en) Detonation circuit and detonation device
CN217637013U (en) Electronic detonator system
CN109341447A (en) Detonation interface arrangement and the method for ignition
CN220366757U (en) Temperature-resistant electronic control module for oil-gas well
CN115200433B (en) High-integration electronic detonator chip and system
CN218994191U (en) Plasma igniter and primer-free time-delay electronic detonator prepared by same
CN110595307B (en) Split type multipath delay detonation system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination