CN108059829B - 一种强度增强型低角度依存结构色材料及其制备方法 - Google Patents

一种强度增强型低角度依存结构色材料及其制备方法 Download PDF

Info

Publication number
CN108059829B
CN108059829B CN201711328357.2A CN201711328357A CN108059829B CN 108059829 B CN108059829 B CN 108059829B CN 201711328357 A CN201711328357 A CN 201711328357A CN 108059829 B CN108059829 B CN 108059829B
Authority
CN
China
Prior art keywords
photonic crystal
inverse
protein
inverse protein
elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711328357.2A
Other languages
English (en)
Other versions
CN108059829A (zh
Inventor
唐炳涛
刘芳芳
高占明
张淑芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201711328357.2A priority Critical patent/CN108059829B/zh
Publication of CN108059829A publication Critical patent/CN108059829A/zh
Application granted granted Critical
Publication of CN108059829B publication Critical patent/CN108059829B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种强度增强型低角度依存结构色材料及其制备方法,特别涉及强度增强以及低角度依存结构色材料的制备方法,属于生色材料的制备领域。一种强度增强型低角度依存结构色材料,所述材料由反蛋白光子晶体及填充于反蛋白光子晶体反蛋白结构孔隙中的弹性体组成,其中,所述弹性体为聚二甲基硅氧烷、聚氨酯、聚硫橡胶、聚丁二烯橡胶。该方法成本低廉、简单易行,为结构色材料在实际应用中提供了更多的可能,尤其是在建筑、包装材料的着色领域具有广阔的应用前景。

Description

一种强度增强型低角度依存结构色材料及其制备方法
技术领域
本发明涉及一种强度增强型低角度依存结构色材料及其制备方法,特别涉及强度增强以及低角度依存结构色材料的制备方法,属于生色材料的制备领域。
背景技术
光子晶体分为蛋白石结构和反蛋白石结构。反蛋白石结构由于其比表面积大、电荷传输能力强以及尺寸可控,取材更广泛而得到更多研究学者的注意。通常,反蛋白石结构通过模板法制得,以蛋白石结构为模板,将前驱体填充到蛋白石结构的孔隙中,然后去除模板,即可得到相应的反蛋白石结构。基于反蛋白石结构的优点,能够满足更多的应用领域,例如如,吉林大学的宋宏伟研究制备Au修饰的In2O3反蛋白结构用于检测糖尿病。(R.Xing,Q.Li,L.Xia,J.Song,L.Xu,J.Zhang,Y.Xie,and H.Song, Au-modified three-dimensional In2O3inverseopals:synthesis and improved performance foracetonesensing toward diagnosis of diabetes,Nanoscale,2015,7,13051-13060);英国剑桥大学的Jeremy J.Baumberg等人通过将Al掺杂的ZnO反蛋白石结构引入到BiVO4光电极中来提高水氧化的效率(L.Zhang,E.Reisner,and J.J.Baumberg,Al-doped ZnO inverse opalnetworks as efficient electron collectors in BiVO4photoanodes for solar wateroxidation,Energy Environ.Sci.,2014,7,1402-1408)。
与蛋白石结构相似,反蛋白石结构同样具有周期性结构。通过其微观结构与光的相互作用,如干涉、衍射、散射等而产生颜色。反蛋白结构的周期性结构,使得其具有光子禁带,落在光子禁带内的光不能够向任何方向传播,因此可观察到颜色。结构色与色素色产生机制的不同,相比之下结构色具有明显的优势。结构色在微观结构不被破坏的前提下,能够保持颜色的永久性,且具有环境友好性。虽然结构色具有上述优势,但是由于其物理强度的限制,使得其很难满足于实际的需要。因此提高结构色的物理强度,显得至关重要。
发明内容
为了更好的利用光子晶体结构色,本发明提供一种强度增强型低角度依存结构色材料,此种材料将弹性体材料充分填充在反蛋白光子晶体材料中,有效提高结构色材料的物理强度,同时赋予复合材料低角度依存的特性。该方法成本低廉、简单易行,具有广阔的应用前景。
一种强度增强型低角度依存结构色材料,所述材料由反蛋白光子晶体及填充于反蛋白光子晶体反蛋白结构孔隙中的弹性体组成,
其中,所述弹性体为聚二甲基硅氧烷、聚氨酯、聚硫橡胶、聚丁二烯橡胶。
本发明所述强度增强型低角度依存结构色材料由反蛋白光子晶体与弹性体复合所得,其中反蛋白光子晶体做为支撑材料,弹性体材料作为填充材料贯穿在反蛋白结构中。
本发明所述反蛋白光子晶体优选为二氧化锡反蛋白光子晶体、二氧化钛反蛋白光子晶体、氧化锌反蛋白光子晶体、氧化锆反蛋白光子晶体、氧化铈反蛋白光子晶体、五氧化二钽反蛋白光子晶体、氧化铌反蛋白光子晶体。
进一步地,所述反蛋白光子晶体反蛋白结构孔隙的孔径为150~250nm。。
本发明所述反蛋白光子晶体优选以下述方法制得:以蛋白石结构为模板,通过不同的填充方式,将前驱体进行填充,如液相渗入法、电化学沉积法、电泳沉积法、喷雾热解法、气相沉积法、原子层沉积法。(A.Stein,B.E.Wilson,and S.G.Rudisill.Design andfunctionality of colloidal-crystal-templated materials-chemical applicationsof inverse opals.ChemSoc Rev.2013;42:2763-2803.)
本发明的另一目的是提供由上述强度增强型低角度依存结构色材料的制备方法。
一种强度增强型低角度依存结构色材料的制备方法,包括下述步骤:
①采用模板法在基底上制备反蛋白光子晶体结构色膜;
②将弹性体与固化剂按质量比为10:1进行混合,制备弹性体前驱体;
③使步骤②所得前驱体渗入到步骤①所得蛋白光子晶体结构色膜的反蛋白结构孔隙中,进行固化;
④将样品与基底进行剥离,即得到强度增强型低角度依存结构色材料。
上述制备方法中,所述步骤①所述方法具体为:将用于模板的单分散微球,如PS、PMMA、SiO2等在基底上进行组装获得均有蛋白石结构的模板;将反蛋白前驱体填充到组装所得的蛋白石结构孔隙中,然后通过煅烧或化学腐蚀将模板去除,得到想要的反蛋白结构。
上述制备方法中,所述步骤②中,优选所述弹性体为聚二甲基硅氧烷;
上述制备方法中,所述步骤③中,所述“渗入”可为自然渗入,即将前驱体置于反蛋白光子晶体结构色膜上,待气泡排空后,进行固化,固化温度为80度。
本发明的有益效果为:弹性体材料充分填充在反蛋白光子晶体中,复合得到强度增强型低角度依存结构色材料。所得结构色材料物理强度得到明显提高,弹性体材料对反蛋白结构提供了有效的保护;该材料同时被赋予良好的拉伸性能,且在拉伸过程中,仍能保持原有结构色的存在。基于构成反蛋白结构的小颗粒引起的光散射以及弹性体引入后对有效折射率的提高,材料结构色获得低角度依存性。本发明同时提供了一种制备强度增强型低角度依存结构色材料的方法。首先通过模板法制备得到反蛋白光子晶体,然后再填充弹性体材料。该方法制备强度增强型低角度依存结构色材料,成本低,方法简便易行,在建筑、包装材料的着色领域具有广阔的应用前景。
附图说明
图1(a)为实施例1所得的反蛋白光子晶体表面形貌扫描电镜图;
图1(b)为实施例1所得的反蛋白光子晶体的傅里叶变化图;
图2为实施例1所得的强度增强型低角度依存结构色材料的不同角度反射光谱图;
图3为实施例1所得的强度增强型低角度依存结构色材料在拉伸程度为0%、50%、100%时的反射光谱图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
①通过模板法,制备孔径为217nm的二氧化锡反蛋白结构色膜,具体如下:将二氧化锡前驱体滴加到聚苯乙烯模板上,自然渗入;待溶剂挥发后置于马弗炉中进行煅烧,得到反蛋白结构色膜。
所述聚苯乙烯模板通过乳液聚合的方法制备得到,具体制备方法为:称取0.035g十二烷基硫酸钠溶于135ml去离子水,于250ml三口烧瓶中300r/min搅拌;水浴加热至85℃稳定后,加入15g苯乙烯单体;15min后,加入0.15g过硫酸钾,85℃,搅拌反应5小时。将所得乳液于基底上在70℃加热板上进行加热对流自组装,即可得到蛋白石结构聚苯乙烯模板。
②将PDMS单体与固化剂(所用PDMS单体及固化剂均选用商品
Figure RE-GDA0001565025270000031
184)按照质量比为10:1的比例进行充分混合,得到前驱体。
③将PDMS前驱体填充到二氧化锡反蛋白结构中,采用自然渗入方法,待气泡排空后将其至于80℃烘箱中静置30min进行固化。
④将所得材料从基底剥离后即得到强度增强型低角度存结构色材料。
图1(a)为实施例1所得的反蛋白结构色材料的表面形貌扫描电镜图,插图图1(b)为图像的傅里叶变化,反应结构的空间信息,如其所示,材料表面形貌为呈现FCC形式排列的多孔结构,空间上各个方向折射率差值相同;图2为实施例1所得的强度增强型低角度依存结构色材料的不同角度反射光谱图,图2显示所得材料在不同的检测角度下禁带峰位置基本没有发生变化;图3为实施例1所得的强度增强型低角度依存结构色材料在拉伸程度为0%、50%、100%时的反射光谱图,在不同拉伸强度下其颜色并未发生改变。
实施例2-7
将二氧化锡反蛋白光子晶体换为二氧化钛反蛋白光子晶体、氧化锌反蛋白光子晶体、氧化锆反蛋白光子晶体、氧化铈反蛋白光子晶体、五氧化二钽反蛋白光子晶体、氧化铌反蛋白光子晶体,其他条件与实施例1一致。
实施例8
将实施例1中的聚二甲基硅氧烷换为聚氨酯,其他条件与实施例1一致。
实施例9-14
将二氧化锡反蛋白光子晶体换为二氧化钛反蛋白光子晶体、氧化锌反蛋白光子晶体、氧化锆反蛋白光子晶体、氧化铈反蛋白光子晶体、五氧化二钽反蛋白光子晶体、氧化铌反蛋白光子晶体,其他条件与实施例8一致。
实施例15
将实施例1中的聚二甲基硅氧烷换为聚硫橡胶,其他条件与实施例1一致。
实施例16-21
将二氧化锡反蛋白光子晶体换为二氧化钛反蛋白光子晶体、氧化锌反蛋白光子晶体、氧化锆反蛋白光子晶体、氧化铈反蛋白光子晶体、五氧化二钽反蛋白光子晶体、氧化铌反蛋白光子晶体,其他条件与实施例15一致。
实施例22
将实施例1中的聚二甲基硅氧烷换为聚丁二烯橡胶,其他条件与实施例1一致。实施例23-28
将二氧化锡反蛋白光子晶体换为二氧化钛反蛋白光子晶体、氧化锌反蛋白光子晶体、氧化锆反蛋白光子晶体、氧化铈反蛋白光子晶体、五氧化二钽反蛋白光子晶体、氧化铌反蛋白光子晶体,其他条件与实施例22一致。
以上实施例只是用于帮助更好的理解本发明的核心思想及技术方法,但不能以此限制本发明的保护范围。应当指出,对于该领域的普通技术人员,在依据本发明原理的基础上,还可以对本发明进行一定的改进与拓展,这些改进与拓展也在本发明权利要求的保护范围内;凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的权利要求保护范围内。

Claims (2)

1.一种强度增强型低角度依存结构色材料,其特征在于:所述材料由反蛋白光子晶体及填充于反蛋白光子晶体反蛋白结构孔隙中的弹性体组成,所述材料由反蛋白光子晶体与弹性体复合所得,其中反蛋白光子晶体作为支撑材料,弹性体材料作为填充材料贯穿在反蛋白结构中,
其中,所述弹性体为聚二甲基硅氧烷、聚氨酯、聚硫橡胶、聚丁二烯橡胶;所述反蛋白光子晶体为二氧化锡反蛋白光子晶体、二氧化钛反蛋白光子晶体、氧化锌反蛋白光子晶体、氧化锆反蛋白光子晶体、氧化铈反蛋白光子晶体、五氧化二钽反蛋白光子晶体、氧化铌反蛋白光子晶体,所述反蛋白光子晶体反蛋白结构孔隙的孔径为150~250nm。
2.权利要求1所述强度增强型低角度依存结构色材料的制备方法,其特征在于:包括下述步骤:
①采用模板法在基底上制备反蛋白光子晶体结构色膜;
②将弹性体与固化剂按质量比为10:1进行混合,制备弹性体前驱体;
③使步骤②所得前驱体渗入到步骤①所得蛋白光子晶体结构色膜的反蛋白结构孔隙中,进行固化;
④将样品与基底进行剥离,即得到强度增强型低角度依存结构色材料。
CN201711328357.2A 2017-12-13 2017-12-13 一种强度增强型低角度依存结构色材料及其制备方法 Active CN108059829B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711328357.2A CN108059829B (zh) 2017-12-13 2017-12-13 一种强度增强型低角度依存结构色材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711328357.2A CN108059829B (zh) 2017-12-13 2017-12-13 一种强度增强型低角度依存结构色材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108059829A CN108059829A (zh) 2018-05-22
CN108059829B true CN108059829B (zh) 2021-01-15

Family

ID=62138496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711328357.2A Active CN108059829B (zh) 2017-12-13 2017-12-13 一种强度增强型低角度依存结构色材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108059829B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109455944A (zh) * 2018-11-23 2019-03-12 陕西科技大学 一种低角度依赖性红色硫化镉结构色薄膜及其制备方法
CN109319825A (zh) * 2018-11-23 2019-02-12 陕西科技大学 一种低角度依赖性紫色硫化镉结构色薄膜及其制备方法
CN109264768A (zh) * 2018-11-23 2019-01-25 陕西科技大学 一种低角度依赖性绿色硫化镉结构色薄膜及其制备方法
CN109485089A (zh) * 2018-11-23 2019-03-19 陕西科技大学 一种低角度依赖性蓝色硫化镉结构色薄膜及其制备方法
CN110577370B (zh) * 2019-10-24 2022-02-11 南京工程学院 一种可户外使用的非晶光子晶体结构色薄膜及其制备方法
CN114605807B (zh) * 2022-02-18 2022-12-13 大连理工大学 一种基于聚碳酸酯二醇的结构色弹性体及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467773A (zh) * 2013-09-13 2013-12-25 东南大学 一种结构色及浸润性双调控的光子晶体薄膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9873622B2 (en) * 2011-11-04 2018-01-23 Samsung Electronics Co., Ltd. Hybrid porous structured material, membrane including the same, and method of preparing hybrid porous structured material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467773A (zh) * 2013-09-13 2013-12-25 东南大学 一种结构色及浸润性双调控的光子晶体薄膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Induced Infiltration of Hole-Transporting Polymer into Photocatalyst for Staunch Polymer−Metal Oxide Hybrid Solar Cells";Jong Hwan Park et al.;《APPLIED MATERIALS & INTERFACES》;20160906;第8卷;第25915-25922页 *
Designing composite films of SiO2/TiO2/PDMS with long lasting invariable colors and enhanced mechanical robustness;Xin Zhang et al.;《Dyes and Pigments》;20161123;第138卷;第182-189页 *

Also Published As

Publication number Publication date
CN108059829A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
CN108059829B (zh) 一种强度增强型低角度依存结构色材料及其制备方法
Yuan et al. Structural color fibers directly drawn from colloidal suspensions with controllable optical properties
Shi et al. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns
Hui et al. Fabrication of smart coatings based on wood substrates with photoresponsive behavior and hydrophobic performance
Yang et al. Hand painting of noniridescent structural multicolor through the self-assembly of YOHCO3 colloids and its application for anti-counterfeiting
Tavares et al. TiO2/PDMS nanocomposites for use on self-cleaning surfaces
Yan et al. Fabrication of 2D and 3D ordered porous ZnO films using 3D opal templates by electrodeposition
Liu et al. SnO2 inverse opal composite film with low-angle-dependent structural color and enhanced mechanical strength
Li et al. Study on the fabrication of composite photonic crystals with high structural stability by co-sedimentation self-assembly on fabric substrates
WO2014154148A1 (zh) 色彩饱和度可调控光子晶体材料制备方法及其应用
CN104987520A (zh) 一种超疏水纳米透明涂层及其制备方法
Ding et al. Formation of supra-amphiphilic self-cleaning surface through sun-illumination of titania-based nanocomposite coatings
Jeon et al. Well-organized meso-macroporous TiO2/SiO2 film derived from amphiphilic rubbery comb copolymer
CN104073116A (zh) 一种超双疏涂层的制备方法
Shieh et al. Preparation and evaluation of the bioinspired PS/PDMS photochromic films by the self-assembly dip–drawing method
Zeng et al. Fabrication of inverse opal via ordered highly charged colloidal spheres
Xue et al. Preparation of noniridescent structurally colored PS@ TiO2 and Air@ C@ TiO2 core–shell nanoparticles with enhanced color stability
Yu et al. Robust and flexible thermal-plasticizing 3D shaped composite films with invariable and brilliant structural color
Jin et al. Self-templated fabrication of robust moth-eye-like nanostructures with broadband and quasi-omnidirectional antireflection properties
Yamada et al. Artificial black opal fabricated from nanoporous carbon spheres
Wohlleben et al. Mechano-optical octave-tunable elastic colloidal crystals made from core− shell polymer beads with self-assembly techniques
Cao et al. Formation of diverse ordered structures in ABC triblock terpolymer templated macroporous silicas
Huang et al. Facile fabrication of superhydrophobic coatings based on two silica sols
Su et al. Abrasion resistant semitransparent self-cleaning coatings based on porous silica microspheres and polydimethylsiloxane
Li et al. Preparation of Janus structural color sheets with flexibility, stability and low angle dependence based on textile

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant