CN108088766A - 一种碱金属原子转移方法 - Google Patents
一种碱金属原子转移方法 Download PDFInfo
- Publication number
- CN108088766A CN108088766A CN201611037441.4A CN201611037441A CN108088766A CN 108088766 A CN108088766 A CN 108088766A CN 201611037441 A CN201611037441 A CN 201611037441A CN 108088766 A CN108088766 A CN 108088766A
- Authority
- CN
- China
- Prior art keywords
- alkali metal
- speculum
- light
- air chamber
- mrow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N9/00—Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
- G01N9/24—Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Abstract
本发明属于原子气室技术领域,具体涉及一种碱金属原子转移方法。本发明的原子气室内碱金属密度检测光路包括:光电探测器、第一反射镜、分光片、偏振分光棱镜、激光器、第二反射镜、第三反射镜和第四反射镜。本发明的碱金属原子转移方法,包括以下步骤:构建检测光路,碱金属蒸汽充入,原子气室中碱金属密度计算,结束碱金属充入转移。本发明解决现有的方法只能通过人眼观测并反复转移从而达到一个目视比较理想的结果,因此转移效率低且控制精度差的技术问题,采用原子蒸汽的去多普勒饱和吸收光路,实现了原子气室内碱金属蒸汽密度的在线测量,提高了碱金属转移操作效率,使得碱金属量的控制精度大幅提升。
Description
技术领域
本发明属于原子气室技术领域,具体涉及一种碱金属原子转移方法。
背景技术
原子气室是原子器件的核心工作部分,是在一定形状的通光壳体内,密闭封装一定数量和成分的气体和碱金属原子,其中碱金属的量对气室性能有较大影响,数量偏多会导致多余的碱金属附着在气室壁上,从而遮挡光路;碱金属数量不足会导致高温条件下碱金属密度不够,导致气室工作介质不足。
目前,原子气室所需碱金属的转移过程一般采用在真空管路构建温度梯度,利用碱金属原子熔点较低,在几十度以上的温度即可熔化并会发出蒸汽并在温度较低处凝结从而实现碱金属原子的转移过程。这种转移方法难以对碱金属转移的进行测量和控制,只能通过人眼观测并反复转移从而达到一个目视比较理想的结果,因此转移效率低且控制精度差。
发明内容
本发明需要解决的技术问题为:现有的方法难原子气室碱金属转移方法难以对碱金属转移的进行测量和控制,只能通过人眼观测并反复转移从而达到一个目视比较理想的结果,因此转移效率低且控制精度差。
本发明的技术方案如下所述:
一种原子气室内碱金属密度检测光路,包括:光电探测器、第一反射镜、分光片、偏振分光棱镜、激光器、第二反射镜、第三反射镜和第四反射镜;其中,所述激光器发出的激光能够射入偏振分光棱镜,射入所述偏振分光棱镜的激光被90°反射,并且反射激光变为线偏振光;从偏振分光棱镜反射而出的线偏振光能够射入分光片;所述分光片能够将入射光线分为三路,其中一路为从分光片透射而出,另外两路为反射光线;从分光片透射而出的光线能够射入第一反射镜,经第一反射镜反射后能够射入第二反射镜;
待检测的原子气室设置于分光片和第二反射镜之间,同时也位于分光片和第三反射镜、第四反射镜之间;
被第二反射镜反射的光线能够穿过原子气室,并射入分光片;
从分光片反射而出的另外两路光线能够穿过原子气室,并能够分别射入第三反射镜和第四反射镜,分别经第三反射镜和第四反射镜反射后,共同射入光电探测器,光电探测器能够检测入射的两路光线的光强之差。
一种使用上述原子气室内碱金属密度检测光路的碱金属原子转移方法,包括以下步骤:
第一步,构建检测光路;
构建权利要求1所述的原子气室内碱金属密度检测光路;
第二步,碱金属蒸汽充入
对待充入原子气室的碱金属的碱金属源及真空管路进行加热,使碱金属变为蒸汽,并开始将碱金属蒸汽充入原子气室;
第三步,原子气室中碱金属密度计算
记录激光光源所发出的激光的频率ν、激光光源所发出的激光的初始光强P0(ν)和从原子气室透射出的激光的光强PT(ν),得到如图1所示的曲线,使用下式进行参数拟合:
通过记录的数据,拟合出上式中的参数A、Γ和C;
并通过下式计算出此时原子气室内碱金属的密度;
A=[*]recfoscdcΓ/2
式中,[*]为原子气室内碱金属的密度,re为电子半径,re=2.8×10-15m,,c为光速,c=3×108,fosc为常数,fosc=0.324,dc为气室长度;
第四步,结束碱金属充入转移;
当原子气室内的碱金属蒸汽密度到达设计要求,且气室内无凝聚态碱金属时,关闭加热系统,碱金属转移过程完毕。
本发明的有益效果为:
本发明的一种碱金属原子的转移方法,采用原子蒸汽的去多普勒饱和吸收光路,实现了原子气室内碱金属蒸汽密度的在线测量,提高了碱金属转移操作效率,使得碱金属量的控制精度大幅提升。
附图说明
图1为本发明的原子气室内碱金属密度检测光路示意图;
图2为发射激光的频率与从原子气室透射出的激光的光强关系曲线;
其中,1-光电探测器,2-第一反射镜,3-分光片,4-偏振分光棱镜,5-激光器,6-原子气室,7-第二反射镜,8-第三反射镜,9-第四反射镜。
具体实施方式
下面结合附图和实施例对本发明的一种碱金属原子转移方法进行详细说明。
第一步,构建检测光路;
检测光路如图1所示,包括:光电探测器1、第一反射镜2、分光片3、偏振分光棱镜4、激光器5、第二反射镜7、第三反射镜8和第四反射镜9。其中,激光器5发出的激光能够射入偏振分光棱镜4,射入偏振分光棱镜4的激光被90°反射,并且反射激光变为线偏振光。从偏振分光棱镜4反射而出的线偏振光能够射入分光片3。分光片3能够将入射光线分为三路,其中一路为从分光片3透射而出,另外两路为反射光线。从分光片3透射而出的光线能够射入第一反射镜2,经第一反射镜2反射后能够射入第二反射镜7。
待检测的原子气室6设置于分光片3和第二反射镜7之间,同时也位于分光片3和第三反射镜8、第四反射镜9之间。
被第二反射镜7反射的光线能够穿过原子气室6,并射入分光片3。
从分光片3反射而出的另外两路光线能够穿过原子气室6,并能够分别射入第三反射镜8和第四反射镜9,分别经第三反射镜8和第四反射镜9反射后,共同射入光电探测器1,光电探测器1能够检测入射的两路光线的光强之差。
第二步,碱金属蒸汽充入
对待充入原子气室的碱金属的碱金属源及真空管路进行加热,使碱金属变为蒸汽,并开始将碱金属蒸汽充入原子气室。
第三步,原子气室中碱金属密度计算
记录激光光源所发出的激光的频率ν、激光光源所发出的激光的初始光强P0(ν)和从原子气室透射出的激光的光强PT(ν),得到如图1所示的曲线,使用下式进行参数拟合:
通过记录的数据,拟合出上式中的参数A、Γ和C。并通过下式计算出此时原子气室内碱金属的密度。
A=[*]recfoscdcΓ/2
式中,[*]为原子气室内碱金属的密度,re为电子半径,re=2.8×10-15m,,c为光速,c=3×108,fosc为常数,fosc=0.324,dc为气室长度。
第四步,结束碱金属充入转移。
当原子气室内的碱金属蒸汽密度到达设计要求,且气室内无凝聚态碱金属时,关闭加热系统,碱金属转移过程完毕。
Claims (2)
1.一种原子气室内碱金属密度检测光路,包括:光电探测器(1)、第一反射镜(2)、分光片(3)、偏振分光棱镜(4)、激光器(5)、第二反射镜(7)、第三反射镜(8)和第四反射镜(9);其特征在于:所述激光器(5)发出的激光能够射入偏振分光棱镜(4),射入所述偏振分光棱镜(4)的激光被90°反射,并且反射激光变为线偏振光;从偏振分光棱镜(4)反射而出的线偏振光能够射入分光片(3);所述分光片(3)能够将入射光线分为三路,其中一路为从分光片(3)透射而出,另外两路为反射光线;从分光片(3)透射而出的光线能够射入第一反射镜(2),经第一反射镜(2)反射后能够射入第二反射镜(7);
待检测的原子气室(6)设置于分光片(3)和第二反射镜(7)之间,同时也位于分光片(3)和第三反射镜(8)、第四反射镜(9)之间;
被第二反射镜(7)反射的光线能够穿过原子气室(6),并射入分光片(3);
从分光片(3)反射而出的另外两路光线能够穿过原子气室(6),并能够分别射入第三反射镜(8)和第四反射镜(9),分别经第三反射镜(8)和第四反射镜(9)反射后,共同射入光电探测器(1),光电探测器(1)能够检测入射的两路光线的光强之差。
2.一种使用权利要求1所述原子气室内碱金属密度检测光路的碱金属原子转移方法,其特征在于,包括以下步骤:
第一步,构建检测光路;
构建权利要求1所述的原子气室内碱金属密度检测光路;
第二步,碱金属蒸汽充入
对待充入原子气室的碱金属的碱金属源及真空管路进行加热,使碱金属变为蒸汽,并开始将碱金属蒸汽充入原子气室;
第三步,原子气室中碱金属密度计算
记录激光光源所发出的激光的频率ν、激光光源所发出的激光的初始光强P0(ν)和从原子气室透射出的激光的光强PT(ν),得到如图1所示的曲线,使用下式进行参数拟合:
<mrow>
<mi>l</mi>
<mi>n</mi>
<mfrac>
<mrow>
<msub>
<mi>P</mi>
<mi>T</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>v</mi>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<msub>
<mi>P</mi>
<mn>0</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>v</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mo>-</mo>
<mfrac>
<mi>A</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mi>v</mi>
<mo>-</mo>
<msub>
<mi>v</mi>
<mn>0</mn>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<mi>&Gamma;</mi>
<mo>/</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mfrac>
<mo>+</mo>
<mi>C</mi>
</mrow>
通过记录的数据,拟合出上式中的参数A、Γ和C;
并通过下式计算出此时原子气室内碱金属的密度;
A=[*]recfoscdcΓ/2
式中,[*]为原子气室内碱金属的密度,re为电子半径,re=2.8×10-15m,,c为光速,c=3×108,fosc为常数,fosc=0.324,dc为气室长度;
第四步,结束碱金属充入转移;
当原子气室内的碱金属蒸汽密度到达设计要求,且气室内无凝聚态碱金属时,关闭加热系统,碱金属转移过程完毕。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611037441.4A CN108088766A (zh) | 2016-11-23 | 2016-11-23 | 一种碱金属原子转移方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611037441.4A CN108088766A (zh) | 2016-11-23 | 2016-11-23 | 一种碱金属原子转移方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108088766A true CN108088766A (zh) | 2018-05-29 |
Family
ID=62168690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611037441.4A Pending CN108088766A (zh) | 2016-11-23 | 2016-11-23 | 一种碱金属原子转移方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108088766A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110686701A (zh) * | 2019-09-12 | 2020-01-14 | 北京自动化控制设备研究所 | 碱金属定向转移装置 |
CN114199481A (zh) * | 2021-11-11 | 2022-03-18 | 北京自动化控制设备研究所 | 真空原子气室制作方法及使用其的装置 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101593933A (zh) * | 2009-06-19 | 2009-12-02 | 中国科学院上海光学精密机械研究所 | 饱和吸收鉴频装置 |
CN103342335A (zh) * | 2013-06-21 | 2013-10-09 | 中国科学院上海微系统与信息技术研究所 | 一种微型cpt原子钟碱金属蒸汽腔的充气和封堵系统及方法 |
CN103439218A (zh) * | 2013-09-02 | 2013-12-11 | 北京航空航天大学 | 一种基于压力展宽的碱金属蒸气原子密度测量方法 |
CN103954573A (zh) * | 2014-05-07 | 2014-07-30 | 东南大学 | 碱金属原子配比的实时监测方法及系统 |
CN104215553A (zh) * | 2014-09-05 | 2014-12-17 | 北京航空航天大学 | 一种碱金属蒸汽的原子密度与极化率一体化测量装置 |
CN104609364A (zh) * | 2015-01-28 | 2015-05-13 | 中国科学院上海光学精密机械研究所 | 高精度混合缓冲气体碱金属原子蒸汽泡的制作方法及系统 |
CN105043930A (zh) * | 2015-07-24 | 2015-11-11 | 中国电子科技集团公司第四十九研究所 | 微结构碱金属气室碱金属蒸汽原子密度的检测装置和方法 |
CN105514799A (zh) * | 2016-01-28 | 2016-04-20 | 北京大学 | 一种小型无本底饱和吸收光谱装置及其系统和控制方法 |
CN105651649A (zh) * | 2016-01-27 | 2016-06-08 | 东南大学 | 一种适用于原子磁强计的原子密度实时在线测量方法 |
DE102014227052A1 (de) * | 2014-12-31 | 2016-06-30 | Universität Stuttgart | Dampfzelle und Verwendung von Graphen in einer Dampfzelle |
CN105762640A (zh) * | 2016-04-11 | 2016-07-13 | 北京航天控制仪器研究所 | 一种用于亚多普勒饱和吸收光谱的反射式集成装置 |
-
2016
- 2016-11-23 CN CN201611037441.4A patent/CN108088766A/zh active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101593933A (zh) * | 2009-06-19 | 2009-12-02 | 中国科学院上海光学精密机械研究所 | 饱和吸收鉴频装置 |
CN103342335A (zh) * | 2013-06-21 | 2013-10-09 | 中国科学院上海微系统与信息技术研究所 | 一种微型cpt原子钟碱金属蒸汽腔的充气和封堵系统及方法 |
CN103439218A (zh) * | 2013-09-02 | 2013-12-11 | 北京航空航天大学 | 一种基于压力展宽的碱金属蒸气原子密度测量方法 |
CN103954573A (zh) * | 2014-05-07 | 2014-07-30 | 东南大学 | 碱金属原子配比的实时监测方法及系统 |
CN104215553A (zh) * | 2014-09-05 | 2014-12-17 | 北京航空航天大学 | 一种碱金属蒸汽的原子密度与极化率一体化测量装置 |
DE102014227052A1 (de) * | 2014-12-31 | 2016-06-30 | Universität Stuttgart | Dampfzelle und Verwendung von Graphen in einer Dampfzelle |
CN104609364A (zh) * | 2015-01-28 | 2015-05-13 | 中国科学院上海光学精密机械研究所 | 高精度混合缓冲气体碱金属原子蒸汽泡的制作方法及系统 |
CN105043930A (zh) * | 2015-07-24 | 2015-11-11 | 中国电子科技集团公司第四十九研究所 | 微结构碱金属气室碱金属蒸汽原子密度的检测装置和方法 |
CN105651649A (zh) * | 2016-01-27 | 2016-06-08 | 东南大学 | 一种适用于原子磁强计的原子密度实时在线测量方法 |
CN105514799A (zh) * | 2016-01-28 | 2016-04-20 | 北京大学 | 一种小型无本底饱和吸收光谱装置及其系统和控制方法 |
CN105762640A (zh) * | 2016-04-11 | 2016-07-13 | 北京航天控制仪器研究所 | 一种用于亚多普勒饱和吸收光谱的反射式集成装置 |
Non-Patent Citations (1)
Title |
---|
邹升 等: "基于光谱吸收法的碱金属原子配比检测方法研究", 《光谱学与光谱分析》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110686701A (zh) * | 2019-09-12 | 2020-01-14 | 北京自动化控制设备研究所 | 碱金属定向转移装置 |
CN110686701B (zh) * | 2019-09-12 | 2021-08-10 | 北京自动化控制设备研究所 | 碱金属定向转移装置 |
CN114199481A (zh) * | 2021-11-11 | 2022-03-18 | 北京自动化控制设备研究所 | 真空原子气室制作方法及使用其的装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107957276B (zh) | 基于频率漂移补偿的相位敏感光时域反射计及其测量方法 | |
US5363463A (en) | Remote sensing of physical variables with fiber optic systems | |
CN104280362A (zh) | 一种高温水汽激光光谱在线检测系统 | |
CN102414553B (zh) | 用于测量热透镜焦距的方法和装置 | |
CN105403322B (zh) | 原子磁强计碱金属气室内温度分布的测量装置与方法 | |
CN107037003A (zh) | 一种基于光腔衰荡光谱技术检测高纯气体中水汽含量的系统 | |
Versluis et al. | 2-D absolute OH concentration profiles in atmospheric flames using planar LIF in a bi-directional laser beam configuration. | |
CN104848985B (zh) | 一种基于红外激光光谱的真空度检测方法与系统 | |
CN107505041A (zh) | 一种基于相位敏感光时域反射计的相位解调装置和方法 | |
CN104714110A (zh) | 基于电磁诱导透明效应测量高频微波场强的装置和方法 | |
CN208171424U (zh) | 多光源相位敏感光时域反射计 | |
CN103954573A (zh) | 碱金属原子配比的实时监测方法及系统 | |
CN108088766A (zh) | 一种碱金属原子转移方法 | |
CN102564354A (zh) | 基于慢光材料的双频激光干涉仪的角度测量装置及测量方法 | |
CN101701903B (zh) | 强度关联远场无透镜成像装置 | |
CN105043930A (zh) | 微结构碱金属气室碱金属蒸汽原子密度的检测装置和方法 | |
CN102980739A (zh) | 基于四象限探测器的脉冲气体激光器腔内流场测量装置 | |
CN105823755A (zh) | 一种基于可调谐半导体激光的自混合气体吸收传感系统 | |
CN111024258B (zh) | 一种碱金属气室内部热分布与热稳定测量装置 | |
CN103411898B (zh) | 基于石英增强光声光谱的全光学气体探测方法及装置 | |
CN102445416B (zh) | 一种复合材料实时在线无损检测装置 | |
CN101794506A (zh) | 用于分布式光纤温度传感系统中数据校准的方法及装置 | |
CN107167225B (zh) | 一种分布式光纤应力及振动的传感系统及其传感方法 | |
CN104458080B (zh) | 一种光纤压力传感测量方法及装置 | |
CN104181128B (zh) | 基于时间相关单光子计数技术的半透明材料辐射物性测量方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180529 |