CN108074275B - 基于光线跟踪算法的高帧频可见光图像模拟方法及系统 - Google Patents

基于光线跟踪算法的高帧频可见光图像模拟方法及系统 Download PDF

Info

Publication number
CN108074275B
CN108074275B CN201610991584.2A CN201610991584A CN108074275B CN 108074275 B CN108074275 B CN 108074275B CN 201610991584 A CN201610991584 A CN 201610991584A CN 108074275 B CN108074275 B CN 108074275B
Authority
CN
China
Prior art keywords
visible light
aircraft
observation
ray tracing
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610991584.2A
Other languages
English (en)
Other versions
CN108074275A (zh
Inventor
杜惠杰
马一原
雷杰
虞红
高阳
杜渐
张兴
张盈
赵宏鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Simulation Center
Original Assignee
Beijing Simulation Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Simulation Center filed Critical Beijing Simulation Center
Priority to CN201610991584.2A priority Critical patent/CN108074275B/zh
Publication of CN108074275A publication Critical patent/CN108074275A/zh
Application granted granted Critical
Publication of CN108074275B publication Critical patent/CN108074275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/06Ray-tracing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • G06T15/506Illumination models

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Generation (AREA)
  • Processing Or Creating Images (AREA)
  • Image Processing (AREA)

Abstract

本发明公开一种基于光线跟踪算法的高帧频可见光图像模拟方法及系统,该方法包括:第一步、完成飞行器的三维网格模型建模并对模型进行区域剖分;第二步、通过坐标变换得到目标坐标系下的光照角度;第三步、基于光线跟踪算法计算飞行器的可见表面的可见光散射特性并存储;第四步、根据实时接收的观测信息及光照信息对可见光散射特性进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据可见光散射特性确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。本发明可同时保证可见光散射特性仿真的真实性与高帧频仿真的实时性。

Description

基于光线跟踪算法的高帧频可见光图像模拟方法及系统
技术领域
本发明涉及实时可见光图像模拟方法。更具体地,涉及一种基于光线跟踪算法的高帧频可见光图像模拟方法及系统。
背景技术
飞行器的可见光特性与红外特性的模拟原理有很大差别,散射特性计算是可见光图像模拟仿真的基础。飞行器表面的光散射特性与其表面材料特性、几何外形、飞行状态以及观测状态等有关,存在复杂遮挡关系及高光反射特性等复杂且瞬态变化的特性,计算十分复杂,目前普遍采用的方法是基于图形引擎的可见光图像渲染方法,但该方法在高帧频状态下无法保证散射特性仿真的逼真度,因此急需解决现有技术中存在的复杂可见光散射特性高帧频高置信度仿真瓶颈,可见光散射特性仿真的真实性与高帧频仿真的实时性不能同时保证问题。
因此,需要提供一种提升高帧频动态可见光图像模拟的仿真置信度的基于光线跟踪算法的高帧频可见光图像模拟方法及系统。
发明内容
本发明的目的在于提供一种基于光线跟踪算法的高帧频可见光图像模拟方法及系统,解决了现有方法的可见光散射特性仿真的真实性与高帧频仿真的实时性不能同时保证问题。
为达到上述目的,本发明采用下述技术方案:
一种基于光线跟踪算法的高帧频可见光图像模拟方法,包括如下步骤:
第一步、建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;
第二步、依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;
第三步、基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;
第四步、根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。
优选地,所述第一步至所述第三步均在离线状态下执行。
优选地,所述第一步的具体过程为:
依据近似原型和适合特性计算的模型简化原则,建立飞行器三维网格模型,利用三角形面片集合逼近形体,将飞行器三维网格模型的每个三角形面片定义为一个网格;并根据飞行器表面材质的不同、形态的差异对模型进行区域剖分,确定每个面片在目标坐标系下的坐标。
一种基于光线跟踪算法的高帧频可见光图像模拟系统,包括:模型构建模块、光照及探测几何关系计算模块、光线跟踪算法计算模块、动态查询插值模块和可见光图像模拟模块;
模型构建模块,建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;
光照及探测几何关系计算模块,依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;
光线跟踪算法计算模块,基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;
动态查询插值模块,根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理;
可见光图像模拟模块,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。
优选地,所述模型构建模块、光照及探测几何关系计算模块和光线跟踪算法计算模块均在离线状态下工作。
本发明的有益效果如下:
本发明所述技术方案通过离线计算方式,采用高置信度光线跟踪算法计算光线散射特性,通过预处理加载及动态查询插值的方式实现了高置信度计算数据和高帧频动态图像仿真的合理结合,保证了复杂可见光散射特性仿真的真实性。另外,仿真过程不需要计算目标特性,保证了高帧频仿真的实时性。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出基于光线跟踪算法的高帧频可见光图像模拟方法的流程图。
图2示出基于光线跟踪算法的高帧频可见光图像模拟系统的示意图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
如图1所示,本发明公开的一种基于光线跟踪算法的高帧频可见光图像模拟方法,包括如下步骤:
第一步、建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;
第二步、依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;
第三步、基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;
第四步、根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。
其中,
第一步至第三步均在离线状态下执行;
第一步的具体过程为:
依据近似原型和适合特性计算的模型简化原则,建立飞行器三维网格模型,利用三角形面片集合逼近形体,将飞行器三维网格模型的每个三角形面片定义为一个网格。之后,根据飞行器表面材质的不同、形态的差异对模型进行区域剖分,确定每个面片在目标坐标系下的坐标,方便后续计算。
第三步的具体过程为:
为了提高求值效率,采用空间剖分技术将飞行器空间剖分成一系列互不重叠有序排序的空间网格;另外,为了进一步提高效率,采用逆向光线跟踪技术,即依据光照关系从观测方进行光线追迹,进而避免对不落入探测系统的光线的追迹。基于光线跟踪算法并根据目标坐标系下的光照角度,计算得到飞行器在不同观测角度及观测距离下每个面片的光学散射特性,不同观测角度及观测距离下每个面片的光学散射特性进行编码存储,得到散射特性数据文件组,供动态图像模拟时调用。
第四步的具体过程为:
为保证数据调度效率,在图像模拟初始化阶段加载离线计算的散射特性数据文件组。在动态图像高帧频模拟过程中,实时接收观测信息及光照信息,根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。
如图2所示,本发明公开的一种基于光线跟踪算法的高帧频可见光图像模拟系统,包括:模型构建模块、光照及探测几何关系计算模块、光线跟踪算法计算模块、动态查询插值模块和可见光图像模拟模块;
模型构建模块,建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标,具体为:依据近似原型和适合特性计算的模型简化原则,建立飞行器三维网格模型,利用三角形面片集合逼近形体,将飞行器三维网格模型的每个三角形面片定义为一个网格。之后,根据飞行器表面材质的不同、形态的差异对模型进行区域剖分,确定每个面片在目标坐标系下的坐标,方便后续计算;
光照及探测几何关系计算模块,依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;
光线跟踪算法计算模块,基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组,具体为:为了提高求值效率,光线跟踪算法计算模块采用空间剖分技术将飞行器空间剖分成一系列互不重叠有序排序的空间网格;另外,为了进一步提高效率,光线跟踪算法计算模块采用逆向光线跟踪技术,即依据光照关系从观测方进行光线追迹,进而避免对不落入探测系统的光线的追迹。基于光线跟踪算法并根据目标坐标系下的光照角度,计算得到飞行器在不同观测角度及观测距离下每个面片的光学散射特性,不同观测角度及观测距离下每个面片的光学散射特性进行编码存储,得到散射特性数据文件组,供动态图像模拟时调用;
动态查询插值模块,根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理;
可见光图像模拟模块功能为:依据散射特性数据文件组中的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高置信度的高帧频可见光图像模拟。
模型构建模块、光照及探测几何关系计算模块和光线跟踪算法计算模块均在离线状态下工作。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (5)

1.一种基于光线跟踪算法的高帧频可见光图像模拟方法,其特征在于,该方法包括如下步骤:
第一步、建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;
第二步、依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;
第三步、基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;
第四步、根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理,依据对散射特性数据文件组中的数据进行分析及插值后的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高帧频可见光图像模拟。
2.根据权利要求1所述的基于光线跟踪算法的高帧频可见光图像模拟方法,其特征在于,所述第一步至所述第三步均在离线状态下执行。
3.根据权利要求1所述的基于光线跟踪算法的高帧频可见光图像模拟方法,其特征在于,所述第一步的具体过程为:
依据近似原型和适合特性计算的模型简化原则,建立飞行器三维网格模型,利用三角形面片集合逼近形体,将飞行器三维网格模型的每个三角形面片定义为一个网格;并根据飞行器表面材质的不同、形态的差异对模型进行区域剖分,确定每个面片在目标坐标系下的坐标。
4.一种基于光线跟踪算法的高帧频可见光图像模拟系统,其特征在于,该系统包括:模型构建模块、光照及探测几何关系计算模块、光线跟踪算法计算模块、动态查询插值模块和可见光图像模拟模块;
模型构建模块,建立飞行器三维网格模型,将飞行器三维网格模型的各三角形面片定义为网格,并对飞行器三维网格模型进行区域剖分以确定每个面片在目标坐标系下的坐标;
光照及探测几何关系计算模块,依据观测日期、时间、观测角度确定地球坐标系下的太阳光照角度,并经坐标变换得到目标坐标系下的光照角度;
光线跟踪算法计算模块,基于光线跟踪算法并根据目标坐标系下的光照角度计算在目标坐标系下,飞行器在不同观测角度及观测距离下的每个面片的可见光散射特性,并将不同观测角度及观测距离下的每个面片的可见光散射特性进行编码存储,得到散射特性数据文件组;
动态查询插值模块,根据实时接收的观测信息及光照信息对散射特性数据文件组中的数据进行分析及插值,完成散射特性数值到256级灰度值量化处理;
可见光图像模拟模块,依据对散射特性数据文件组中的数据进行分析及插值后的数据确定飞行器的显示角度,完成几何渲染绘制实体,实现高帧频可见光图像模拟。
5.根据权利要求4所述的基于光线跟踪算法的高帧频可见光图像模拟系统,其特征在于,所述模型构建模块、光照及探测几何关系计算模块和光线跟踪算法计算模块均在离线状态下工作。
CN201610991584.2A 2016-11-10 2016-11-10 基于光线跟踪算法的高帧频可见光图像模拟方法及系统 Active CN108074275B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610991584.2A CN108074275B (zh) 2016-11-10 2016-11-10 基于光线跟踪算法的高帧频可见光图像模拟方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610991584.2A CN108074275B (zh) 2016-11-10 2016-11-10 基于光线跟踪算法的高帧频可见光图像模拟方法及系统

Publications (2)

Publication Number Publication Date
CN108074275A CN108074275A (zh) 2018-05-25
CN108074275B true CN108074275B (zh) 2021-06-04

Family

ID=62154627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610991584.2A Active CN108074275B (zh) 2016-11-10 2016-11-10 基于光线跟踪算法的高帧频可见光图像模拟方法及系统

Country Status (1)

Country Link
CN (1) CN108074275B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473169B (zh) * 2019-07-10 2020-08-04 哈尔滨新光光电科技股份有限公司 一种仿真图片置信度评价方法
CN111695170B (zh) * 2020-06-15 2023-01-13 北京环境特性研究所 一种目标可见光特性实时仿真方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882323A (zh) * 2010-05-19 2010-11-10 北京航空航天大学 基于高度图的微结构表面全局光照实时绘制方法
US8360580B2 (en) * 2007-03-30 2013-01-29 Essilor International (Compagnie Generale D'optique) Method of measuring the position, in a horizontal direction in the sagittal plane, of a remarkable point of an eye of a subject
CN103913737A (zh) * 2014-04-04 2014-07-09 上海宇航系统工程研究所 空间目标可见光散射动态特性测试系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9483865B2 (en) * 2012-12-26 2016-11-01 Adshir Ltd. Ray shooting method utilizing geometrical stencils

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8360580B2 (en) * 2007-03-30 2013-01-29 Essilor International (Compagnie Generale D'optique) Method of measuring the position, in a horizontal direction in the sagittal plane, of a remarkable point of an eye of a subject
CN101882323A (zh) * 2010-05-19 2010-11-10 北京航空航天大学 基于高度图的微结构表面全局光照实时绘制方法
CN103913737A (zh) * 2014-04-04 2014-07-09 上海宇航系统工程研究所 空间目标可见光散射动态特性测试系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Ray tracing based channel modeling for visible light communications;Elham Sarbazi 等;《2014 22nd Signal Processing and Communications Applications Conference (SIU)》;20140423;第702-705页 *
基于电阻阵红外成像仿真中稀疏网格校正方法;杜惠杰 等;《系统仿真学报》;20160108;第28卷(第1期);第70-76页 *
红外仿真目标和星空背景的建模与生成;张盈 等;《红外与激光工程》;20061015;第35卷;第327-330页 *
面向飞行模拟的云仿真及其实时绘制;佟志忠 等;《吉林大学学报(工学版)》;20081115;第38卷(第6期);第1434-1440页 *

Also Published As

Publication number Publication date
CN108074275A (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
CN111507982B (zh) 一种基于深度学习的点云语义分割方法
CN108648269B (zh) 三维建筑物模型的单体化方法和系统
Liu et al. Paparazzi: surface editing by way of multi-view image processing.
US20220139027A1 (en) Scene data obtaining method and model training method, apparatus and computer readable storage medium using the same
JP5111638B2 (ja) パラメトリック曲線をより小さなサブパッチに分割する装置およびその方法
US9530244B2 (en) Method and apparatus for shadow estimation and spreading
CN110866531A (zh) 一种基于三维建模的建筑物特征提取方法、系统及存储介质
CN107767453B (zh) 一种基于规则约束的建筑物lidar点云重构优化方法
CN114820906B (zh) 图像渲染方法、装置、电子设备及存储介质
CN115082639A (zh) 图像生成方法、装置、电子设备和存储介质
CN107464286B (zh) 三维城市模型中的孔洞修复方法及装置、设备及可读介质
WO2022041437A1 (zh) 植物模型生成方法、装置、计算机设备和存储介质
CN115601511B (zh) 三维重建方法、装置、计算机设备及计算机可读存储介质
CN113012063B (zh) 一种动态点云修复方法、装置及计算机设备
US11508113B2 (en) Denoising techniques suitable for recurrent blurs
CN108074275B (zh) 基于光线跟踪算法的高帧频可见光图像模拟方法及系统
CN105095581A (zh) 一种铸造缩孔缺陷图像生成方法
Liu et al. Image edge recognition of virtual reality scene based on multi-operator dynamic weight detection
CN104851127A (zh) 一种基于交互的建筑物点云模型纹理映射方法及装置
CN110658524A (zh) 基于全空域多方位扫描模式的云雷达回波三维显示方法
CN103729873A (zh) 一种内容感知的环境光采样方法
CN108345007B (zh) 一种障碍物识别方法和装置
CN108876704A (zh) 人脸图像变形的方法、装置及计算机存储介质
CN114170367B (zh) 无限视距椎状热图渲染的方法、装置、存储介质和设备
CN111210501A (zh) 一种室内建模方法、装置及终端设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant