CN108084999A - 一种植物源环保荧光碳量子点、其制备方法及应用 - Google Patents

一种植物源环保荧光碳量子点、其制备方法及应用 Download PDF

Info

Publication number
CN108084999A
CN108084999A CN201810083893.9A CN201810083893A CN108084999A CN 108084999 A CN108084999 A CN 108084999A CN 201810083893 A CN201810083893 A CN 201810083893A CN 108084999 A CN108084999 A CN 108084999A
Authority
CN
China
Prior art keywords
quantum dot
carbon quantum
environmental protection
fluorescence
plant source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810083893.9A
Other languages
English (en)
Inventor
张仟春
付予锦
王苑
吴韵
王兴益
徐新然
吴金城
张丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XINGYI NORMAL UNIVERSITY FOR NATIONALITIES
Original Assignee
XINGYI NORMAL UNIVERSITY FOR NATIONALITIES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XINGYI NORMAL UNIVERSITY FOR NATIONALITIES filed Critical XINGYI NORMAL UNIVERSITY FOR NATIONALITIES
Priority to CN201810083893.9A priority Critical patent/CN108084999A/zh
Publication of CN108084999A publication Critical patent/CN108084999A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种植物源环保荧光碳量子点、其制备方法及应用,将去离子水与无籽刺梨按质量比为0.5~3进行混合后,加入搅拌机内充分磨碎,获得匀浆,称取20.0~70.0 g匀浆,置于100 ml反应釜内胆中,超声震荡5~20 min,使匀浆内物质充分分散,再采用水热法在140~220℃反应8~24 h获取初步碳点溶液;将初步碳点溶液于12000~20000 r/min超速离心10~30 min,上清液再用针筒式过滤器过滤上清液,获得碳点溶液。本发明平均荧光寿命为4.36 ns,荧光量子产率在15.0~24.8%,荧光量子产率高、制备条件简单而环保、以植物为碳源、生物相容性好且低毒。

Description

一种植物源环保荧光碳量子点、其制备方法及应用
技术领域
本发明属于碳纳米材料技术领域,具体涉及一种植物源环保荧光碳量子点,同时还涉及该植物源环保荧光碳量子点的制备方法,及该植物源环保荧光碳量子点在宫颈癌细胞成像中的应用。
背景技术
碳量子点是近几年发展起来的一种具有良好分散性、稳定性高的球形荧光碳纳米材料。其主要是由尺寸为1~10 nm 的Ⅱ-Ⅵ族或Ⅲ-Ⅴ族元素组成,在紫外、可见光和近红外光内,碳量子点可通过单光子和双光子吸收实现荧光激发,同时可给出电子或接受电子产生光致电荷转移。它还具有生物相容性、低毒性以及易得、廉价等优点。因此,在重金属检测、生物荧光探针及催化领域有重要的应用价值。控制碳量子点的尺寸和形貌对其荧光性能和应用拓展非常重要,为拓展碳量子点的荧光性能及应用,对碳量子点的合成方法、荧光强度的改善、颗粒大小的控制以及复合结构的制备进行研究具有重要意义。
目前,荧光碳量子点的合成方法分为化学法和物理法,主要分为自上而下和自下而上。自上而下的方法包括激光辐照法、电弧放电法、超声处理法、电化学氧化法和电化学剥落刻蚀;而自下而上则包括燃烧法、水热法、热解碳化物前驱体法、模板法和微波法等等。与其他方法相比,水热法操作简单,设备要求低,可以设计不同的合成路线和修饰方法,获得粒径稳定且产率高的碳量子点。因此,水热法被广泛用于荧光碳量子点的制备中,但其碳量子点的荧光活性位点少、产率低(大部分小于15%)、选择性等成为发展的瓶颈。
发明内容
本发明的目的在于克服上述缺点而提供的一种荧光量子产率高、制备条件简单而环保、以植物为碳源、生物相容性好且低毒的植物源环保荧光碳量子点。
本发明的另一目的在于提供该植物源环保荧光碳量子点的制备方法。
本发明的再一目的在于提供该植物源环保碳量子点在宫颈癌细胞(Hela)中进行细胞成像应用。
本发明的一种植物源环保荧光碳量子点,平均荧光寿命为4.36 ns,荧光量子产率在15.0~24.8%。
本发明的一种植物源环保荧光碳量子点的制备方法,包括以下步骤:
(1)取无籽刺梨的成熟鲜果实清洗表面并切除宿存花萼和果梗;
(2)将去离子水与无籽刺梨按质量比为0.5~3进行混合后,加入搅拌机内充分磨碎,获得匀浆,称取20.0~70.0 g匀浆,置于100 ml反应釜内胆中,超声震荡5~20 min,使匀浆内物质充分分散,再采用水热法在140~220℃反应8~24 h获取初步荧光碳量子点溶液;
(3)将初步荧光碳量子点溶液于12000~20000 r/min超速离心10~30 min,上清液再用针筒式过滤器过滤上清液,获得荧光碳量子点溶液。
本发明的植物源环保碳量子点在宫颈癌细胞(Hela)中进行细胞成像应用。
本发明与现有技术相比,有更多显著优势,从上述技术方案可知:本发明采用无籽刺梨的成熟鲜果为碳源,采用一步水热法制备环保碳量子点,本发明碳量子点是一种绿色无毒环保荧光碳量子点,平均荧光寿命为4.36 ns,荧光量子产率在18.5~24.8%。具有生物毒性低、生物相容性好、易溶于水、粒径小且制备方法简单等优点。适用于细胞荧光成像、药物靶向运输、荧光油墨等领域。特别是宫颈癌细胞中的成像应用,获得了良好的成像效果。
具体实施方式
实施例 1
一种植物源无毒环保荧光碳量子点的制备方法,包括以下步骤:
(1)选取成熟的无籽刺梨鲜果,用蒸馏水充分洗净后去除果梗及宿存花萼备用;
(2)将去离子水与刺梨按质量比为3进行混合,并置于搅拌机内充分磨碎,获得匀浆。称取20.0 g匀浆,置于100 ml反应釜内胆中,超声震荡5 min,使匀浆内物质充分分散。再采用水热法在140 ℃反应8 h得初步荧光碳量子点溶液;
将初步荧光碳量子点溶液于12000 r/min超速离心10 min,上清液再用针筒式过滤器过滤,取上清液即得荧光碳量子点溶液。采用单光子技术测量碳量子点荧光保留时间,其平均荧光寿命为4.36 ns,以硫酸奎宁(QY=54.0%)为参比,荧光量子产率在15.0 %。
实施例 2
一种植物源无毒环保荧光碳量子点的制备方法,包括以下步骤:
(1)选取成熟的无籽刺梨鲜果,用蒸馏水充分洗净后去除果梗及宿存花萼备用;
(2)将去离子水与刺梨按质量比为0.5进行混合,并置于搅拌机内充分磨碎,获得匀浆。称取70.0 g匀浆,置于100 ml反应釜内胆中,超声震荡10 min,使匀浆内物质充分分散。再采用水热法200 ℃反应24 h得初步荧光碳量子点溶液;
将初步荧光碳量子点溶液于20000 r/min超速离心30 min,上清液再用针筒式过滤器过滤上清液,采用单光子技术测量碳量子点荧光保留时间,获得荧光碳量子点溶液的平均荧光寿命为4.36 ns,以硫酸奎宁(QY=54.0%)为参比,荧光量子产率在20.8 %。
实施例 3
一种植物源无毒环保荧光碳量子点的制备方法,包括以下步骤:
(1)选取成熟的无籽刺梨鲜果,用蒸馏水充分洗净后去除果梗及宿存花萼备用;
(2)将去离子水与刺梨按质量比为0.8进行混合,并置于搅拌机内充分磨碎,获得匀浆。称取56.00 g匀浆,置于100 ml反应釜内胆中,超声震荡10 min,使匀浆内物质充分分散。再采用水热法在220 ℃反应12 h获得初步荧光碳量子点溶液;
将初步荧光碳量子点溶液于18000 r/min超速离心30 min,上清液再用针筒式过滤器过滤上清液,采用单光子技术测量碳量子点荧光保留时间,获得荧光碳量子点溶液的平均荧光寿命为4.36 ns,以硫酸奎宁(QY=54.0%)为参比,荧光量子产率在24.8 %。
试验例1
将实施例3中制备的荧光碳量子点采用光电子能谱和红外光谱对其结构及表面官能团进行表征,图1为红外光谱图,3300 cm-1为–OH伸缩振动峰,2830 cm-1处为C-H伸缩振动峰,1595 cm-1为C-C的伸缩振动峰,1075 cm-1为C-H的弯曲振动峰;采用荧光发射光谱探究实施例3中荧光碳量子点荧光与激发波长的关系,发现如图2最大值激发波长380 nm条件下荧光碳量子点的荧光强度达到最大值;采用透射电镜对荧光碳量子点粒径大小进行分析,从图3和图4可知,碳量子点的粒径大小约为5 nm,经过对粒径大小进行统计发现,粒径分布符合正态分布;另外经过X-射线粉末衍射分析该碳量子点,如图5证实该碳量子点是没有晶形。
试验例 2
将实施例3中制备的碳量子点荧光量子产率测定,选取硫酸奎宁(QY= 54 %)为标准物,在350 nm激发波长下,获得吸光度为0.01、0.02、0.03、0.04、0.05的硫酸奎宁标样和实施例3中制备的碳量子点溶液的荧光强度标准曲线方程,QYX = QYST (GX /GST) (ηx ST) 2,其中QYX和 QYST为碳量子点溶液和硫酸奎宁标准物的荧光量子产率,GX和 GST为碳量子点溶液和标准物标准曲线方程的斜率,ηx和ηST为碳量子点溶液和标准物溶液所用溶剂的折射率,经计算,如图6所示,实施例3中制备的碳量子点量子产率为24.8%。
试验例3
将实施例3碳量子点的pH稳定性测试,采用0.1 M NaOH和0.1 M HCl稀溶液调节碳量子点的pH分别为1.0、3.0、5.0、7.0、9.0、11.0、13.0,溶液定容至20 mL,实验结果如图7所示,在pH为7~8的范围内,荧光碳量子点溶液展示了良好的稳定性,证明其适用于生物成像。
试验例4
将实施例3制备的荧光碳量子点进行 MTT 比色法毒性测试,步骤如下:(1)将细胞在5% CO2,37 OC 条件下孵育24 h,至细胞单层铺满孔底(96孔平底板),然后向每孔加入待测溶液,使待测溶液浓度梯度为0、50、100、200、500、1000、1500 µg.mL-1;(2)24 h 过后,每孔加入 20 μL MTT 溶液(5 mg/mL,即0.5% MTT),继续培养 4 h;(3)终止培养,小心吸去孔内培养液;(4)每孔加入150 μL二甲基亚砜,置摇床上低速振荡10 min,使结晶物充分溶解。在酶联免疫检测仪 OD 490 nm 处测量各孔的吸光值。从图 8 实验结果可知,随着浓度的增加和培养时间的延长,细胞的存活率虽有所下降,但在浓度 1500 µg mL-1 培养 48 h 的条件下,细胞存活率仍然大于90%,该量子点的毒性较低,显示本发明的碳量子点适合于活体细胞成像的研究。
试验例5
将获得的荧光碳量子点作为荧光探针对金属离子进行检测,向该碳量子点溶液中加入0.50 mM分别不同金属离子:Ni2+、Cd2+、Li+、Sr2+、Al3+、Zn2+、Cr3+、Cu2+、Mg2+、Fe2+、Fe3+、Ca2+、Ag+、K+、Mn2+、Co2+、NH4 +、Pb2+、Hg2+时,时如图9所示,因该碳量子点荧光探针对某些金属离子具有特异性识别,导致荧光探针的光信号发生改变,其中Ag+子和Fe3+能够有效淬灭碳量子点的荧光,该量子点材料可以用于Ag+子和Fe3+的检测;Pb2+、Co2+、Mg2+和Hg2+对碳量子点也有一定程度的淬灭作用,而其他金属对该碳量子点的荧光强度没有显著影响。
试验例6
将实施例3中制备的荧光碳量子点在宫颈癌细胞(Hela)中进行细胞成像应用。将100 μL含有10% FBS的新鲜DMEM和Hela细胞(1×105/皿)加入到细胞培养皿中,在37 oC, 5% CO2条件下培养24 h。24 h后,用新鲜含有100 μL 荧光碳量子点原液的培养基在37 oC, 5% CO2条件下继续培养24 h。随后,用PBS溶液(0.01 M,pH 7.4)冲洗三次细胞培养基。最后,分别在倒置显微镜的蓝色、绿色、红色通道下进行荧光成像,如图10所说,获得了良好的成像效果。
本发明并不局限于上述实施方式,如果对本发明的各种改动或变形不脱离本发明的精神和范围,倘若这些改动和变形属于本发明的权利要求和等同技术范围之内,则本发明也意图包含这些改动和变形。

Claims (3)

1.一种植物源环保荧光碳量子点,平均荧光寿命为4.36 ns,荧光量子产率在15.0~24.8%。
2.一种植物源环保荧光碳量子点的制备方法,包括以下步骤:
(1)取无籽刺梨的成熟鲜果实清洗表面并切除宿存花萼和果梗;
(2)将去离子水与无籽刺梨按质量比为0.5~3进行混合后,加入搅拌机内充分磨碎,获得匀浆,称取20.0~70.0 g匀浆,置于100 ml反应釜内胆中,超声震荡5~20 min,使匀浆内物质充分分散,再采用水热法在140~220℃反应8~24 h获取初步荧光碳量子点溶液;
(3)将初步荧光碳量子点溶液于12000~20000 r/min超速离心10~30 min,上清液再用针筒式过滤器过滤上清液,获得荧光碳量子点溶液。
3.一种植物源环保碳量子点在宫颈癌细胞中进行细胞成像应用。
CN201810083893.9A 2018-01-29 2018-01-29 一种植物源环保荧光碳量子点、其制备方法及应用 Pending CN108084999A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810083893.9A CN108084999A (zh) 2018-01-29 2018-01-29 一种植物源环保荧光碳量子点、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810083893.9A CN108084999A (zh) 2018-01-29 2018-01-29 一种植物源环保荧光碳量子点、其制备方法及应用

Publications (1)

Publication Number Publication Date
CN108084999A true CN108084999A (zh) 2018-05-29

Family

ID=62183382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810083893.9A Pending CN108084999A (zh) 2018-01-29 2018-01-29 一种植物源环保荧光碳量子点、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN108084999A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109504378A (zh) * 2019-01-02 2019-03-22 咸阳师范学院 一种绿色荧光碳量子点的制备方法
CN110104629A (zh) * 2019-05-20 2019-08-09 河南师范大学 以野皂角为原料一步水热法合成荧光碳点的方法
CN111204737A (zh) * 2020-03-12 2020-05-29 新余学院 一种碳量子点的制备方法
CN111363543A (zh) * 2020-03-03 2020-07-03 温州医科大学 一种由柳絮制备碳点的方法及其碳点和应用
CN111422862A (zh) * 2020-05-12 2020-07-17 上海理工大学 一种利用分子筛分离石墨烯量子点的办法
CN113603079A (zh) * 2021-09-01 2021-11-05 广东药科大学 橄榄科植物精油提取剩余物用于制备碳量子点的方法
CN114854402A (zh) * 2022-03-22 2022-08-05 桂林师范高等专科学校 一种可促进金樱子组培苗生长的荧光纳米材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104403664A (zh) * 2014-11-07 2015-03-11 山西大学 一种绿色荧光碳点的制备方法及在细胞成像方面的应用
CN105366659A (zh) * 2015-12-14 2016-03-02 上海交通大学 一种基于水果水热合成碳量子点的方法
CN107090288A (zh) * 2017-04-14 2017-08-25 兴义民族师范学院 一种高荧光氮掺杂碳量子点、其制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104403664A (zh) * 2014-11-07 2015-03-11 山西大学 一种绿色荧光碳点的制备方法及在细胞成像方面的应用
CN105366659A (zh) * 2015-12-14 2016-03-02 上海交通大学 一种基于水果水热合成碳量子点的方法
CN107090288A (zh) * 2017-04-14 2017-08-25 兴义民族师范学院 一种高荧光氮掺杂碳量子点、其制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZI-QIANG XU ET AL.: "Low temperature synthesis of highly stable phosphate functionalized two color carbon nanodots and their application in cell imaging", 《CARBON》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109504378A (zh) * 2019-01-02 2019-03-22 咸阳师范学院 一种绿色荧光碳量子点的制备方法
CN109504378B (zh) * 2019-01-02 2021-08-03 咸阳师范学院 一种绿色荧光碳量子点的制备方法
CN110104629A (zh) * 2019-05-20 2019-08-09 河南师范大学 以野皂角为原料一步水热法合成荧光碳点的方法
CN111363543A (zh) * 2020-03-03 2020-07-03 温州医科大学 一种由柳絮制备碳点的方法及其碳点和应用
CN111204737A (zh) * 2020-03-12 2020-05-29 新余学院 一种碳量子点的制备方法
CN111422862A (zh) * 2020-05-12 2020-07-17 上海理工大学 一种利用分子筛分离石墨烯量子点的办法
CN113603079A (zh) * 2021-09-01 2021-11-05 广东药科大学 橄榄科植物精油提取剩余物用于制备碳量子点的方法
CN114854402A (zh) * 2022-03-22 2022-08-05 桂林师范高等专科学校 一种可促进金樱子组培苗生长的荧光纳米材料的制备方法

Similar Documents

Publication Publication Date Title
CN108084999A (zh) 一种植物源环保荧光碳量子点、其制备方法及应用
CN106566534B (zh) 一种具有高产率和量子产率的红光碳点及其制备方法
Altammar A review on nanoparticles: characteristics, synthesis, applications, and challenges
Atchudan et al. Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction
CN108084998A (zh) 一种以白兰叶片为碳源的荧光碳量子点及其制备方法
Yuan et al. Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity
Inbakandan et al. Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905)
Honary et al. Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii
CN106141200B (zh) 一种碳点/金复合纳米粒子的制备方法及用途
CN101974326B (zh) 一种荧光二氧化硅纳米球的制备方法
EP2907792A1 (en) Nano-diamond particle and method for producing same, and fluorescent molecular probe and method for analyzing structure of protein
CN107921774A (zh) 作为光引发剂的杂合纳米颗粒
Wei et al. Dual functional carbonaceous nanodots exist in a cup of tea
Borovaya et al. “Green” synthesis of Ag2S nanoparticles, study of their properties and bioimaging applications
CN115287058B (zh) 基于MXene量子点/银纳米颗粒复合材料及其制备方法与应用
Chung et al. Room-temperature single-photon emission from zinc oxide nanoparticle defects and their in vitro photostable intrinsic fluorescence
RĂCUCIU et al. The response of plant tissues to magnetic fluid and electromagnetic exposure
Chen et al. Triangular gold nanoplates/two-dimensional nano mica platelets with a 3D lightning-rod effect as flexible nanohybrid substrates for SERS bacterial detection
CN107090288A (zh) 一种高荧光氮掺杂碳量子点、其制备方法及应用
Sharma et al. Review on synthesis, characterization and applications of silver sulphide quantum dots
Sharma et al. Influence of chemical and bio-surfactants on physiochemical properties in mesoporous silica nanoparticles synthesis
Hassaan et al. Green synthesis and application of metal and metal oxide nanoparticles
Jeesna et al. Modulating the fluorescence properties of carbon dots by varying the stoichiometric ratios of citric acid and urea during the synthesis
Kaur et al. Biogenesis of PbS nanocrystals by using rhizosphere fungus ie, Aspergillus sp. isolated from the rhizosphere of chickpea
CN110308126A (zh) 一种使用楝树叶合成荧光纳米碳点细胞成像的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180529

WD01 Invention patent application deemed withdrawn after publication