CN108089126A - 调相机故障诊断方法、装置和设备 - Google Patents

调相机故障诊断方法、装置和设备 Download PDF

Info

Publication number
CN108089126A
CN108089126A CN201711282854.3A CN201711282854A CN108089126A CN 108089126 A CN108089126 A CN 108089126A CN 201711282854 A CN201711282854 A CN 201711282854A CN 108089126 A CN108089126 A CN 108089126A
Authority
CN
China
Prior art keywords
detected
data
fault
mrow
characteristic value
Prior art date
Application number
CN201711282854.3A
Other languages
English (en)
Inventor
陈非
韩彦广
曹浩
张柏林
李明
Original Assignee
国网湖南省电力公司
国网湖南省电力公司电力科学研究院
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网湖南省电力公司, 国网湖南省电力公司电力科学研究院, 国家电网公司 filed Critical 国网湖南省电力公司
Priority to CN201711282854.3A priority Critical patent/CN108089126A/zh
Publication of CN108089126A publication Critical patent/CN108089126A/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining unbalance
    • G01M1/16Determining unbalance by oscillating or rotating the body to be tested

Abstract

本发明提供了一种调相机故障诊断方法、装置和设备,所述方法包括:S1,在待检测故障状态下采集调相机的振动数据和工艺数据,并通过提取特征值,建立待检测故障特征值矩阵;S2,分别获取待检测故障特征值矩阵与预先构建的多个典型故障特征值矩阵之间的特征值空间距离;S3,比较多个特征值空间距离的大小,确认待检测故障为最小特征值空间距离对应的典型故障。本发明通过将待检测故障状态下的振动数据和工艺数据进行融合分析,建立特征值矩阵;并利用空间距离表征待检测故障与典型故障的匹配程度,在故障识别上具有较高的精度和准确性。

Description

调相机故障诊断方法、装置和设备

技术领域

[0001] 本发明涉及电机设备技术领域,具体涉及一种调相机故障诊断方法、装置和设备。

背景技术

[0002] 目前大型发电机尺寸和重量大,工作转速跨越二阶临界转速,振型复杂,对制造质 量、安装工艺和运行参数的变化敏感,因此经常出现振动不稳定、振动超标现象。调相机是 特高压电网中最重要的旋转电机,而大型调相机与同类型的发电机结构相似,因此也具有 大型发电机的上述特点;除此之外,大型调相机既能够吸收无功,也能够发出无功,其工况 多变;同时它的暂态反应能力和暂态过载能力强,导致其内部温度场相比发电机更加复杂 多变,因此也更容易出现振动超标现象;这也导致了调相机的跳机故障,在极端情况下会威 胁特高压电网安全。

[0003] 现有技术中针对调相机的振动监测诊断系统与汽轮发电机振动监测诊断系统相 同,一般以振动量为主;然而调相机故障征兆并不都只体现在振动数据中,某些故障征兆既 体现在振动数据中,也体现在调相机的相关工艺量数据中,如不平衡、动静碰磨、部件松动、 转子热变形、匝间短路等故障。因此,如果只是单纯分析振动数据,就存在着对调相机运行 监测数据使用不够全面的问题,就不能很好地区分相关故障类型。

发明内容

[0004] 针对现有技术中存在的上述缺陷,本发明提供一种调相机故障诊断方法、装置和 设备。

[0005] 本发明的一方面提供一种调相机故障诊断方法,包括:S1,在待检测故障状态下采 集调相机的振动数据和工艺数据,并通过提取特征值,建立待检测故障特征值矩阵;S2,分 别获取待检测故障特征值矩阵与预先构建的多个典型故障特征值矩阵之间的特征值空间 距离;S3,比较多个特征值空间距离的大小,确认待检测故障为最小特征值空间距离对应的 典型故障。

[0006] 其中,所述步骤Sl前还包括:在多个典型故障状态下采集调相机的振动数据和工 艺数据,并通过提取特征值,分别建立各典型故障特征值矩阵。

[0007] 其中,所述采集调相机的振动数据和工艺数据的步骤具体包括:在相同的转速点 同时采集各振动测点的振动数据及各工艺测点的工艺数据,或在相同的时间点采集各振动 测点的振动数据及各工艺测点的工艺数据。

[0008] 其中,所述典型故障特征值矩阵具体包括,

[0009]

Figure CN108089126AD00041

[0010] 其中,m为振动测点的数量,η为工艺测点的数量,Vx⑴为典型故障状态下第i个振 动测点的振动数据特征值,Sx (j)为典型故障状态下第j个工艺测点的工艺数据特征值,i = l,2,.",m,j = l,2,.",n;

[0011] 所述待检测故障特征值矩阵具体包括,

[0012]

Figure CN108089126AD00051

[0013] 其中,m为振动测点的数量,n为工艺测点的数量,Vy⑴为待检测故障状态下第i个 振动测点的振动数据特征值,Sy (j)为待检测故障状态下第j个工艺测点的工艺数据特征 值,i = l,2,.",m,j = l,2,.",n〇

[0014] 其中,所述特征值空间距离具体包括:

[0015]

Figure CN108089126AD00052

[0016] 其中,所述SI中提取特征值的步骤具体包括:通过傅里叶变换或流形学习方法提 取特征值。

[0017] 其中,所述典型故障具体包括不平衡、动静碰磨、部件松动、转子热变形和匝间短 路故障中的至少一个。

[0018] 其中,所述工艺数据具体包括负荷、温度、定子电压和励磁电流中的至少一个。

[0019] 本发明的另一方面提供一种调相机故障诊断装置,包括:采集模块,用于在待检测 故障状态下采集调相机的振动数据和工艺数据,并通过提取特征值,建立待检测故障特征 值矩阵;获取模块,用于分别获取待检测故障特征值矩阵与预先构建的多个典型故障特征 值矩阵之间的特征值空间距离;比较模块,用于比较多个特征值空间距离的大小,确认待检 测故障为最小特征值空间距离对应的典型故障。

[0020] 本发明的又一方面提供一种调相机故障诊断设备,包括:至少一个处理器;以及与 所述处理器通信连接的至少一个存储器,其中:所述存储器存储有可被所述处理器执行的 程序指令,所述处理器调用所述程序指令能够执行本发明上述方面提供的调相机故障诊断 方法,例如包括:Sl,在待检测故障状态下采集调相机的振动数据和工艺数据,并通过提取 特征值,建立待检测故障特征值矩阵;S2,分别获取待检测故障特征值矩阵与预先构建的多 个典型故障特征值矩阵之间的特征值空间距离;S3,比较多个特征值空间距离的大小,确认 待检测故障为最小特征值空间距离对应的典型故障。

[0021] 本发明提供的调相机故障诊断方法、装置和设备,通过将待检测故障状态下的振 动数据和工艺数据进行融合分析,建立特征值矩阵;并利用空间距离表征待检测故障与典 型故障的匹配程度,在故障识别上具有较高的精度和准确性。

附图说明

[0022] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发 明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根 据这些附图获得其他的附图。

[0023] 图1为本发明实施例提供的调相机故障诊断方法的流程示意图;

[0024] 图2为本发明实施例提供的调相机故障诊断装置的结构示意图;

[0025] 图3为本发明实施例提供的调相机故障诊断设备的结构示意图。

具体实施方式

[0026] 为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例 中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明 一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有 做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

[0027] 本发明实施例的具体原理如下:从单一振动数据到多种类数据,具体在考虑振动 数据的基础上,结合工艺数据进行分析,从过去单一振动数据分析发展到集成多种类数据 的异类传感器特征信息融合分析;从三维空间距离到多维特征值空间距离,具体在集成振 动数据和工艺数据进行异类传感器特征信息融合分析的基础上,引入三维空间距离的概 念,将每一个特征值看成是一个空间维度,从而构建了一个多维异类特征值空间,通过多维 异类特征值空间距离的匹配计算,实现了高精度的自动故障诊断。

[0028] 图1为本发明实施例提供的调相机故障诊断方法的流程示意图,如图1所述,包括: Sl,在待检测故障状态下采集调相机的振动数据和工艺数据,并通过提取特征值,建立待检 测故障特征值矩阵;S2,分别获取待检测故障特征值矩阵与预先构建的多个典型故障特征 值矩阵之间的特征值空间距离;S3,比较多个特征值空间距离的大小,确认待检测故障为最 小特征值空间距离对应的典型故障。

[0029] 在步骤Sl中,首先对调相机在待检测故障状态下的振动数据和工艺数据进行采 集;振动数据和工艺数据是对待检测故障进行的特征信息描述;其中,调相机的工艺数据既 可以是模拟量,也可以是开关量。根据采集得到的待检测故障状态下的振动数据和工艺数 据,分别对其进行特征值提取,构成待检测故障特征值矩阵;待检测故障特征值矩阵就完整 描述了该种待检测故障的故障征兆。

[0030] 在步骤S2中,根据步骤Sl建立的待检测故障特征值矩阵,获取待检测故障特征值 矩阵与预先构建的多个典型故障特征值矩阵之间的空间距离;其中,典型故障特征值矩阵 是预先同样基于步骤Sl中构造特征值矩阵的方法得到的特征值矩阵,并且不同的典型故障 分别具有各自对应的特征值矩阵;空间距离则反映特征值矩阵之间的距离,进一步反映故 障特征之间的相似程度。

[0031] 应当说明的是,本发明实施例中,将特征值矩阵中的每一个特征值看作是一个空 间维度,从而组成了一个多维异类特征值空间;典型故障特征值矩阵中的所有特征值数据 可以看作是这个多维异类特征值空间的空间坐标值,从而对于每一种典型故障,都唯一地 确定了在这个多维异类特征值空间中的一个点,这个点可以称之为每一种典型故障在这个 多维异类特征值空间中的故障中心点。同理,待检测故障特征值矩阵也唯一确定了待检故 障信号在这个多维异类特征值空间中的待检故障点。

[0032] 在步骤S3中,根据步骤S2中获得的空间距离,由于对于每一种典型故障,其在这个 多维异类特征值空间中的故障中心点最能反映该种典型故障的故障征兆;因此,离这个故 障中心点距离越小,故障征兆或特征越明显,离这个故障中心点距离越大,故障征兆或特征 越不明显。因此,对于待检测故障的故障类别判别,可以通过计算并比较待检故障信号在这 个多维异类特征值空间中唯一确定的待检故障点与每一种典型故障的故障中心点之间的 距离大小来进行自动判别,并且,距离越小,说明待检故障信号与对应的典型故障的故障征 兆越接近,即待检故障信号属于该种故障的可能性越大,反之亦然。

[0033] 本发明实施例提供的调相机故障诊断方法,通过将待检测故障状态下的振动数据 和工艺数据进行融合分析,建立特征值矩阵;并利用空间距离表征待检测故障与典型故障 的匹配程度,在故障识别上具有较高的精度和准确性。

[0034] 在上述任一实施例的基础上,所述步骤Sl前还包括:在多个典型故障状态下采集 调相机的振动数据和工艺数据,并通过提取特征值,分别建立各典型故障特征值矩阵。

[0035] 具体地,在进行待检测故障的类别判别前应当先建立多个典型故障特征值矩阵。 典型故障特征值矩阵是作为比较的样本和基准,待检测故障的故障类型具体是通过与典型 故障特征值矩阵进行比较来确定的。

[0036] 在上述任一实施例的基础上,所述采集调相机的振动数据和工艺数据的步骤具体 包括:在相同的转速点同时采集各振动测点的振动数据及各工艺测点的工艺数据,或在相 同的时间点采集各振动测点的振动数据及各工艺测点的工艺数据。

[0037] 具体地,在典型故障状态下以及待检测故障状态下应当选择相同的振动测点和工 艺测点;在具体测量时,以任一典型故障状态下的采集为例,每一个振动测点的典型故障数 据都是在同样的采样转速点或采样时间点下采集得到的;并同时在同样的采样转速点或采 样时间点下对应采集各个工艺测点的工艺数据。

[0038] 在上述仟一实施例的基础上,所述典型故障特征倌矩阵具体包括,

[0039]

Figure CN108089126AD00071

[0040] 其中,m为振动测点的数量,η为工艺测点的数量,Vx⑴为典型故障状态下第i个振 动测点的振动数据特征值,Sx (j)为典型故障状态下第j个工艺测点的工艺数据特征值,i = l,2,.",m,j = l,2,.",n;

[0041] 所述待检测故障特征值矩阵具体包括,

[0042]

Figure CN108089126AD00072

[0043] 其中,m为振动测点的数量,η为工艺测点的数量,Vy⑴为待检测故障状态下第i个 振动测点的振动数据特征值,Sy (j)为待检测故障状态下第j个工艺测点的工艺数据特征 值,i = l,2, =

[0044] 具体地,根据上述式(1),对于每一种典型故障,将故障特征值矩阵X中的每一个特 征值看作是一个空间维度,则m个振动数据特征值和η个工艺数据特征值就可以被看作是m+ η个空间维度,由此组成了一个m+n维空间,这是一个多维异类特征值空间;故障特征值矩阵 X中的所有特征值数据可以看作是这个多维异类特征值空间的空间坐标值,从而对于每一 种典型故障,都唯一确定了在这个多维异类特征值空间中的一个点,这个点(即式(1))可以 称之为每一种典型故障在这个多维异类特征值空间中的故障中心点。

[0045] 同样地,根据上述式(2),对于未知故障类型的信号,即待检故障信号;取与典型故 障状态相同的振动测点和工艺测点,分别采集各个振动测点和工艺测点的待检故障振动数 据和工艺数据,并对该振动数据和工艺数据进行特征值提取;也可以计算得到m+n的特征值 矩阵Y,该矩阵Y也完整地描述了待检故障信号的故障征兆或特征。根据上述多维异类特征 值空间的构建模式,待检故障信号特征值矩阵Y中的所有特征值数据也可以看作是这个多 维异类特征值空间的空间坐标值,从而唯一确定了待检故障信号在这个多维异类特征值空 间中的待检故障点,即上式(2)。

[0046] 在上述任一实施例的基础上,所述特征值空间距离具体包括:

[0047]

Figure CN108089126AD00081

[0048] 具体地,根据三维空间距离的计算方法,可以计算得到多维异类特征值空间中待 检故障点Y与每一种典型故障的故障中心点X之间的m+n维的特征值空间距离Z,共有N个空 间距离Z,N为典型故障类型的数量。由此,可以求出待检故障信号与调相机各种典型故障之 间的多维异类特征值空间距离,并通过求取所有多维异类特征值空间距离中的最小距离, 就可以进行故障判别。

[0049] 在上述任一实施例的基础上,所述Sl中提取特征值的步骤具体包括:通过傅里叶 变换或流形学习方法提取特征值。

[0050] 其中,流形学习(manifold learning)是机器学习、模式识别中的一种方法,在维 数约简方面具有广泛的应用。它的主要思想是将高维的数据映射到低维,使该低维的数据 能够反映原高维数据的某些本质结构特征。流形学习的前提是有一种假设,即某些高维数 据,实际是一种低维的流形结构嵌入在高维空间中。流形学习的目的是将其映射回低维空 间中,揭示其本质。

[0051] 因此,本发明实施例具体可以利用傅里叶变换或流形学习方法对各种典型故障状 态下和待检测故障状态下的振动数据和工艺数据进行特征值提取。

[0052] 在上述任一实施例的基础上,所述典型故障具体包括不平衡、动静碰磨、部件松 动、转子热变形和匝间短路故障中的至少一个。

[0053] 在上述任一实施例的基础上,所述工艺数据具体包括负荷、温度、定子电压和励磁 电流中的至少一个。

[0054] 为了对本发明实施例提供的方法进行说明,以下进行举例:以调相机为例,通过调 相机TSI系统获得调相机各种典型故障状态下的振动数据,通过调相机DCS系统获得调相机 各种典型故障状态下的各种工艺数据,且保证采样点是一致的;通过现代数字信号处理技 术,如傅里叶变换,流形学习等,将采集得到的调相机各种典型故障状态下的振动数据和工 艺数据分别进行特征值提取,得到各种典型故障的特征值矩阵,即各种典型故障的故障样 本矩阵;将故障样本矩阵中每一个特征值看成是一个空间维度,从而构建了一个多维异类 特征值空间;根据三维空间距离的概念,通过待检故障信号确定的待检故障点与各种典型 故障的故障中心点之间多维异类特征值空间距离的匹配计算,实现了高精度的自动故障诊 断。

[0055] 图2为本发明实施例提供的调相机故障诊断装置的结构示意图,如图2所示,包括: 采集模块201,用于在待检测故障状态下采集调相机的振动数据和工艺数据,并通过提取特 征值,建立待检测故障特征值矩阵;获取模块202,用于分别获取待检测故障特征值矩阵与 预先构建的多个典型故障特征值矩阵之间的特征值空间距离;比较模块203,用于比较多个 特征值空间距离的大小,确认待检测故障为最小特征值空间距离对应的典型故障。

[0056] 具体地,采集模块201首先对调相机在待检测故障状态下的振动数据和工艺数据 进行采集;振动数据和工艺数据是对待检测故障进行的特征信息描述;其中,调相机的工艺 数据既可以是模拟量,也可以是开关量。采集模块201根据采集得到的待检测故障状态下的 振动数据和工艺数据,分别对其进行特征值提取,构成待检测故障特征值矩阵;待检测故障 特征值矩阵就完整描述了该种待检测故障的故障征兆。

[0057] 具体地,获取模块202根据采集模块201建立的待检测故障特征值矩阵,获取待检 测故障特征值矩阵与预先构建的多个典型故障特征值矩阵之间的空间距离;其中,典型故 障特征值矩阵是预先同样基于采集模块201中构造特征值矩阵的方法得到的特征值矩阵, 并且不同的典型故障分别具有各自对应的特征值矩阵;空间距离则反映特征值矩阵之间的 距离,进一步反映故障特征之间的相似程度。

[0058] 应当说明的是,本发明实施例中,将特征值矩阵中的每一个特征值看作是一个空 间维度,从而组成了一个多维异类特征值空间;典型故障特征值矩阵中的所有特征值数据 可以看作是这个多维异类特征值空间的空间坐标值,从而对于每一种典型故障,都唯一地 确定了在这个多维异类特征值空间中的一个点,这个点可以称之为每一种典型故障在这个 多维异类特征值空间中的故障中心点。同理,待检测故障特征值矩阵也唯一确定了待检故 障信号在这个多维异类特征值空间中的待检故障点。

[0059] 具体地,比较模块203根据获取模块202中获得的空间距离,由于对于每一种典型 故障,其在这个多维异类特征值空间中的故障中心点最能反映该种典型故障的故障征兆; 因此,离这个故障中心点距离越小,故障征兆或特征越明显,离这个故障中心点距离越大, 故障征兆或特征越不明显。因此,比较模块203对于待检故障的故障类别判别,可以通过计 算并比较待检故障信号在这个多维异类特征值空间中唯一确定的待检故障点与每一种典 型故障的故障中心点之间的距离大小来进行自动判别,并且,距离越小,说明待检故障信号 与对应的典型故障的故障征兆越接近,即待检故障信号属于该种故障的可能性越大,反之 亦然。

[0060] 本发明实施例提供的调相机故障诊断装置,通过将待检测故障状态下的振动数据 和工艺数据进行融合分析,建立特征值矩阵;并利用空间距离表征待检测故障与典型故障 的匹配程度,在故障识别上具有较高的精度和准确性。

[0061] 在上述任一实施例的基础上,所述装置还包括:建立模块,用于在多个典型故障状 态下采集调相机的振动数据和工艺数据,并通过提取特征值,分别建立各典型故障特征值 矩阵。

[0062] 在上述任一实施例的基础上,所述采集模块具体用于:在相同的转速点同时采集 各振动测点的振动数据及各工艺测点的工艺数据,或在相同的时间点采集各振动测点的振 动数据及各工艺测点的工艺数据。

[0063] 在上述任一实施例的基础上,所述典型故障特征值矩阵具体包括,

[0064]

Figure CN108089126AD00091

[0065] 其中,m为振动测点的数量,η为工艺测点的数量,Vx⑴为典型故障状态下第i个振 动测点的振动数据特征值,Sx (j)为典型故障状态下第j个工艺测点的工艺数据特征值,i = l,2,.",m,j = l,2,.",n;

[0066] 所述待检测故障特征值矩阵具体包括,

[0067]

Figure CN108089126AD00092

[0068] 其中,m为振动测点的数量,η为工艺测点的数量,Vy⑴为待检测故障状态下第i个 振动测点的振动数据特征值,Sy (j)为待检测故障状态下第j个工艺测点的工艺数据特征 值,i = l,2,.",m,j = l,2,.",n〇

[0069] 在上述任一实施例的基础上,所述特征值空间距离具体包括:

[0070]

Figure CN108089126AD00101

[0071] 其中,所述SI中提取特征值的步骤具体包括:通过傅里叶变换或流形学习方法提 取特征值。

[0072] 在上述任一实施例的基础上,所述典型故障具体包括不平衡、动静碰磨、部件松 动、转子热变形和匝间短路故障中的至少一个。

[0073] 在上述任一实施例的基础上,所述工艺数据具体包括负荷、温度、定子电压和励磁 电流中的至少一个。

[0074] 图3为本发明实施例提供的调相机故障诊断设备的结构示意图,如图3所示,该设 备包括:至少一个处理器301;以及与所述处理器301通信连接的至少一个存储器302,其中: 所述存储器302存储有可被所述处理器301执行的程序指令,所述处理器301调用所述程序 指令能够执行上述各实施例所提供的调相机故障诊断方法,例如包括:S1,在待检测故障状 态下采集调相机的振动数据和工艺数据,并通过提取特征值,建立待检测故障特征值矩阵; S2,分别获取待检测故障特征值矩阵与预先构建的多个典型故障特征值矩阵之间的特征值 空间距离;S3,比较多个特征值空间距离的大小,确认待检测故障为最小特征值空间距离对 应的典型故障。

[0075] 以上所描述的调相机故障诊断设备等实施例仅仅是示意性的,其中作为分离部件 说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以 不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的 需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不 付出创造性的劳动的情况下,即可以理解并实施。

[0076] 通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可 借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上 述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该 计算机软件产品可以存储在计算机可读存储介质中,如R0M/RAM、磁碟、光盘等,包括若干指 令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施 例或者实施例的某些部分方法。

[0077] 本发明实施例提供的调相机故障诊断方法、装置和设备,基于异类传感器特征信 息融合的诊断思想,在采集振动数据的同时,融合了多种调相机相关工艺数据,克服了目前 故障诊断领域单一特征量故障识别的弊端;将多维空间距离的概念运用于故障诊断领域, 通过多维异类特征值空间距离的匹配计算,实现了高精度的故障诊断;在调相机发生故障 时,本发明可以做到早期预警、故障定位的作用;本发明算法简单通用,便于实施推广。

[0078] 最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管 参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可 以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换; 而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和 范围。

Claims (10)

1. 一种调相机故障诊断方法,其特征在于,包括: SI,在待检测故障状态下采集调相机的振动数据和工艺数据,并通过提取特征值,建立 待检测故障特征值矩阵; S2,分别获取待检测故障特征值矩阵与预先构建的多个典型故障特征值矩阵之间的特 征值空间距离; S 3,比较多个特征值空间距离的大小,确认待检测故障为最小特征值空间距离对应的 典型故障。
2. 根据权利要求1所述的方法,其特征在于,所述步骤Sl前还包括: 在多个典型故障状态下采集调相机的振动数据和工艺数据,并通过提取特征值,分别 建立各典型故障特征值矩阵。
3. 根据权利要求1或2所述的方法,其特征在于,所述采集调相机的振动数据和工艺数 据的步骤具体包括: 在相同的转速点同时采集各振动测点的振动数据及各工艺测点的工艺数据,或在相同 的时间点采集各振动测点的振动数据及各工艺测点的工艺数据。
4. 根据权利要求3所述的方法,其特征在于,所述典型故障特征值矩阵具体包括, X= [Vx(I),VX⑵,…,Vx⑴,…,Vx⑹,Sx(I),SX⑵,…,&〇·),···,&⑹]; 其中,m为振动测点的数量,η为工艺测点的数量,Vx (i)为典型故障状态下第i个振动测 点的振动数据特征值,Sx (j)为典型故障状态下第j个工艺测点的工艺数据特征值,i = l, 2,.",m,j = l,2,.",n; 所述待检测故障特征值矩阵具体包括, Y= [Vy(I),Vy⑵,…,Vy⑴,…,Vy⑹,Sy(I),SY⑵,…,SyG),···,&⑹]; 其中,m为振动测点的数量,η为工艺测点的数量,Vy (i)为待检测故障状态下第i个振动 测点的振动数据特征值,SY(j)为待检测故障状态下第j个工艺测点的工艺数据特征值,i = l,2,.",m,j = l,2,.",n〇
5. 根据权利要求4所述的方法,其特征在于,所述特征值空间距离具体包括:
Figure CN108089126AC00021
6. 根据权利要求1所述的方法,其特征在于,所述SI中提取特征值的步骤具体包括: 通过傅里叶变换或流形学习方法提取特征值。
7. 根据权利要求1所述的方法,其特征在于, 所述典型故障具体包括不平衡、动静碰磨、部件松动、转子热变形和匝间短路故障中的 至少一个。
8. 根据权利要求1所述的方法,其特征在于, 所述工艺数据具体包括负荷、温度、定子电压和励磁电流中的至少一个。
9. 一种调相机故障诊断装置,其特征在于,包括: 采集模块,用于在待检测故障状态下采集调相机的振动数据和工艺数据,并通过提取 特征值,建立待检测故障特征值矩阵; 获取模块,用于分别获取待检测故障特征值矩阵与预先构建的多个典型故障特征值矩 阵之间的特征值空间距离; 比较模块,用于比较多个特征值空间距离的大小,确认待检测故障为最小特征值空间 距离对应的典型故障。
10. —种调相机故障诊断设备,其特征在于,包括: 至少一个处理器; 以及与所述处理器通信连接的至少一个存储器,其中:所述存储器存储有可被所述处 理器执行的程序指令,所述处理器调用所述程序指令能够执行如权利要求1至8任一所述的 方法。
CN201711282854.3A 2017-12-04 2017-12-04 调相机故障诊断方法、装置和设备 CN108089126A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711282854.3A CN108089126A (zh) 2017-12-04 2017-12-04 调相机故障诊断方法、装置和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711282854.3A CN108089126A (zh) 2017-12-04 2017-12-04 调相机故障诊断方法、装置和设备

Publications (1)

Publication Number Publication Date
CN108089126A true CN108089126A (zh) 2018-05-29

Family

ID=62174227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711282854.3A CN108089126A (zh) 2017-12-04 2017-12-04 调相机故障诊断方法、装置和设备

Country Status (1)

Country Link
CN (1) CN108089126A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387724A (zh) * 2018-09-30 2019-02-26 南京理工大学 基于纵向分析横向修正的同步调相机故障诊断方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2477086A1 (en) * 2009-09-07 2012-07-18 Hitachi, Ltd. Anomaly detection and diagnostic method, anomaly detection and diagnostic system, and anomaly detection and diagnostic program
CN103163420A (zh) * 2011-12-08 2013-06-19 沈阳工业大学 电力变压器智能在线状态评判方法
CN103471841A (zh) * 2013-09-30 2013-12-25 国家电网公司 一种旋转机械振动故障诊断方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2477086A1 (en) * 2009-09-07 2012-07-18 Hitachi, Ltd. Anomaly detection and diagnostic method, anomaly detection and diagnostic system, and anomaly detection and diagnostic program
CN103163420A (zh) * 2011-12-08 2013-06-19 沈阳工业大学 电力变压器智能在线状态评判方法
CN103471841A (zh) * 2013-09-30 2013-12-25 国家电网公司 一种旋转机械振动故障诊断方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387724A (zh) * 2018-09-30 2019-02-26 南京理工大学 基于纵向分析横向修正的同步调相机故障诊断方法
CN109387724B (zh) * 2018-09-30 2020-10-27 南京理工大学 基于纵向分析横向修正的同步调相机故障诊断方法

Similar Documents

Publication Publication Date Title
CN105446328B (zh) 发电机组远程故障诊断和健康监测系统及数据捕获方法
US6911838B2 (en) Online detection of shorted turns in a generator field winding
CN102707232B (zh) 电动机设备状态在线监测装置及其监测方法
CN105353256B (zh) 一种输变电设备状态异常检测方法
CN103944973A (zh) 一种日志采集方法及装置
CN202494775U (zh) 一种直流系统绝缘装置校验仪
CN104386449B (zh) 用于矿用皮带运输机头尾轮在线检测智能保护装置
CN201035110Y (zh) 分布式发电机转子绕组匝间短路故障在线监测装置
CN106095639A (zh) 一种集群亚健康预警方法及系统
CN1312585C (zh) 嵌入式旋转机械智能状态监控与故障诊断装置
JPH10173021A (ja) 製造ライン解析方法及び製造ライン解析装置
CN104748838B (zh) 基于有限元分析的变压器绕组松动判断系统和方法
CN100474729C (zh) 静电检测实时监控系统
CA2128181A1 (en) System and method for processing test measurements collected from an internal combustion engine for diagnostic purposes
CN206161814U (zh) 伺服电机可靠性测试系统
CN102713861A (zh) 操作管理装置、操作管理方法以及程序存储介质
CN103640713B (zh) 飞机结构疲劳部件的监测系统
US7243265B1 (en) Nearest neighbor approach for improved training of real-time health monitors for data processing systems
CN102466566B (zh) 动力设备异常检测装置及其检测方法
CN105637432A (zh) 识别被监控实体的异常行为
CN103471841B (zh) 一种旋转机械振动故障诊断方法
CN101713997B (zh) 风力涡轮机的状态监测方法和系统
CN102819477B (zh) 一种板卡的故障测试方法以及故障测试卡
CN101101319A (zh) 发电机转子绕组匝间短路状态的检测装置
CN102123044B (zh) 基于拓扑发现技术的网络拓扑一致性检测设备和检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination