CN108089099A - 基于深度置信网络的配电网故障的诊断方法 - Google Patents

基于深度置信网络的配电网故障的诊断方法 Download PDF

Info

Publication number
CN108089099A
CN108089099A CN201711368790.9A CN201711368790A CN108089099A CN 108089099 A CN108089099 A CN 108089099A CN 201711368790 A CN201711368790 A CN 201711368790A CN 108089099 A CN108089099 A CN 108089099A
Authority
CN
China
Prior art keywords
mrow
msub
data
training
munder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711368790.9A
Other languages
English (en)
Inventor
孔祥轩
仇志成
陈中明
张耀宇
郑楚韬
冯志坚
谭家祺
梁浩胜
陆凯烨
叶蓓
何其淼
黄焯麒
陈君宇
肖锋
陈小岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Foshan Power Supply Bureau of Guangdong Power Grid Corp
Original Assignee
Wuhan University WHU
Foshan Power Supply Bureau of Guangdong Power Grid Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU, Foshan Power Supply Bureau of Guangdong Power Grid Corp filed Critical Wuhan University WHU
Priority to CN201711368790.9A priority Critical patent/CN108089099A/zh
Publication of CN108089099A publication Critical patent/CN108089099A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于深度置信网络的配电网故障诊断方法,包括:获取原始配电网监测数据;原始数据降噪和归一化建模;设置配电网故障诊断模型超参数;用70%的采集数据作为训练样本训练模型;用剩余30%样本测试训练好的故障诊断模型,输出的六个节点分别表示三相发生两种故障的概率,若精度不满足要求则重新训练;用模型监测配电网运行状态,若发生故障则可获取故障类型及线路等六个步骤;本发明将深度学习理论应用于配电网故障诊断中,在结构复杂、设备众多、数据易缺失的情况下自动学习各种故障下各采集数据的变化特征,同时具有较好的容错性,有助于提高配电网故障诊断精确性和及时性,保证配电网安全稳定运行。

Description

基于深度置信网络的配电网故障的诊断方法
技术领域
本发明涉及配电网,特别是一种基于深度置信网络的配电网故障诊断方法,用于配电网在线故障诊断。
背景技术
配电系统作为电力系统的最后一个环节,直接担负着用户在电能稳定、安全、优质、经济等方面所提出的要求的责任。随着我国经济水平的日益发展,我国人民生活水平的提高和大量精密家电的应用,用户对供电的供电质量和可靠性提出了更高的要求。
当配电网发生故障后,系统中海量的动作信息汇总到集控中心,信息在传输过程中会出现畸变甚至丢失,尤其是其中夹杂着许多冗余数据和各种干扰信息,大大超出运行人员的分析能力;加上配电网中自动装置可能会出现的拒动作和误动作,依赖于运行人员读取信息后,精确地判断出故障的位置是不可能的。配电网中一个单点故障如果不及时处理,将导致故障影响范围扩大,有可能造成人员和财产的巨大损失。因此,需要一种能够迅速有效的故障诊断方法,作为运行人员判断依据,来准确的判断出故障类型、找出故障,并采取相应的措施排除故障,缩小停电范围。
目前国内外学者对配电网故障诊断方法的主要思路是通过线路中的开关元件的动作信息或故障录波器信息来实现,其中主要的方法包括:
(1)专家系统,是利用电网中继电保护、断路器的动作原理和调度员的以往故障查找经历形成故障诊断中专家系统的知识库,根据实时警报信号依照知识库的得到推理结果,但该方法速度慢、容错性差,且不能自主学习;
(2)人工神经网络,利用继电器和断路器状态信息计算出故障信息,但该方法在非线性的电力网络中诊断误差大;
(3)基于Petri网络和概率论知识的电力网络故障诊断方法,具有运算速度快、容故障性能高、准确度好等优点,但该方法对时序性要求很高的故障分析效果不佳,且容易出现模型的状态组合爆炸;
(4)基于贝叶斯网络的配电网故障诊断把先验信息与后验信息结合,可以很好的减少只存在前者时的主观偏见以及只存在后者的噪声影响,但需要求出内部各个事件的条件概率和先验概率,而这些数据需要经过繁琐的计算求取。
相较于上述几种方法,基于深度置信网络(Deep Belief Network,DBN)的配电网故障诊断方法能够充分利用馈线终端装置(FTU)及其他设备采集数据,自动提取区域配电网各类型故障特征,提高模型的自主学习能力和容错率,故障诊断速度更快、精度更高。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于深度置信网络的配电网故障诊断方法,该方法设计合理、故障诊断全面、分析准确的,能够根据历史故障信息训练模型,得到区域配电网故障特征,从而快速分析配电网的故障状态。
本发明的技术解决方案是:
一种基于深度置信网络的配电网故障诊断方法,其特征在于,包括以下步骤:
步骤1:获取配电网故障时刻馈线终端装置及其他设备采集的数据;
步骤2:对原始数据进行数据预处理,剔除冗余数据和“坏数据”,对原始时域信号归一化,并将原始数据安装7:3的比例划分为训练集和测试集;
步骤3:根据训练数据实际情况确定深度置信网络的输入、输出节点、最大层数、每层的节点数和最大迭代次数等超参数;
步骤4:利用训练数据训练模型,反复迭代直至模型的代价函数低于设置的阈值;
步骤5:将测试数据导入到已经训练好的深度置信网络中进行测试,如果测试精度不满足要求,则重复步骤4再次训练模型;
步骤6:输出配电网故障诊断结果;
附图说明
图1是本发明实施例的流程示意图;
图2是受限玻尔兹曼机(RBM)模型的基本结构;
图3是深度置信网络的基本结构;
图4是DBN训练过程流程图;
图5是无监督学习过程;
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合附图和实施例对本发明作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。
请见图1,本发明基于深度置信网络的配电网故障诊断方法,包括以下步骤:
步骤1:获取配电网故障时刻馈线终端装置(FTU)及其他设备采集数据,包括开关状态、电能参数、相间故障、接地故障以及故障时的参数;
步骤2:预处理原始数据,剔除原始数据中的冗余数据和“坏数据”,同时将数据中不同量纲的采集数据归一化处理,并按照7:3划分训练数据和测试数据;
对于缺失的数据,通常插入中位数补全,由于原始数据中各类数据采集频率不同,用插值法使数据样本保持一致;
由于原始数据各类数据量纲不同,需按照下式将数据归一化;
其中,x与x′分别表示归一化前后原始样本点,xmin与xmax分别表示同一采集量的最小值和最大值;
将预处理后的样本按照7:3分为训练数据和测试数据,本发明所使用的样本共6500条,其中故障样本占10%,随机选取70%样本为训练样本,其余为测试样本;
步骤3:基于训练样本量和输入数据实际情况,设置模型输入节点、输出节点、最大层数、每层的节点数和最大迭代次数等超参数;
本实施例所使用的样本从某市110kV配电网获得,数据包括周围3个开关状态、三相电压电流数据及频率,故本实施例所建立的深度置信网络模型的输入节点数设置为10个,包括开关3个、电压电流数据6个、频率1个;
由于配电网主要故障是单相接地故障和弧光高阻接地故障,考虑到A、B、C三相,本实施例的输出节点数设为6,其中节点1-3号的输出值表示A、B、C三相发生单相接地故障的概率,4-6号节点输出值表示A、B、C三相发生弧光高阻接地故障的概率;
深度置信网络是一个概率生成模型,由多个受限波尔兹曼机(RestrictedBoltzmann Machine,RBM)堆叠而成,深度置信网络的最底层(第一层)接收输入数据向量,并通过RBM转换输入数据到隐含层,即高一层RBM的输入来自低一层RBM的输出;
如图2所示,每个RBM包含一个可视层和一个隐含层,只有可视层和隐含层单元之间有双向连接权值,而可视层单元与可视层单元及隐含层单元与隐含层单元之间没有连接,在给定可视层单元v={v1,v2,v3,...,vI}∈{0,1}、隐含层单元 h={h1,h2,h3,...,hI}∈{0,1}、权重矩阵w、可视层单元的阈值a和隐含层单元阈值b的条件下,所有可视单元和隐含单元联合状态(v,h)的能量函数为:
其中,I为可视单元的数量,J为隐含单元的数量,根据上式得到的能量函数E(v,h)可以得到隐含层和可视层之间的联合概率分布为:
其中,Z是一个模拟物理系统的标准化常数,由所有可视层和隐含层单元之间的能量值相加得到,通过上式的联合概率分布,按下式计算可视层向量v的独立分布为:
由于RBM的同一层任何两个单元之间都没有连接,所以给定一个随机输入可视层向量v,所有的隐含层单元是互相独立的,根据联合概率分布,得出在给定可视层向量v的条件下,隐含层向量h的概率为:
类似的,给定一个随机输入隐含层向量h,可以得到在给定隐含层向量h的条件下,可视层向量v的概率:
考虑到RBM的结构单元是一个二值状态,在定义逻辑函数sigmoid函数的前提下,可以得到激活概率:
在给定可视层向量v后,可以通过p(hj=1/v)计算隐含层单元h的状态,然后通过p(vi=1/h)得到重构可视层单元重构的状态,当可视层单元和重构可视层单元之间的差异最小,即可认为隐含层单元是可视层单元的另外一种表达,因此隐含层单元可以作为可视层输入单元的特征提取结果,从而达到了特征提取的目的;
本发明所构建的模型训练数据有4550条,所构建的深度置信网络见图3;
步骤4:利用训练数据训练深度置信网络模型参数,深度置信网络的训练由无监督的逐层预训练和有监督的微调两个过程组成,其整体训练过程见图4;
无监督逐层预训练是深度置信网络模型与其它模型的主要区别,无监督的逐层学习通过直接把数据从输入映射到输出,能够学习非线性复杂函数,这也是其具备强大特征提取能力的关键所在,首先在第一个RBM的可视层产生一个向量,通过 RBM网络将值传递到隐含层,反过来,用隐含层去重构可视层,根据重构层和可视层的差异去更新隐含层和可视层之间的权重,更新机制如下式所示:
W′=W-α·ΔW
式中,W是隐含层和可视层之间的权重,W′是更新后的权重,ΔW是重构层和可视层的差异,α是学习率;
直到达到最大的迭代次数,把得到的隐含层作为可视层,通过逐层堆叠,这个深度结构可以从原始数据中逐层提取特征,获得一些高层次表达。逐层训练RBM 的方法避免了整体训练深度置信网络带来的复杂运算,其将深度置信网络模型逐层演变成一个浅层神经网络,无监督的逐层学习过程见图5;
根据图5,对深度置信网络进行无监督预训练,当训练完成后,通过在深度置信网络的最顶层添加标签数据,对深度置信网络进行有监督训练,即使用反向传播算法(Backpropagation,BP)对深度置信网络的相关参数进行微调。通过对深度置信网络进行有监督的训练将进一步减少训练误差和提高深度置信网络分类模型的准确率。与无监督训练中每次训练一层相比,反向传播有监督微调同时对所有层的参数进行更新;
步骤5:将测试数据导入到已经训练好的模型中测试训练效果,输出节点的6 个单元中概率最大值代表对应相发生小电阻接地或弧光高阻接地故障,如果精度满足阈值要求,则该模型可以用来检测配电网常见故障,若模型测试误差过大,则重新设置最大层数、每层节点数和迭代次数等超参数,重复步骤3和4直至训练精度满足要求;
步骤6:将训练好的模型用于配电网故障诊断,辅助运维人员掌握配电网运行状态;
本实施例的步骤1收集某市110kV配电网故障时刻馈线终端设备(FTU)采集数据,包括开关状态、电能参数、相间故障、接地故障以及故障时的参数;
本实施例的步骤2是通过插值法补全缺失数据,同时将数据中不同量纲的采集数据做0-1归一化处理,并按照7:3比例划分训练数据和测试数据;
本实施例的步骤3是基于训练样本量和输入数据实际情况,设置模型输入、输出节点、最大层数、每层的节点数和最大迭代次数等超参数,本发明所使用的样本从某市110kV配电网获得,数据包括周围3个开关状态、三相电压电流数据及频率,故本发明所建立的深度置信网络模型,其输入节点数设置为10个(开关3个、电压电流数据6个、频率1个),所构建的模型训练数据有4550条,所构建的深度置信网络见图3;
本实施例的步骤4是用训练样本训练模型参数,同时在步骤5中测试模型训练效果,其中模型额训练过程如图4所示,首先设置模型的节点数、迭代次数等超参数,用无监督的训练机制训练模型更新参数,直至达到迭代次数,随后用反向传播算法微调参数,得到训练好的模型,无监督的玻尔兹曼机的参数学习过程如图5所示;
由于输入数据维数决定着输入层的节点数,输出类别数决定着输出层的节点数,因此将输入层和输出层的节点数分别设为10和6,将隐含层节点数设为500,将学习率初始值设为0.1,初始动量设为0.5,迭代5次后,动量变为0.9,全局反向微调次数为100。为了消除算法随机性,每次实验都重复10次,取10次结果的平均值,表1给出了4、5、6和7四种不同深度下DBN模型的分类性能,其中准确率是10次计算结果的均值,为了评估DBN模型的稳定性,给出了10次计算结果的标准差,同时为了对DBN模型的分类效率有一个直观的认识,也给出了不同深度下的训练时间,所构建的深度置信网络模型的分类性能对比如下:
表1 DBN故障诊断性能
从表1可以看出,随着DBN模型深度的增加,时间几乎在成倍的增加,因此选择一个恰当的深度是非常必要的,表1中DBN模型深度为5时对应的分类准确率最高,比深度为4时对应的最低分类准确率高了2.6625%,此外,当深度大于5时,分类准确率没有大幅度的提高,训练时间却一直在大幅度增加,综合训练时间和分类准确率,5层是一个比较合理的深度选择;
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
应当理解的是,上述针对较佳实施例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。

Claims (8)

1.一种基于深度置信网络的配电网故障诊断方法,其特征在于,包括以下步骤:
步骤1:获取配电网故障时刻馈线终端设备(FTU)采集数据,包括开关状态、电能参数、相间故障、接地故障以及故障时的参数;
步骤2:对原始数据进行数据预处理,剔除冗余数据和“坏数据”,对原始时域信号归一化,并将原始数据按7:3的比例划分训练集和测试集;
步骤3:根据训练数据实际情况确定深度置信网络的输入节点、输出节点、最大层数、每层的节点数和最大迭代次数的参数;
步骤4:用步骤3中预设好超参数的模型,读取步骤2中的训练集数据,利用正向玻尔兹曼机概率公式计算下一层数值,并使用反向传播算法微调参数,反复迭代直至模型的代价函数低于设置的阈值;
步骤5:将测试数据导入已经训练好的深度置信网络中进行测试,输出的六个节点分别表示三相发生两种故障的概率,如果测试精度不满足要求,则返回步骤4再次训练模型;
步骤6:用精度满足要求的模型监测配电网,若发生故障时,模型的六个输出节点会计算出A、B、C三相发生单相接地故障和弧光高阻接地故障的概率,取概率最大值作为配电网故障诊断结果。
2.根据权利要求1所述的基于深度置信网络的配电网故障诊断方法,其特征在于:步骤2中所述的数据预处理包括剔除冗余数据和补全缺失数据,同时将不同量纲的采集数据0-1归一化,其中归一化计算公式为:
<mrow> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>min</mi> </msub> </mrow> </mfrac> </mrow>
3.根据权利要求1设置隐含层玻尔兹曼机参数时,其特征在于:在给定可视层单元v={v1,v2,v3,...,vI}∈{0,1}、隐含层单元h={h1,h2,h3,...,hI}∈{0,1}、权重矩阵w、可视层单元的阈值a和隐含层单元阈值b的条件下,所有可视单元和隐含单元联合状态(v,h)的能量函数为:
<mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>I</mi> </munderover> <msub> <mi>a</mi> <mi>i</mi> </msub> <msub> <mi>v</mi> <mi>i</mi> </msub> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>I</mi> </munderover> <msub> <mi>w</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>v</mi> <mi>i</mi> </msub> <msub> <mi>h</mi> <mi>i</mi> </msub> </mrow>
其中I为可视单元的数量,J为隐含单元的数量,根据上式得到的能量函数E(v,h)可以得到隐含层和可视层之间的联合概率分布为:
<mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>E</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> </mrow> </msup> <mi>Z</mi> </mfrac> </mrow>
<mrow> <mi>Z</mi> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>v</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>h</mi> </munder> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>E</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> </mrow> </msup> </mrow>
其中,Z是一个模拟物理系统的标准化常数,由所有可视层单元和隐含层单元之间的能量值相加得到,通过上式的联合概率分布,可以得到可视层向量v的独立分布为:
<mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>h</mi> </munder> <mi>p</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <munder> <mo>&amp;Sigma;</mo> <mi>h</mi> </munder> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>E</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> </mrow> </msup> </mrow> <mrow> <munder> <mo>&amp;Sigma;</mo> <mi>v</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>h</mi> </munder> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>E</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> </mrow> </msup> </mrow> </mfrac> </mrow>
4.根据权利要求3所述的构建隐含层玻尔兹曼机,其特征在于:同一层任何两个单元之间都没有连接,所以给定一个随机输入可视层向量v,所有的隐含层单元是互相独立的,根据联合概率分布,得出在给定可视层向量v的条件下,隐含层向量h的概率:
<mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>h</mi> <mo>/</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&amp;Pi;</mo> <mi>j</mi> </munder> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow>
假设给定一个随机输入隐含层向量h,可以得到在给定隐含层向量h的条件下,可视层向量v的概率:
<mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>/</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&amp;Pi;</mo> <mi>i</mi> </munder> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mi>h</mi> <mo>)</mo> </mrow> </mrow>
考虑到RBM的结构单元是一个二值状态,在定义逻辑函数sigmoid函数的前提下,可以得到激活概率:
<mrow> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>j</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>I</mi> </munderover> <msub> <mi>v</mi> <mi>i</mi> </msub> <msub> <mi>w</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>h</mi> <mi>j</mi> </msub> <msub> <mi>w</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
5.根据权利要求1所述的基于深度置信网络的配电网故障诊断方法,其特征在于:在步骤4中利用训练数据训练深度置信网络模型参数,深度置信网络的训练由无监督的逐层预训练和有监督的微调两个过程组成。
6.根据权利要求5所述的无监督的逐层预训练,其特征在于:无监督的逐层学习通过直接把数据从输入映射到输出,能够学习非线性复杂函数,首先在第一个RBM的可视层产生一个向量,通过RBM网络将值传递到隐含层,反过来,用隐含层去重构可视层,根据重构层和可视层的差异去更新隐含层和可视层之间的权重,直到达到最大的迭代次数,把得到的隐含层作为可视层,通过逐层堆叠。
7.根据权利要求6所述的有监督的微调,其特征在于:使用反向传播算法(Backpropagation,BP)对深度置信网络的相关参数进行微调,通过对深度置信网络进行有监督的训练将进一步减少训练误差和提高深度置信网络分类模型的准确率。
8.根据权利要求1所述的基于深度置信网络的配电网故障诊断方法,其特征在于:在步骤5中将测试数据导入到已经训练好的模型中测试训练效果,输出节点的6个单元中概率最大值代表对应相发生小电阻接地或弧光高阻接地故障,如果精度满足阈值要求,则该模型可以用来检测配电网常见故障,若模型测试误差过大,则重新设置最大层数、每层节点数和迭代次数等超参数,重复步骤3和4直至训练精度满足要求。
CN201711368790.9A 2017-12-18 2017-12-18 基于深度置信网络的配电网故障的诊断方法 Pending CN108089099A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711368790.9A CN108089099A (zh) 2017-12-18 2017-12-18 基于深度置信网络的配电网故障的诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711368790.9A CN108089099A (zh) 2017-12-18 2017-12-18 基于深度置信网络的配电网故障的诊断方法

Publications (1)

Publication Number Publication Date
CN108089099A true CN108089099A (zh) 2018-05-29

Family

ID=62175978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711368790.9A Pending CN108089099A (zh) 2017-12-18 2017-12-18 基于深度置信网络的配电网故障的诊断方法

Country Status (1)

Country Link
CN (1) CN108089099A (zh)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828441A (zh) * 2018-06-12 2018-11-16 江苏镇安电力设备有限公司 高压断路器故障诊断方法
CN108897354A (zh) * 2018-07-13 2018-11-27 广西大学 一种基于深度置信网络的铝熔炼过程炉膛温度预测方法
CN109239527A (zh) * 2018-09-07 2019-01-18 福州大学 基于深度置信网络的配电网故障识别方法
CN109579896A (zh) * 2018-11-27 2019-04-05 佛山科学技术学院 基于深度学习的水下机器人传感器故障诊断方法及装置
CN109599827A (zh) * 2018-11-21 2019-04-09 宁波恒晨电力建设有限公司 基于大数据的配电网中性点动态接地方法及系统
CN109596942A (zh) * 2018-12-06 2019-04-09 华北电力大学 一种基于深度置信网络的电压暂降原因识别方法
CN109655711A (zh) * 2019-01-10 2019-04-19 国网福建省电力有限公司漳州供电公司 配电网内部过电压类型识别方法
CN109685331A (zh) * 2018-12-06 2019-04-26 中国软件与技术服务股份有限公司 一种基于机器学习的高铁转向架传感器故障诊断方法
CN109743103A (zh) * 2019-02-01 2019-05-10 福州大学 基于elm的fbg传感网络节点故障修复方法
CN109799423A (zh) * 2019-01-09 2019-05-24 西安科技大学 一种电缆故障在线诊断的方法
CN110232402A (zh) * 2019-05-14 2019-09-13 沈阳化工大学 一种优化的自适应深度置信网络滚动轴承故障诊断方法
CN110378045A (zh) * 2019-07-24 2019-10-25 湘潭大学 一种基于深度学习的导轨精度预维护方法
CN110398663A (zh) * 2019-07-03 2019-11-01 东南大学 一种基于卷积神经网络的柔性直流电网故障识别方法
CN110889111A (zh) * 2019-10-23 2020-03-17 广东工业大学 一种基于深度置信网络的电网虚拟数据注入攻击的检测方法
CN111143835A (zh) * 2019-11-18 2020-05-12 深圳供电局有限公司 基于机器学习的电力计量系统业务逻辑非侵入式防护方法
CN111160241A (zh) * 2019-12-27 2020-05-15 华中科技大学 一种基于深度学习的配电网故障分类方法、系统和介质
CN111327487A (zh) * 2018-12-14 2020-06-23 国网山西省电力公司信息通信分公司 基于深度学习的电力通信网络运行状态监测方法和装置
CN111488968A (zh) * 2020-03-03 2020-08-04 国网天津市电力公司电力科学研究院 综合能源计量数据特征提取方法及系统
CN112101077A (zh) * 2019-06-18 2020-12-18 北京映翰通网络技术股份有限公司 一种配电网故障类型的识别方法
CN112147462A (zh) * 2020-09-16 2020-12-29 国网江西省电力有限公司电力科学研究院 一种基于深度学习的输电线路故障辨识方法
CN112202630A (zh) * 2020-09-16 2021-01-08 中盈优创资讯科技有限公司 一种基于无监督模型的网路质量异常检测方法及装置
CN112240964A (zh) * 2019-07-16 2021-01-19 北京映翰通网络技术股份有限公司 一种用于配电网故障类型识别的方法
CN112308208A (zh) * 2020-09-23 2021-02-02 云南电网有限责任公司普洱供电局 基于深度学习模型的变压器故障诊断方法
CN112345872A (zh) * 2020-12-04 2021-02-09 中国南方电网有限责任公司超高压输电公司昆明局 基于深度置信网络的换流站二次回路异常识别和预警方法
CN112348656A (zh) * 2020-09-29 2021-02-09 百维金科(上海)信息科技有限公司 一种基于ba-wnn的个人贷款信用评分方法
CN112365186A (zh) * 2020-11-27 2021-02-12 中国电建集团海外投资有限公司 一种电力信息系统健康度评估方法及其评估系统
CN112488821A (zh) * 2020-11-27 2021-03-12 百维金科(上海)信息科技有限公司 一种基于abc-som神经网络的消费信贷场景欺诈检测方法
CN112529684A (zh) * 2020-11-27 2021-03-19 百维金科(上海)信息科技有限公司 一种基于fwa_dbn的客户信用评估方法及系统
CN112529683A (zh) * 2020-11-27 2021-03-19 百维金科(上海)信息科技有限公司 一种基于cs-pnn的客户信贷风险的评估方法及系统
CN112633493A (zh) * 2020-12-01 2021-04-09 北京理工大学 一种面向工业设备数据的故障诊断方法及系统
CN112766702A (zh) * 2021-01-13 2021-05-07 广东能源集团科学技术研究院有限公司 一种基于深度置信网络的分布式电站故障分析方法及系统
CN112834921A (zh) * 2020-12-23 2021-05-25 浙江工业大学 一种基于残差图注意力网络的电机故障诊断方法
CN113033833A (zh) * 2021-02-25 2021-06-25 江苏大学 一种联合收割机脱粒滚筒收获状态故障诊断方法
CN113285431A (zh) * 2021-06-10 2021-08-20 云南电网有限责任公司迪庆供电局 一种智能配电网信息物理融合保护系统及方法
CN113283501A (zh) * 2021-05-24 2021-08-20 平安国际融资租赁有限公司 基于深度学习的设备状态检测方法、装置、设备和介质
CN113762486A (zh) * 2021-11-11 2021-12-07 中国南方电网有限责任公司超高压输电公司广州局 换流阀故障诊断模型的构建方法、装置和计算机设备
CN113985192A (zh) * 2021-06-07 2022-01-28 国网江苏省电力有限公司淮安供电分公司 一种交直流配网直流故障诊断方法
CN115184728A (zh) * 2022-07-13 2022-10-14 西南交通大学 一种交直流混合配电网的故障识别方法
CN115494349A (zh) * 2022-11-04 2022-12-20 国网浙江省电力有限公司金华供电公司 有源配电网单相接地故障区段定位方法
CN115659150A (zh) * 2022-12-23 2023-01-31 中国船级社 一种信号处理方法、装置及设备
CN116937820A (zh) * 2023-09-19 2023-10-24 深圳凯升联合科技有限公司 一种基于深度学习算法的高压电路线路状态监测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439629A (zh) * 2013-08-05 2013-12-11 国家电网公司 基于数据网格的配电网故障诊断系统
CN105973594A (zh) * 2016-04-25 2016-09-28 西北工业大学 一种基于连续深度置信网络的滚动轴承故障预测方法
CN106448684A (zh) * 2016-11-16 2017-02-22 北京大学深圳研究生院 基于深度置信网络特征矢量的信道鲁棒声纹识别系统
CN106646127A (zh) * 2016-12-10 2017-05-10 东阳市光明电力建设有限公司 分布式电网零序故障监测系统
CN106769048A (zh) * 2017-01-17 2017-05-31 苏州大学 基于Nesterov动量法的自适应深度置信网络轴承故障诊断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439629A (zh) * 2013-08-05 2013-12-11 国家电网公司 基于数据网格的配电网故障诊断系统
CN105973594A (zh) * 2016-04-25 2016-09-28 西北工业大学 一种基于连续深度置信网络的滚动轴承故障预测方法
CN106448684A (zh) * 2016-11-16 2017-02-22 北京大学深圳研究生院 基于深度置信网络特征矢量的信道鲁棒声纹识别系统
CN106646127A (zh) * 2016-12-10 2017-05-10 东阳市光明电力建设有限公司 分布式电网零序故障监测系统
CN106769048A (zh) * 2017-01-17 2017-05-31 苏州大学 基于Nesterov动量法的自适应深度置信网络轴承故障诊断方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
王琴: "基于LVQ神经网络算法的配电网单相接地故障诊断方法研究及应用实现", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
葛强强: "基于深度置信网络的数据驱动故障诊断方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
赵光权等: "基于DBN的故障特征提取及诊断方法研究", 《仪器仪表学报》 *
赵智等: "基于小波神经网络的配电网故障类型识别", 《电力系统及其自动化学报》 *

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828441A (zh) * 2018-06-12 2018-11-16 江苏镇安电力设备有限公司 高压断路器故障诊断方法
CN108897354A (zh) * 2018-07-13 2018-11-27 广西大学 一种基于深度置信网络的铝熔炼过程炉膛温度预测方法
CN108897354B (zh) * 2018-07-13 2020-10-20 广西大学 一种基于深度置信网络的铝熔炼过程炉膛温度预测方法
CN109239527A (zh) * 2018-09-07 2019-01-18 福州大学 基于深度置信网络的配电网故障识别方法
CN109599827A (zh) * 2018-11-21 2019-04-09 宁波恒晨电力建设有限公司 基于大数据的配电网中性点动态接地方法及系统
CN109579896A (zh) * 2018-11-27 2019-04-05 佛山科学技术学院 基于深度学习的水下机器人传感器故障诊断方法及装置
CN109596942A (zh) * 2018-12-06 2019-04-09 华北电力大学 一种基于深度置信网络的电压暂降原因识别方法
CN109685331A (zh) * 2018-12-06 2019-04-26 中国软件与技术服务股份有限公司 一种基于机器学习的高铁转向架传感器故障诊断方法
CN111327487A (zh) * 2018-12-14 2020-06-23 国网山西省电力公司信息通信分公司 基于深度学习的电力通信网络运行状态监测方法和装置
CN109799423B (zh) * 2019-01-09 2021-05-07 西安科技大学 一种电缆故障在线诊断的方法
CN109799423A (zh) * 2019-01-09 2019-05-24 西安科技大学 一种电缆故障在线诊断的方法
CN109655711A (zh) * 2019-01-10 2019-04-19 国网福建省电力有限公司漳州供电公司 配电网内部过电压类型识别方法
CN109743103A (zh) * 2019-02-01 2019-05-10 福州大学 基于elm的fbg传感网络节点故障修复方法
CN110232402A (zh) * 2019-05-14 2019-09-13 沈阳化工大学 一种优化的自适应深度置信网络滚动轴承故障诊断方法
CN112101077A (zh) * 2019-06-18 2020-12-18 北京映翰通网络技术股份有限公司 一种配电网故障类型的识别方法
CN110398663A (zh) * 2019-07-03 2019-11-01 东南大学 一种基于卷积神经网络的柔性直流电网故障识别方法
CN112240964B (zh) * 2019-07-16 2023-06-20 北京映翰通网络技术股份有限公司 一种用于配电网故障类型识别的方法
CN112240964A (zh) * 2019-07-16 2021-01-19 北京映翰通网络技术股份有限公司 一种用于配电网故障类型识别的方法
CN110378045A (zh) * 2019-07-24 2019-10-25 湘潭大学 一种基于深度学习的导轨精度预维护方法
CN110889111A (zh) * 2019-10-23 2020-03-17 广东工业大学 一种基于深度置信网络的电网虚拟数据注入攻击的检测方法
CN111143835A (zh) * 2019-11-18 2020-05-12 深圳供电局有限公司 基于机器学习的电力计量系统业务逻辑非侵入式防护方法
CN111143835B (zh) * 2019-11-18 2021-12-31 深圳供电局有限公司 基于机器学习的电力计量系统业务逻辑非侵入式防护方法
CN111160241A (zh) * 2019-12-27 2020-05-15 华中科技大学 一种基于深度学习的配电网故障分类方法、系统和介质
CN111160241B (zh) * 2019-12-27 2022-08-12 华中科技大学 一种基于深度学习的配电网故障分类方法、系统和介质
CN111488968A (zh) * 2020-03-03 2020-08-04 国网天津市电力公司电力科学研究院 综合能源计量数据特征提取方法及系统
CN112202630A (zh) * 2020-09-16 2021-01-08 中盈优创资讯科技有限公司 一种基于无监督模型的网路质量异常检测方法及装置
CN112147462A (zh) * 2020-09-16 2020-12-29 国网江西省电力有限公司电力科学研究院 一种基于深度学习的输电线路故障辨识方法
CN112308208A (zh) * 2020-09-23 2021-02-02 云南电网有限责任公司普洱供电局 基于深度学习模型的变压器故障诊断方法
CN112308208B (zh) * 2020-09-23 2023-01-24 云南电网有限责任公司普洱供电局 基于深度学习模型的变压器故障诊断方法
CN112348656A (zh) * 2020-09-29 2021-02-09 百维金科(上海)信息科技有限公司 一种基于ba-wnn的个人贷款信用评分方法
CN112365186A (zh) * 2020-11-27 2021-02-12 中国电建集团海外投资有限公司 一种电力信息系统健康度评估方法及其评估系统
CN112529683A (zh) * 2020-11-27 2021-03-19 百维金科(上海)信息科技有限公司 一种基于cs-pnn的客户信贷风险的评估方法及系统
CN112529684A (zh) * 2020-11-27 2021-03-19 百维金科(上海)信息科技有限公司 一种基于fwa_dbn的客户信用评估方法及系统
CN112488821A (zh) * 2020-11-27 2021-03-12 百维金科(上海)信息科技有限公司 一种基于abc-som神经网络的消费信贷场景欺诈检测方法
CN112633493A (zh) * 2020-12-01 2021-04-09 北京理工大学 一种面向工业设备数据的故障诊断方法及系统
CN112345872A (zh) * 2020-12-04 2021-02-09 中国南方电网有限责任公司超高压输电公司昆明局 基于深度置信网络的换流站二次回路异常识别和预警方法
CN112834921A (zh) * 2020-12-23 2021-05-25 浙江工业大学 一种基于残差图注意力网络的电机故障诊断方法
CN112834921B (zh) * 2020-12-23 2022-07-15 浙江工业大学 一种基于残差图注意力网络的电机故障诊断方法
CN112766702A (zh) * 2021-01-13 2021-05-07 广东能源集团科学技术研究院有限公司 一种基于深度置信网络的分布式电站故障分析方法及系统
CN113033833A (zh) * 2021-02-25 2021-06-25 江苏大学 一种联合收割机脱粒滚筒收获状态故障诊断方法
CN113283501A (zh) * 2021-05-24 2021-08-20 平安国际融资租赁有限公司 基于深度学习的设备状态检测方法、装置、设备和介质
CN113985192A (zh) * 2021-06-07 2022-01-28 国网江苏省电力有限公司淮安供电分公司 一种交直流配网直流故障诊断方法
CN113285431A (zh) * 2021-06-10 2021-08-20 云南电网有限责任公司迪庆供电局 一种智能配电网信息物理融合保护系统及方法
CN113762486A (zh) * 2021-11-11 2021-12-07 中国南方电网有限责任公司超高压输电公司广州局 换流阀故障诊断模型的构建方法、装置和计算机设备
CN115184728A (zh) * 2022-07-13 2022-10-14 西南交通大学 一种交直流混合配电网的故障识别方法
CN115494349A (zh) * 2022-11-04 2022-12-20 国网浙江省电力有限公司金华供电公司 有源配电网单相接地故障区段定位方法
CN115494349B (zh) * 2022-11-04 2023-04-07 国网浙江省电力有限公司金华供电公司 有源配电网单相接地故障区段定位方法
CN115659150A (zh) * 2022-12-23 2023-01-31 中国船级社 一种信号处理方法、装置及设备
CN116937820A (zh) * 2023-09-19 2023-10-24 深圳凯升联合科技有限公司 一种基于深度学习算法的高压电路线路状态监测方法
CN116937820B (zh) * 2023-09-19 2024-01-05 深圳凯升联合科技有限公司 一种基于深度学习算法的高压电路线路状态监测方法

Similar Documents

Publication Publication Date Title
CN108089099A (zh) 基于深度置信网络的配电网故障的诊断方法
CN108732528A (zh) 一种基于深度置信网络的数字化电能表故障诊断方法
Amraee et al. Transient instability prediction using decision tree technique
Chan Application of neural-network computing in intelligent alarm processing (power systems)
CN101464964B (zh) 一种设备故障诊断的支持向量机模式识别方法
CN110221200A (zh) 一种基于深度学习的万能式断路器附件故障诊断方法
CN104297635B (zh) 基于原子稀疏分解与极限学习机的配电网故障选线方法
CN105224782B (zh) 一种基于故障模式的变电设备故障概率计算方法
CN105334436B (zh) 基于som-bp组合神经网络的交联电缆局部放电模式识别方法
CN110163075A (zh) 一种基于权值训练的多信息融合故障诊断方法
CN102179722A (zh) 基于比例故障率模型的数控机床运行可靠性评估方法
CN102663500A (zh) 一种基于时间隶属分析的模糊 Petri网变电站故障诊断方法
Laayati et al. Smart energy management system: oil immersed power transformer failure prediction and classification techniques based on DGA data
Nguyen et al. Spatial-temporal recurrent graph neural networks for fault diagnostics in power distribution systems
CN109829627A (zh) 一种基于集成学习方案的电力系统动态安全置信评估方法
CN107656152A (zh) 一种基于ga‑svm‑bp变压器故障诊断方法
CN103745080A (zh) 基于贝叶斯模型的电网操作人因可靠性评估方法及装置
CN104101795A (zh) 一种变压器故障控制方法
CN104102214A (zh) 变压器及其周边电路故障控制方法
Sun et al. PF-FEDG: An open-source data generator for frequency disturbance event detection with deep-learning reference classifiers
CN109635430B (zh) 电网输电线路暂态信号监测方法和系统
CN113611568A (zh) 一种基于遗传卷积深度网络的真空断路器
CN105741184A (zh) 一种变压器状态评估方法及装置
CN104101794A (zh) 电力变压器综合控制系统
CN116070140B (zh) 一种配电变电站安全运行状态监测系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180529