CN108069713B - 一种高储能密度st-nbt-bt陶瓷材料及其制备方法 - Google Patents

一种高储能密度st-nbt-bt陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN108069713B
CN108069713B CN201711340210.5A CN201711340210A CN108069713B CN 108069713 B CN108069713 B CN 108069713B CN 201711340210 A CN201711340210 A CN 201711340210A CN 108069713 B CN108069713 B CN 108069713B
Authority
CN
China
Prior art keywords
powder
nbt
energy storage
tio
high energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711340210.5A
Other languages
English (en)
Other versions
CN108069713A (zh
Inventor
蒲永平
崔晨薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Ruikun Technology Development Co ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201711340210.5A priority Critical patent/CN108069713B/zh
Publication of CN108069713A publication Critical patent/CN108069713A/zh
Application granted granted Critical
Publication of CN108069713B publication Critical patent/CN108069713B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高储能密度ST‑NBT‑BT陶瓷材料及其制备方法,首先按照摩尔比分别称量相应质量的原材料,合成ST粉体,NBT粉体与BT粉体,并将ST粉体,NBT粉体与BT粉体混合进行球磨、烘干、压块后,形成全配料,然后将全配料依次进行过筛,形成过筛料;其次将过筛压制成试样,并将制好的试样进行烧结得到烧结试样;最后打磨、清洗烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样进行烧结得到高储能密度ST‑NBT‑BT陶瓷材料。利用本发明的方法得到的高储能密度ST‑NBT‑BT陶瓷材料不但具有高的储能密度,而且制备工艺简单,材料成本低,绿色环保。

Description

一种高储能密度ST-NBT-BT陶瓷材料及其制备方法
技术领域
本发明涉及陶瓷电容器材料领域,具体涉及一种高储能密度ST-NBT-BT陶瓷材料及其制备方法。
背景技术
随着电子器件的快速发展,电介质电容器被认为为储能应用提供了有效的技术解决方案,因为它们具有快速充放电性能和高的功率密度。然而,基于电介质电容器的电力电子器件和脉冲功率系统通常具有大的体积和重量。为了实现能量收集和存储电容器的小型化,轻量化和集成化,进一步提高介电电容器的能量密度是至关重要的。
在现代电介质电容器系列中,反铁电体(AFE)由于在理想状态下具有零剩余极化(Pr)和高饱和极化(Ps),在能量储存应用中受到越来越多的关注。到目前为止,几乎所有报道的AFE材料都是铅基材料,包括PbZrO3(PZ),PbZr1-xTixO3(PZT)和Pb1-xLax(Zr1-yTiy)1-x/4O3(PLZT)等等。尽管AFE具有较高的能量储存密度,但氧化铅的高毒性将限制其应用和未来的研究。
在报道的能量存储系统中,(1-x)Na0.5Bi0.5TiO3-xSrTiO3(NBT-ST)是替代铅基AFE材料的新型储能应用基础材料。一方面,ST-NBT系统可以通过引入高BDS(~20kV/mm)的线性材料(ST)来保证高击穿强度(BDS)。另一方面,通过引入具有优异铁电性质的NBT,极化将会大大改善。然而,获得的能量密度值并不理想。在我们以前的工作中,我们已经证实0.8ST-0.2NBT陶瓷在施加24kV/mm的电场时具有1.58J/cm3的高放电能量存储密度,具有典型的弛豫行为。为了进一步提高能量存储密度,有时候BDS被过分强调,但是极化是另外一个关键因素,它是实现高能量存储密度的一个重要因素。因此,必须在保证高的Eb的前提下,通过掺杂改性来有效地提高Pm,从而从本质上提高储能性能。
发明内容
本发明的目的在于提供一种高储能密度ST-NBT-BT陶瓷材料及其制备方法,以克服上述现有技术存在的缺陷,利用本发明的方法得到的陶瓷材料不但具有高的储能密度,而且具有较高的介电常数和较低的介电损耗和弛豫特性,制备工艺简单,材料成本低,环境友好。
为达到上述目的,本发明采用如下技术方案:
一种高储能密度ST-NBT-BT陶瓷材料,所述的高储能密度ST-NBT-BT陶瓷材料的化学计量式为(0.8-x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3,其中x=0.20~0.40,x表示摩尔百分数。
一种高储能密度ST-NBT-BT陶瓷材料的制备方法,包括以下步骤:
步骤一:按照摩尔比分别称量相应质量的Na2CO3、Bi2O3、SrCO3、TiO2、BaCO3,合成SrTiO3粉体,Na0.5Bi0.5TiO3粉体与BaTiO3粉体,然后按照化学计量式(0.8-x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3,x=0.20~0.55,取SrTiO3粉体,Na0.5Bi0.5TiO3粉体与BaTiO3粉体混合均匀形成全配料;
步骤二:将全配料与氧化锆球石、去离子水混合后进行球磨、烘干、过筛,形成过筛料;
步骤三:将过筛料在200~220MPa的压强下,通过冷等静压压制成试样,并将制好的试样进行高温烧结得到烧结试样;
步骤四:打磨、清洗步骤三得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样进行烧结得到高储能密度ST-NBT-BT陶瓷材料。
进一步地,步骤一中SrTiO3粉体的制备步骤包括:首先按照摩尔比1:1称取SrCO3和TiO2混合形成混合物A;然后取混合物A、锆球石及去离子水按照质量比为1:2:(0.8~1)混合后依次进行球磨、烘干和压块,最后于1150~1200℃保温2.5~3小时,得到纯相的SrTiO3粉体。
进一步地,步骤一中Na0.5Bi0.5TiO3粉体的制备步骤包括:首先按照摩尔比1:1:4称取Na2CO3、Bi2O3和TiO2混合形成混合物B;然后取混合物B、锆球石及去离子水按照质量比为1:2:(0.9~1)混合后依次进行球磨、烘干和压块,最后于820~840℃保温3~4小时,得到纯相的Na0.5Bi0.5TiO3粉体。
进一步地,步骤一中BaTiO3粉体的制备步骤包括:首先按照摩尔比1:1称取BaCO3和TiO2混合形成混合物C;然后取混合物C、锆球石及去离子水按照质量比为1:(1.8~2.0):(1~1.2)混合后依次进行球磨、烘干和压块,最后于1150~1250℃保温3.5~4小时,得到纯相的BaTiO3粉体。
进一步地,步骤二中将全配料与氧化锆球石、去离子水按照质量比1:(1.8~2.1):(0.8~1.2)混合后进行球磨。
进一步地,步骤二中过筛时筛网目数为200目。
进一步地,步骤三中的烧结过程具体为:首先以2~3℃/min升温至200℃,然后以3~4℃/min升温至500℃,再以5~8℃/min升温至1000℃,接着以3~5℃/min升温至1280~1320℃时保温3~4小时;之后,以3~4℃/min降温至1000℃,再以5℃/min降温至500℃,最后随炉冷却至室温。
进一步地,步骤四中的烧结条件为:在580~600℃的温度下烧结10~20min。
与现有技术相比,本发明具有以下有益的技术效果:
本发明的ST-NBT-BT陶瓷材料,不但具有高的储能密度,而且具有较高的介电常数和较低的介电损耗和弛豫特性。
本发明方法制备的ST-NBT-BT陶瓷材料,不但具有高的储能密度,而且制备工艺简单,材料成本低,绿色环保,成为替代铅基陶瓷材料用作高端工业应用材料在技术和经济上兼优的重要候选材料。本发明以0.8ST-0.2NBT作为基体,通过(Na0.5Bi0.5)2+离子掺杂进入A位,引入与Sr2+离子半径
Figure BDA0001508226460000031
不同的(Na0.5Bi0.5)2+离子
Figure BDA0001508226460000032
发生晶格畸变,从本质上实现陶瓷极化强度的提高。BT陶瓷由于其极化度高,偏置稳定性好而在能量密度电容器领域发挥着重要作用。通过引入BT同类钙钛矿结构引入0.8ST-0.2NBT形成固溶体,以有效地提高Pm,通过BT掺杂浓度的变化,以实现该体系陶瓷在较高的Eb的前提下以有效地提高Pm,以获得高的储能密度。
附图说明
图1是(0.8-x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3体系陶瓷的XRD图;
图2是(0.8-x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3体系陶瓷介电常数以及介电损耗随温度变化曲线;
图3是(0.8-x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3体系陶瓷Tm随x变化图;
图4是(0.8-x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3体系陶瓷在8kV/mm下的极化强度-电场强度曲线;
图5是(0.8-x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3体系陶瓷在临界电场下的极化强度-电场强度曲线;
图6是(0.8-x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3体系陶瓷最大放电储能密度随x变化图。
具体实施方式
下面对本发明的实施方式做进一步详细描述:
一种高储能密度ST-NBT-BT陶瓷材料,其化学计量式为(0.8-x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3,其中x=0.20~0.40。
一种高储能密度ST-NBT-BT陶瓷材料的制备方法,包括以下步骤:
步骤一:制备纯相ST、NBT与纯相BT备用。按照摩尔比1:1称取SrCO3和TiO2混合形成混合物A;按照摩尔比1:1:4称取Bi2O3、Na2CO3和TiO2混合形成混合物B;按照摩尔比1:1称取BaCO3和TiO2混合形成混合物C。Na2CO3、Bi2O3、SrCO3、TiO2、BaCO3的纯度为99.0%以上;
步骤二:取混合物A、B和C分别与锆球石及去离子水,按照质量比为1:2:(0.8~1)、1:2:(0.9~1)和1:(1.8~2.0):(1~1.2)混合后,采用行星式球磨机球磨18~24h,再在85~100℃烘干20~24h、压块后,置于箱式炉中分别于1150~1200℃保温2.5~3小时,820~840℃保温3~4小时和1150~1250℃保温3.5~4小时分别形成ST粉体、NBT粉体和BT粉体,备用;
步骤三:按照化学式(0.8-x)ST-0.2NBT-xBT,x=0.20~0.55,取ST粉体、NBT粉体与BT粉体混合均匀形成全配料,并将全配料与氧化锆球石、去离子水按照质量比1:(1.8~2.1):(0.8~1.2)混合后进行球磨18~24h、烘干,得到烘干料;
步骤四:将烘干料研磨过200目筛,形成过筛料;
步骤五:将步骤四得到的过筛料在200~220MPa的压强下,通过冷等静压压制成试样,并将制好的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于微波烧结炉中进行烧结得到烧结试样,其中烧结条件为:2~3℃/min升温至200℃,然后以3~4℃/min升温至500℃,再以5~8℃/min升温至1000℃,接着以3~5℃/min升温至1280~1320℃时保温3~4小时;之后,以3~4℃/min降温至1000℃,再以5℃/min降温至500℃,最后随炉冷却至室温;
步骤六:打磨、清洗步骤五得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于箱式炉中,在580~600℃的温度下烧结10~20min得到(0.8-x)ST-0.2NBT-xBT体系陶瓷。
下面结合实施例对本发明做进一步详细描述:
实施例1
本发明高储能密度ST-NBT-BT陶瓷材料及其制备方法,其配方为(0.8-x)ST-0.2NBT-xBT,其中x=0.2。
步骤一:制备纯相ST、NBT与纯相BT备用。按照摩尔比1:1称取SrCO3和TiO2混合形成混合物A;按照摩尔比1:1:4称取Bi2O3、Na2CO3和TiO2混合形成混合物B;按照摩尔比1:1称取BaCO3和TiO2混合形成混合物C。Na2CO3、Bi2O3、SrCO3、TiO2、BaCO3的纯度为99.0%以上。
步骤二:取混合物A、B和C分别与锆球石及去离子水,按照质量比为1:2:0.8、1:2:0.9和1:1.8:1混合后,采用行星式球磨机球磨18h,再在85℃烘干20h、压块后,置于箱式炉中分别于1150℃保温2.5小时,820℃保温3小时和1150℃保温3.5小时分别形成ST粉体、NBT粉体和BT粉体,备用;
步骤三:按照化学式(0.8-x)ST-0.2NBT-xBT,x=0.2,取ST粉体、NBT粉体与BT粉体混合均匀形成全配料,并将全配料与氧化锆球石、去离子水按照质量比1:1.8:0.8混合后进行球磨18h、烘干,得到烘干料;
步骤四:将烘干料研磨过200目筛,形成过筛料;
步骤五:将步骤四得到的过筛料在200MPa的压强下,通过冷等静压压制成试样,并将制好的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于微波烧结炉中进行烧结得到烧结试样,其中烧结条件为:2℃/min升温至200℃,然后以3℃/min升温至500℃,再以5℃/min升温至1000℃,接着以3℃/min升温至1280℃时保温3小时;之后,以3℃/min降温至1000℃,再以5℃/min降温至500℃,最后随炉冷却至室温;
步骤六:打磨、清洗步骤五得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于箱式炉中,在580℃的温度下烧结10min得到0.6ST-0.2NBT-0.2BT体系陶瓷。
实施例2
本发明高储能密度ST-NBT-BT陶瓷材料及其制备方法,其配方为(0.8-x)ST-0.2NBT-xBT,其中x=0.25。
步骤一:制备纯相ST、NBT与纯相BT备用。按照摩尔比1:1称取SrCO3和TiO2混合形成混合物A;按照摩尔比1:1:4称取Bi2O3、Na2CO3和TiO2混合形成混合物B;按照摩尔比1:1称取BaCO3和TiO2混合形成混合物C。Na2CO3、Bi2O3、SrCO3、TiO2、BaCO3的纯度为99.0%以上。
步骤二:取混合物A、B和C分别与锆球石及去离子水,按照质量比为1:2:0.9、1:2:1和1:1.9:1.1混合后,采用行星式球磨机球磨20h,再在90℃烘干22h、压块后,置于箱式炉中分别于1180℃保温2.8小时,830℃保温3.5小时和1200℃保温3.8小时分别形成ST粉体、NBT粉体和BT粉体,备用;
步骤三:按照化学式(0.8-x)ST-0.2NBT-xBT,x=0.25,取ST粉体、NBT粉体与BT粉体混合均匀形成全配料,并将全配料与氧化锆球石、去离子水按照质量比1:2:1混合后进行球磨19h、烘干,得到烘干料;
步骤四:将烘干料研磨过200目筛,形成过筛料;
步骤五:将步骤四得到的过筛料在210MPa的压强下,通过冷等静压压制成试样,并将制好的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于微波烧结炉中进行烧结得到烧结试样,其中烧结条件为:2.5℃/min升温至200℃,然后以3.5℃/min升温至500℃,再以6℃/min升温至1000℃,接着以4℃/min升温至1300℃时保温3.5小时;之后,以3.5℃/min降温至1000℃,再以5℃/min降温至500℃,最后随炉冷却至室温;
步骤六:打磨、清洗步骤五得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于箱式炉中,在590℃的温度下烧结15min得到0.55ST-0.2NBT-0.25BT体系陶瓷。
实施例3
本发明高储能密度ST-NBT-BT陶瓷材料及其制备方法,其配方为(0.8-x)ST-0.2NBT-xBT,其中x=0.3。
步骤一:制备纯相ST、NBT与纯相BT备用。按照摩尔比1:1称取SrCO3和TiO2混合形成混合物A;按照摩尔比1:1:4称取Bi2O3、Na2CO3和TiO2混合形成混合物B;按照摩尔比1:1称取BaCO3和TiO2混合形成混合物C。Na2CO3、Bi2O3、SrCO3、TiO2、BaCO3的纯度为99.0%以上。
步骤二:取混合物A、B和C分别与锆球石及去离子水,按照质量比为1:2:0.9、1:2:1和1:1.9:1.1混合后,采用行星式球磨机球磨23h,再在95℃烘干21h、压块后,置于箱式炉中分别于1180℃保温3小时,830℃保温4小时和1200℃保温4小时分别形成ST粉体、NBT粉体和BT粉体,备用;
步骤三:按照化学式(0.8-x)ST-0.2NBT-xBT,x=0.3,取ST粉体、NBT粉体与BT粉体混合均匀形成全配料,并将全配料与氧化锆球石、去离子水按照质量比1:2:0.9混合后进行球磨22h、烘干,得到烘干料;
步骤四:将烘干料研磨过200目筛,形成过筛料;
步骤五:将步骤四得到的过筛料在210MPa的压强下,通过冷等静压压制成试样,并将制好的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于微波烧结炉中进行烧结得到烧结试样,其中烧结条件为:2℃/min升温至200℃,然后以4℃/min升温至500℃,再以7℃/min升温至1000℃,接着以4℃/min升温至1290℃时保温3小时;之后,以3℃/min降温至1000℃,再以5℃/min降温至500℃,最后随炉冷却至室温;
步骤六:打磨、清洗步骤五得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于箱式炉中,在600℃的温度下烧结15min得到0.5ST-0.2NBT-0.3BT体系陶瓷。
实施例4
本发明高储能密度ST-NBT-BT陶瓷材料及其制备方法,其配方为(0.8-x)ST-0.2NBT-xBT,其中x=0.35。
步骤一:制备纯相ST、NBT与纯相BT备用。按照摩尔比1:1称取SrCO3和TiO2混合形成混合物A;按照摩尔比1:1:4称取Bi2O3、Na2CO3和TiO2混合形成混合物B;按照摩尔比1:1称取BaCO3和TiO2混合形成混合物C。Na2CO3、Bi2O3、SrCO3、TiO2、BaCO3的纯度为99.0%以上。
步骤二:取混合物A、B和C分别与锆球石及去离子水,按照质量比为1:2:1、1:2:1和1:1.8:1.1混合后,采用行星式球磨机球磨21h,再在90℃烘干23h、压块后,置于箱式炉中分别于1170℃保温3小时,830℃保温4小时和1210℃保温4小时分别形成ST粉体、NBT粉体和BT粉体,备用;
步骤三:按照化学式(0.8-x)ST-0.2NBT-xBT,x=0.35,取ST粉体、NBT粉体与BT粉体混合均匀形成全配料,并将全配料与氧化锆球石、去离子水按照质量比1:2:1混合后进行球磨21h、烘干,得到烘干料;
步骤四:将烘干料研磨过200目筛,形成过筛料;
步骤五:将步骤四得到的过筛料在210MPa的压强下,通过冷等静压压制成试样,并将制好的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于微波烧结炉中进行烧结得到烧结试样,其中烧结条件为:3℃/min升温至200℃,然后以3.5℃/min升温至500℃,再以6℃/min升温至1000℃,接着以4℃/min升温至1310℃时保温3.5小时;之后,以3.5℃/min降温至1000℃,再以5℃/min降温至500℃,最后随炉冷却至室温;
步骤六:打磨、清洗步骤五得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于箱式炉中,在600℃的温度下烧结18min得到0.45ST-0.2NBT-0.35BT体系陶瓷。
实施例5
本发明高储能密度ST-NBT-BT陶瓷材料及其制备方法,其配方为(0.8-x)ST-0.2NBT-xBT,其中x=0.40。
步骤一:制备纯相ST、NBT与纯相BT备用。按照摩尔比1:1称取SrCO3和TiO2混合形成混合物A;按照摩尔比1:1:4称取Bi2O3、Na2CO3和TiO2混合形成混合物B;按照摩尔比1:1称取BaCO3和TiO2混合形成混合物C。Na2CO3、Bi2O3、SrCO3、TiO2、BaCO3的纯度为99.0%以上。
步骤二:取混合物A、B和C分别与锆球石及去离子水,按照质量比为1:2:1、1:2:1和1:2:1.2混合后,采用行星式球磨机球磨24h,再在100℃烘干24h、压块后,置于箱式炉中分别于1200℃保温3小时,840℃保温4小时和1250℃保温4小时分别形成ST粉体、NBT粉体和BT粉体,备用;
步骤三:按照化学式(0.8-x)ST-0.2NBT-xBT,x=0.40,取ST粉体、NBT粉体与BT粉体混合均匀形成全配料,并将全配料与氧化锆球石、去离子水按照质量比1:2.1:1.2混合后进行球磨24h、烘干,得到烘干料;
步骤四:将烘干料研磨过200目筛,形成过筛料;
步骤五:将步骤四得到的过筛料在220MPa的压强下,通过冷等静压压制成试样,并将制好的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于微波烧结炉中进行烧结得到烧结试样,其中烧结条件为:3℃/min升温至200℃,然后以4℃/min升温至500℃,再以8℃/min升温至1000℃,接着以5℃/min升温至1320℃时保温4小时;之后,以4℃/min降温至1000℃,再以5℃/min降温至500℃,最后随炉冷却至室温;
步骤六:打磨、清洗步骤五得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于箱式炉中,在600℃的温度下烧结20min得到0.4ST-0.2NBT-0.4BT体系陶瓷。
从图1可以看出,实施例1至实施例5所制备的陶瓷介质材料是纯钙钛矿结构,没有任何第二相生成的迹象,这表明预期的固溶体陶瓷已经形成。同时,没有峰的分裂,表明所有样品中呈现伪立方相。图2为该陶瓷的介电常数和介电损耗随温度变化曲线(-180℃到200℃)。值得注意的是,最大介电常数所对应的温度(Tm)随着x的增加而显着增加,这可归因于Ba2+离子的A位取代产生的晶格畸变。图3显示了具有不同x值的(0.8-x)ST-0.2NBT-xBT陶瓷的Tm。据报道,晶格畸变可以通过A位取代不同半径的离子产生的化学压力来控制,并且被大的A位离子取代所削弱,从而导致高Tm。由于Ba2+的离子半径大于Sr2+和(Na0.5Bi0.5)2+,因此,随着Ba2+离子取代度的增加,可望减弱晶格畸变,提高Tm。图4显示了电场为8kV/mm,频率为10Hz的(0.8-x)ST-0.2NBT-xBT陶瓷的P-E电滞回线。当x=0.20时,观察到纤细的P-E曲线。当x从0.2增加到0.4时,所有样品的最大极化(Pm)在8kV/mm下从11.37μC/cm2逐渐增加到17.76μC/cm2,这是由于存在大量的BT极性相。图5显示了在临界电场下在10Hz频率和室温下测量的(0.8-x)ST-0.2NBT-xBT陶瓷的P-E电滞回线。从图中可以看出,x=0.4样品在室温下在15kV/mm的场下显示31.89μC/cm2的最大极化。显然,x=0.30-0.40的样品具有收缩的P-E曲线,这对于储能性能是有用的。通常情况下,放电能量储存密度(Jd)可由PE曲线估算,由
Figure BDA0001508226460000111
积分计算,其中E为施加电场,P为极化强度,Pm是最大极化强度,Pr是剩余极化强度。图6显示了每个样品的最大Jd。由于相对较高的Pm(29.19μC/cm2),在x=0.35的样品中,在17kV/mm的电场下获得最高的Jd值为1.78J/cm3。x=0.3样品在17.5kV/mm的电场下显示出1.76J/cm3的较高Jd。x=0.40的样品在15kV/mm的电场下也表现出较高的1.70J/cm3的Jd。因此,本发明所研究的(0.8-x)ST-0.2NBT-xBT陶瓷是高能量储存密度电容器的优异候选材料。

Claims (6)

1.一种高储能密度ST-NBT-BT陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤一:按照摩尔比分别称量相应质量的Na2CO3、Bi2O3、SrCO3、TiO2、BaCO3,合成SrTiO3粉体,Na0.5Bi0.5TiO3粉体与BaTiO3粉体,然后按照化学计量式(0.8-x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3,x=0.20~0.55,取SrTiO3粉体,Na0.5Bi0.5TiO3粉体与BaTiO3粉体混合均匀形成全配料;
步骤二:将全配料与氧化锆球石、去离子水按照质量比1:(1.8~2.1):(0.8~1.2)混合后进行球磨、烘干、过筛,形成过筛料;
步骤三:将过筛料在200~220MPa的压强下,通过冷等静压压制成试样,并将制好的试样进行高温烧结得到烧结试样,烧结过程具体为:首先以2~3℃/min升温至200℃,然后以3~4℃/min升温至500℃,再以5~8℃/min升温至1000℃,接着以3~5℃/min升温至1280~1320℃时保温3~4小时;之后,以3~4℃/min降温至1000℃,再以5℃/min降温至500℃,最后随炉冷却至室温;
步骤四:打磨、清洗步骤三得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样进行烧结得到高储能密度ST-NBT-BT陶瓷材料。
2.根据权利要求1所述的一种高储能密度ST-NBT-BT陶瓷材料的制备方法,其特征在于,步骤一中SrTiO3粉体的制备步骤包括:首先按照摩尔比1:1称取SrCO3和TiO2混合形成混合物A;然后取混合物A、锆球石及去离子水按照质量比为1:2:(0.8~1)混合后依次进行球磨、烘干和压块,最后于1150~1200℃保温2.5~3小时,得到纯相的SrTiO3粉体。
3.根据权利要求1所述的一种高储能密度ST-NBT-BT陶瓷材料的制备方法,其特征在于,步骤一中Na0.5Bi0.5TiO3粉体的制备步骤包括:首先按照摩尔比1:1:4称取Na2CO3、Bi2O3和TiO2混合形成混合物B;然后取混合物B、锆球石及去离子水按照质量比为1:2:(0.9~1)混合后依次进行球磨、烘干和压块,最后于820~840℃保温3~4小时,得到纯相的Na0.5Bi0.5TiO3粉体。
4.根据权利要求1所述的一种高储能密度ST-NBT-BT陶瓷材料的制备方法,其特征在于,步骤一中BaTiO3粉体的制备步骤包括:首先按照摩尔比1:1称取BaCO3和TiO2混合形成混合物C;然后取混合物C、锆球石及去离子水按照质量比为1:(1.8~2.0):(1~1.2)混合后依次进行球磨、烘干和压块,最后于1150~1250℃保温3.5~4小时,得到纯相的BaTiO3粉体。
5.根据权利要求1所述的一种高储能密度ST-NBT-BT陶瓷材料的制备方法,其特征在于,步骤二中过筛时筛网目数为200目。
6.根据权利要求1所述的一种高储能密度ST-NBT-BT陶瓷材料的制备方法,其特征在于,步骤四中的烧结条件为:在580~600℃的温度下烧结10~20min。
CN201711340210.5A 2017-12-14 2017-12-14 一种高储能密度st-nbt-bt陶瓷材料及其制备方法 Active CN108069713B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711340210.5A CN108069713B (zh) 2017-12-14 2017-12-14 一种高储能密度st-nbt-bt陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711340210.5A CN108069713B (zh) 2017-12-14 2017-12-14 一种高储能密度st-nbt-bt陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108069713A CN108069713A (zh) 2018-05-25
CN108069713B true CN108069713B (zh) 2021-03-23

Family

ID=62158291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711340210.5A Active CN108069713B (zh) 2017-12-14 2017-12-14 一种高储能密度st-nbt-bt陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108069713B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433067B (zh) * 2022-01-11 2023-07-25 陕西科技大学 一种具有高内建电场的光催化剂及其制备方法
CN116444267A (zh) * 2023-05-08 2023-07-18 四川大学 一种高温强场高介低损的储能陶瓷及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723664A (zh) * 2009-12-08 2010-06-09 华中科技大学 介电可调介质陶瓷材料的制备方法
CN106699170A (zh) * 2017-02-21 2017-05-24 陕西科技大学 一种钛酸锶基无铅高储能密度高储能效率陶瓷材料及其制备方法
CN107253857A (zh) * 2017-06-26 2017-10-17 陕西科技大学 一种无铅高储能密度陶瓷材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723664A (zh) * 2009-12-08 2010-06-09 华中科技大学 介电可调介质陶瓷材料的制备方法
CN106699170A (zh) * 2017-02-21 2017-05-24 陕西科技大学 一种钛酸锶基无铅高储能密度高储能效率陶瓷材料及其制备方法
CN107253857A (zh) * 2017-06-26 2017-10-17 陕西科技大学 一种无铅高储能密度陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Enhanced electrical properties in lead-free NBT–BT ceramics by series ST substitution;W.P.Cao et al;《CeramicsInternational》;20160515;p8438-8444 *

Also Published As

Publication number Publication date
CN108069713A (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
US10217566B2 (en) Ceramic material and capacitor comprising the ceramic material
Yamashita Improved ferroelectric properties of niobium-doped Pb [(Sc1/2Nb1/2) Ti] O3 ceramic material
Shiga et al. (Bi1/2K1/2) TiO3–SrTiO3 solid-solution ceramics for high-temperature capacitor applications
CN110981479B (zh) 一种高击穿的铁电陶瓷及其制备方法
CN108069713B (zh) 一种高储能密度st-nbt-bt陶瓷材料及其制备方法
US2729757A (en) Ferroelectric ceramic composition and method of making same
Zhang et al. Effects of Li2CO3 on the sintering behavior and piezoelectric properties of Bi2O3-excess (Bi0. 5Na0. 5) 0.94 Ba0. 06TiO3 ceramics
Moquim et al. Dielectric behaviour of (Ba0. 77Ca0. 23)(Ti0. 98Dy0. 02) O3 ceramics
Cho et al. Comparison between the electrical properties of bismuth layer-structured and intergrowth bismuth layer-structured ferroelectric ceramics
CN106518058A (zh) 一种由钛酸铋钾和氧化锌构成的无铅复合铁电陶瓷及制备
Khazanchi et al. Effect of rare earth Europium substitution on the microstructure, dielectric, ferroelectric and pyroelectric properties of PZT ceramics
CN114804870B (zh) 一种无铅反铁电高储能密度陶瓷材料及其制备方法
Wang et al. Properties of spark plasma sintered pseudocubic BiFeO3–BaTiO3 ceramics
US3994823A (en) Ceramic material and method of making
Perumal et al. Structural, dielectric, piezoelectric and ferroelectric properties of lead-free (1-x) Na0. 5 Bi0. 5 TiO3-xBaTiO3 (x= 0.00, 0.04, 0.06, 0.08) ceramic
Syamaprasad et al. Multilayer capacitor ceramics in the PMN-PT-BT system: effect of MgO and 4PbO· B 2 O 3 additions
Ur Rahman et al. Ferroelectric and impedance response of lead-free (B0. 5N0. 5) TiO3-BaZrO3 piezoelectric ceramics
Islam et al. Synthesis and Characterization of La and Nd Co‐Doped Bismuth Titanate Ferroelectric Ceramics
Rao et al. New dielectric materials based on pyrochlore-type oxides-Ca 3 RE 3 Ti 7 Ta 2 O 26.5 (RE= Pr, Sm, Gd, Dy or Y): Structure, FT-IR spectra, microstructure and dielectric properties
Fu et al. Structure and electrical properties of (1− x)(Na 0.5 Bi 0.5) 0.94 Ba 0.06 TiO 3–x SmAlO 3 lead-free piezoelectric ceramics
CN116102352B (zh) 一种高抗疲劳、低电场高储能密度的反铁电储能陶瓷及其制备方法和应用
CN115872735B (zh) 一种锆锡铪酸镧铅陶瓷及其制备方法和储能应用
Ganesh et al. Microstructure and Dielectric Characteristics of (PbxBa0. 5− xSr0. 5) TiO3 Ceramics
CN113929454B (zh) 一种反铁电高储能密度陶瓷粉料及其制备方法和含有其的电容器
Isupov Two types of ABi 2 B 2 O 9 layered perovskite-like ferroelectrics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240205

Address after: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province

Patentee after: Shenzhen Wanzhida Technology Co.,Ltd.

Country or region after: China

Address before: No. 1, Weiyang District university garden, Xi'an, Shaanxi Province, Shaanxi

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

Country or region before: China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240612

Address after: 400000 6-2, building 1, Dadi garden, No. 20, Yanghe North Road, Longxi street, Yubei District, Chongqing

Patentee after: Chongqing Ruikun Technology Development Co.,Ltd.

Country or region after: China

Address before: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province

Patentee before: Shenzhen Wanzhida Technology Co.,Ltd.

Country or region before: China