CN108052783A - A kind of unsaturated soil dynamic numerical calculation method based on adaptive step - Google Patents
A kind of unsaturated soil dynamic numerical calculation method based on adaptive step Download PDFInfo
- Publication number
- CN108052783A CN108052783A CN201810083355.XA CN201810083355A CN108052783A CN 108052783 A CN108052783 A CN 108052783A CN 201810083355 A CN201810083355 A CN 201810083355A CN 108052783 A CN108052783 A CN 108052783A
- Authority
- CN
- China
- Prior art keywords
- mrow
- error
- msup
- pore
- msub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 45
- 239000002689 soil Substances 0.000 title claims abstract description 31
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 13
- 239000011148 porous material Substances 0.000 claims abstract description 84
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000007790 solid phase Substances 0.000 claims abstract description 33
- 238000006073 displacement reaction Methods 0.000 claims abstract description 32
- 238000011156 evaluation Methods 0.000 claims abstract description 15
- 238000004458 analytical method Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 15
- 238000012937 correction Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 2
- 230000001133 acceleration Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明公开了一种基于自适应步长的非饱和土动力数值计算方法,它解决了现有技术中计算精度和效率不能很好的统一、时间步长不能自动调整的问题,具有能够精确的评估计算误差并提高计算的效率,节省计算时间,能够准确的描述非饱和土的变形特征的效果,其技术方案为:包括固相位移误差、孔隙水压误差和孔隙气压误差的评估,通过实时计算数值分析中的固相位移误差、孔隙水压误差和孔隙气压误差,以混合误差作为固相位移误差、孔隙水压误差和孔隙气压误差的函数,并将混合误差作为时间步长调整的依据,精确的评估计算非饱和土动力数值误差,实时调整计算时间步长。
The invention discloses a numerical calculation method of unsaturated soil dynamics based on an adaptive step size, which solves the problems in the prior art that the calculation accuracy and efficiency cannot be well unified, and the time step size cannot be automatically adjusted, and has the ability to accurately Evaluate calculation errors and improve calculation efficiency, save calculation time, and can accurately describe the effect of deformation characteristics of unsaturated soil. The technical solution is: including the evaluation of solid phase displacement error, pore water pressure error and pore air pressure error. Calculate the solid phase displacement error, pore water pressure error, and pore air pressure error in the numerical analysis, use the mixed error as a function of the solid phase displacement error, pore water pressure error, and pore air pressure error, and use the mixed error as the basis for time step adjustment , accurately evaluate and calculate the numerical error of unsaturated soil dynamics, and adjust the calculation time step in real time.
Description
技术领域technical field
本发明涉及非饱和土力学研究技术领域,尤其涉及一种基于自适应步长的非饱和土动力数值计算方法。The invention relates to the technical field of unsaturated soil mechanics research, in particular to an unsaturated soil dynamic numerical calculation method based on an adaptive step size.
背景技术Background technique
非饱和土力学的研究开始于上个世纪30年代,非饱和土的特征为由固相、液相和气相三相组成,并同时在液气交界面上存在基质吸力,在计算土中应力时需要分别计算固相有效应力,孔隙水压力和孔隙气压力。The study of unsaturated soil mechanics began in the 1930s. Unsaturated soil is characterized by three phases: solid, liquid and gas, and there is matrix suction at the liquid-gas interface. When calculating the stress in the soil The solid phase effective stress, pore water pressure and pore gas pressure need to be calculated separately.
在实际工程中,非饱和土占多数,如在基坑工程、路基路面工程、边坡工程中都涉及非饱和土。关于非饱和土的研究方法有理论分析、试验研究和数值分析。而数值分析作为第三种科学研究方法,受到广大研究者的青睐。In actual engineering, unsaturated soil accounts for the majority, for example, unsaturated soil is involved in foundation pit engineering, roadbed pavement engineering, and slope engineering. The research methods on unsaturated soil include theoretical analysis, experimental research and numerical analysis. As the third scientific research method, numerical analysis is favored by many researchers.
数值分析又分为静力计算和动力计算,在有限元动力数值计算中,需要同时对控制方程进行空间域和时间域的离散,其中的离散误差不可忽视。时间域的离散误差与时间离散的方法和计算时间步长的选取有关,如采用隐式求解方法,可以获得较高精度,但需要不停的迭代计算,会有不收敛和效率低的缺点;采用显式求解方法,效率高,但是计算时间步长的选取对计算结果的精度影响较明显。Numerical analysis is divided into static calculation and dynamic calculation. In finite element dynamic numerical calculation, it is necessary to discretize the control equations in space domain and time domain at the same time, and the discretization error cannot be ignored. The discretization error in the time domain is related to the time discretization method and the selection of the calculation time step. If the implicit solution method is used, higher accuracy can be obtained, but iterative calculations are required, which will have the disadvantages of non-convergence and low efficiency; The explicit solution method is efficient, but the selection of the calculation time step has a significant impact on the accuracy of the calculation results.
总而言之,仍存在以下问题:All in all, the following questions remain:
(1)显式计算中,计算的精度和效率不能很好的统一,时间步长越小则精度越高,同时计算时间也越长;时间步长较大时,计算时间短,但精度却不能保证;(1) In the explicit calculation, the accuracy and efficiency of the calculation cannot be well unified. The smaller the time step, the higher the accuracy and the longer the calculation time; the larger the time step, the shorter the calculation time, but the lower the accuracy. Not guaranteed;
(2)在非饱和土动力数值计算中仍缺少一种能自动调整时间步长的计算方法。(2) There is still a lack of a calculation method that can automatically adjust the time step in the numerical calculation of unsaturated soil dynamics.
发明内容Contents of the invention
为了克服现有技术的不足,本发明提供了一种基于自适应步长的非饱和土动力数值计算方法,其具有能够精确的评估计算误差并提高计算的效率,节省计算时间,能够准确的描述非饱和土的变形特征的效果。In order to overcome the deficiencies of the prior art, the present invention provides a numerical calculation method for unsaturated soil dynamics based on an adaptive step size, which can accurately evaluate calculation errors and improve calculation efficiency, save calculation time, and accurately describe Effects on the deformation characteristics of unsaturated soils.
本发明采用下述技术方案:The present invention adopts following technical scheme:
一种基于自适应步长的非饱和土动力数值计算方法,包括固相位移误差、孔隙水压误差和孔隙气压误差的评估,通过实时计算数值分析中的固相位移误差、孔隙水压误差和孔隙气压误差,以混合误差作为固相位移误差、孔隙水压误差和孔隙气压误差的函数,并将混合误差作为时间步长调整的依据,精确的评估计算非饱和土动力数值计算的误差。A numerical calculation method of unsaturated soil dynamics based on adaptive step size, including the evaluation of solid phase displacement error, pore water pressure error and pore air pressure error, through real-time calculation of solid phase displacement error, pore water pressure error and pore pressure error in numerical analysis Pore air pressure error, using the mixed error as a function of solid phase displacement error, pore water pressure error and pore air pressure error, and using the mixed error as the basis for time step adjustment, accurately evaluates and calculates the error of unsaturated soil dynamics numerical calculation.
进一步的,包括以下步骤:Further, the following steps are included:
步骤(1)设置控制参数,分别为:初始时间步长Δt0,混合误差允许值固相位移误差调整系数λu,孔隙水压误差调整系数λw,孔隙气压误差调整系数λa,步长调整系数的最小值fmin和步长调整系数的最大值fmax;Step (1) Set the control parameters, which are: initial time step Δt 0 , allowable value of mixed error Solid phase displacement error adjustment coefficient λ u , pore water pressure error adjustment coefficient λ w , pore air pressure error adjustment coefficient λ a , the minimum value f min of the step adjustment coefficient and the maximum value f max of the step adjustment coefficient;
步骤(2)进行有限元数值计算当前步;Step (2) carries out the current step of finite element numerical calculation;
步骤(3)进行固相位移误差评估、孔隙水压误差评估和孔隙气压误差评估;Step (3) performing solid phase displacement error evaluation, pore water pressure error evaluation and pore air pressure error evaluation;
步骤(4)计算混合误差、时间步长调整系数;Step (4) calculates mixing error, time step adjustment coefficient;
步骤(5)计算新的时间步长和荷载项;Step (5) Calculate the new time step and load item;
步骤(6)比较混合误差与误差允许值的大小;Step (6) compares the size of mixing error and error allowable value;
其中,若混合误差小于等于误差允许值,继续下一步的数值计算,并采用新的时间步长;若混合误差大于误差允许值,返回当前步进行修正计算,并采用新的时间步长。Among them, if the mixed error is less than or equal to the error allowable value, continue the numerical calculation of the next step, and adopt a new time step; if the mixed error is greater than the error allowable value, return to the current step for correction calculation, and adopt a new time step.
进一步的,所述步骤(3)中,孔隙气压误差的相对误差表示为:Further, in the step (3), the relative error of the pore pressure error is expressed as:
其中,ηa(t+Δt)为孔隙气压的相对误差,为孔隙气压的最大值。Among them, η a (t+Δt) is the relative error of pore pressure, is the maximum pore pressure.
进一步的,孔隙气压误差ea(t+Δt)表示为:Further, the pore pressure error e a (t+Δt) is expressed as:
其中,为t+Δt时刻孔隙气压的二阶精度解,为t+Δt时刻孔隙气压的一阶精度解。in, is the second-order precision solution of pore pressure at time t+Δt, is the first-order precision solution of pore pressure at time t+Δt.
进一步的,所述混合误差表示为:Further, the mixed error is expressed as:
其中,ηmix为混合误差,为固相位移误差,为孔隙水压误差,为孔隙气压误差。Among them, η mix is mixed error, is the solid phase displacement error, is the pore water pressure error, is the pore pressure error.
进一步的,所述步骤(5)中,新的时间步长表示为:Further, in the step (5), the new time step is expressed as:
Δtnew=f·Δtold Δt new = f · Δt old
其中,Δtnew为调整后的新步长,Δtold调整前的旧步长,f为步长调整系数。Among them, Δt new is the new step size after adjustment, Δt old is the old step size before adjustment, and f is the step size adjustment coefficient.
进一步的,所述步骤(5)中,荷载项的调整公式为:Further, in the step (5), the adjustment formula of the load item is:
其中,为第n步中第m+1子步的荷载值,为第n步中第m子步的荷载值,an+1为第n+1步荷载值,an为第n步荷载值,Δtmax为第n步与第n+1步之间的时间步长。in, is the load value of the m+1th substep in the nth step, is the load value of the mth substep in the nth step, a n+1 is the load value of the n+1th step, a n is the load value of the nth step, Δt max is the distance between the nth step and the n+1th step Time Step.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
(1)本发明基于非饱和土的特征为由固相、液相和气相三相组成,对固相位移误差、孔隙水压误差和孔隙气压误差进行评估,通过混合误差评估,获得非饱和土三相介质动力数值计算的时域离散误差,能够准确的描述非饱和土的变形特性;(1) The present invention is based on the characteristics of unsaturated soil being composed of three phases of solid phase, liquid phase and gas phase, evaluating the solid phase displacement error, pore water pressure error and pore air pressure error, and obtaining unsaturated soil by evaluating the mixed error The time-domain discrete error of dynamic numerical calculation of three-phase medium can accurately describe the deformation characteristics of unsaturated soil;
(2)本发明给出时间步长修正公式,获得新的时间步长,实现了荷载项的实时调整,并与时间步长相对应,如果混合误差大于误差允许值,可实现返回修正,进行重新计算,达到提高计算精度的目的。(2) The present invention provides a time step correction formula, obtains a new time step, realizes the real-time adjustment of the load item, and corresponds to the time step, if the mixed error is greater than the allowable value of the error, the return correction can be realized, and a new time step can be carried out. calculation to achieve the purpose of improving calculation accuracy.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。The accompanying drawings constituting a part of the present application are used to provide further understanding of the present application, and the schematic embodiments and descriptions of the present application are used to explain the present application, and do not constitute improper limitations to the present application.
图1为本发明的流程图。Fig. 1 is a flowchart of the present invention.
具体实施方式Detailed ways
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be pointed out that the following detailed description is exemplary and intended to provide further explanation to the present application. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used here is only for describing specific implementations, and is not intended to limit the exemplary implementations according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that when the terms "comprising" and/or "comprising" are used in this specification, they mean There are features, steps, operations, means, components and/or combinations thereof.
正如背景技术所介绍的,现有技术中存在计算精度和效率不能很好的统一、时间步长不能自动调整的不足,为了解决如上的技术问题,本申请提出了一种基于自适应步长的非饱和土动力数值计算方法。As introduced in the background technology, there are problems in the prior art that the calculation accuracy and efficiency cannot be well unified, and the time step cannot be automatically adjusted. In order to solve the above technical problems, this application proposes a method based on an adaptive step Numerical calculation method of unsaturated soil dynamics.
本申请的一种典型的实施方式中,如图1所示,提供了一种基于自适应步长的非饱和土动力数值计算方法,包括固相位移误差、孔隙水压误差和孔隙气压误差的评估,通过实时计算数值分析中的固相位移误差、孔隙水压误差和孔隙气压误差,以混合误差作为固相位移误差、孔隙水压误差和孔隙气压误差的函数,并将混合误差作为时间步长调整的依据,精确的评估计算非饱和土动力数值误差。In a typical implementation of the present application, as shown in Figure 1, a numerical calculation method for unsaturated soil dynamics based on an adaptive step size is provided, including solid phase displacement error, pore water pressure error and pore air pressure error Evaluation, by calculating the solid phase displacement error, pore water pressure error, and pore air pressure error in the numerical analysis in real time, using the mixed error as a function of the solid phase displacement error, pore water pressure error, and pore air pressure error, and using the mixed error as a time step The basis for long adjustment, accurate evaluation and calculation of numerical errors of unsaturated soil dynamics.
具体步骤为:The specific steps are:
一、设置控制参数:1. Set the control parameters:
定义一个初始的时间步长Δt0,混合误差允许值固相位移误差调整系数λu,孔隙水压误差调整系数λw,孔隙气压误差调整系数λa,步长调整系数的最小值fmin和步长调整系数的最大值fmax;进行有限元数值计算当前步。Define an initial time step Δt 0 , the allowable value of the mixed error Solid phase displacement error adjustment coefficient λ u , pore water pressure error adjustment coefficient λ w , pore air pressure error adjustment coefficient λ a , the minimum value f min of the step size adjustment coefficient and the maximum value f max of the step size adjustment coefficient; Calculate the current step.
二、固相位移误差评估、孔隙水压误差评估和孔隙气压误差评估:2. Evaluation of solid phase displacement error, pore water pressure error evaluation and pore air pressure error evaluation:
固相位移误差评估根据Newmark-β时间域离散公式,得到加速度误差公式:The solid phase displacement error evaluation is based on the Newmark-β time domain discrete formula, and the acceleration error formula is obtained:
式(1)中,为加速度误差,Δt为计算时间步长,为t时刻的加速度值,为t+Δt时刻的加速度,τ为t-t+Δt之间的任意值。In formula (1), is the acceleration error, Δt is the calculation time step, is the acceleration value at time t, is the acceleration at time t+Δt, and τ is any value between t-t+Δt.
对加速度误差公式进行积分,得到速度误差公式:Integrating the acceleration error formula, the velocity error formula is obtained:
式(2)中为速度误差。In formula (2) is speed error.
对速度误差公式进行积分,得到固相位移误差公式:Integrate the velocity error formula to get the solid phase displacement error formula:
式(3)中为e(t+Δt)固相的位移误差。Equation (3) is the displacement error of e(t+Δt) solid phase.
从而得到固相位移的相对误差公式:Thus, the relative error formula of solid phase displacement is obtained:
式(4)中ηu(t+Δt)为固相位移的相对误差,为固相位移的最大值。In formula (4), η u (t+Δt) is the relative error of solid phase displacement, is the maximum value of the solid phase displacement.
孔隙水压误差的评估为中心差分解与向后差分解的差值,是一种截断误差;孔隙水压误差表示为:The evaluation of the pore water pressure error is the difference between the central difference solution and the backward difference solution, which is a truncation error; the pore water pressure error is expressed as:
式(5)中ew(t+Δt)为孔隙水压误差,为t时刻孔隙水压的变化率,为t+Δt时刻孔压的变化率。In formula (5), e w (t+Δt) is the pore water pressure error, is the rate of change of pore water pressure at time t, is the rate of change of pore pressure at time t+Δt.
孔隙水压误差的相对误差表示为:The relative error of pore water pressure error is expressed as:
式(6)中,ηw(t+Δt)为孔隙水压的相对误差,为孔隙水压的最大值。In formula (6), η w (t+Δt) is the relative error of pore water pressure, is the maximum pore water pressure.
孔隙气压误差的评估表示为:The estimation of the pore pressure error is expressed as:
式(7)中ea(t+Δt)为孔隙气压误差,为t+Δt时刻孔隙气压的二阶精度解,为t+Δt时刻孔隙气压的一阶精度解。In formula (7), e a (t+Δt) is the pore pressure error, is the second-order precision solution of pore pressure at time t+Δt, is the first-order precision solution of pore pressure at time t+Δt.
孔隙气压的相对误差表示为:The relative error of pore pressure is expressed as:
式(8)中,ηa(t+Δt)为孔隙气压的相对误差,为孔隙气压的最大值。In formula (8), η a (t+Δt) is the relative error of pore pressure, is the maximum pore pressure.
三、计算混合误差、时间步长调整系数:3. Calculate the mixed error and time step adjustment coefficient:
以混合误差作为固相位移误差、孔隙水压误差和孔隙气压误差的函数,表示为:Taking the mixed error as a function of solid phase displacement error, pore water pressure error and pore air pressure error, it is expressed as:
式(9)中,ηmix为混合误差,为固相位移误差,孔隙水压误差,为孔隙气压误差,λu为固相位移误差的调整系数,λw为孔隙水压误差调整系数,λa为孔隙气压误差调整系数。In formula (9), η mix is the mixing error, is the solid phase displacement error, Pore water pressure error, is the pore air pressure error, λu is the adjustment coefficient of the solid phase displacement error, λw is the pore water pressure error adjustment coefficient, and λa is the pore air pressure error adjustment coefficient.
通过设置λu、λw和λa三个调整系数,可以考虑位移误差、孔隙水压误差和孔隙气压误差在混合误差中所占的比例。对于不同的工况可以进行适当的调整,如对孔隙水压力比较敏感的工况,λw适当取大值,λu和λa取较小值;对于孔压气压力起决定作用的工况,则λa取较大值,λu和λw取较小值。By setting three adjustment coefficients λ u , λ w and λ a , the proportions of displacement error, pore water pressure error and pore air pressure error in the mixed error can be considered. Appropriate adjustments can be made for different working conditions. For example, for working conditions that are sensitive to pore water pressure, λw should take a large value, and λu and λa should take smaller values; for working conditions where pore pressure and air pressure play a decisive role, Then λ a takes a larger value, and λ u and λ w take a smaller value.
其中,三个参数的取值范围为:0≤λu≤1,0≤λw≤1,0≤λa≤1。Among them, the value ranges of the three parameters are: 0≤λu≤1 , 0≤λw≤1, 0≤λa≤1 .
时间步长的调整系数表示为:The adjustment factor for the time step is expressed as:
式(10)中,f为步长调整系数,混合误差允许值。In formula (10), f is the step size adjustment coefficient, Mixed error allowance.
四、计算新的时间步长和荷载项:4. Calculate the new time step and load item:
对时间步长进行限制,范围为:Limit the time step size in the range:
fmin≤f≤fmax (11)f min ≤ f ≤ f max (11)
式(11)中,fmin为步长调整系数最小值,fmax为步长调整系数最大值。In formula (11), f min is the minimum value of the step size adjustment coefficient, and f max is the maximum value of the step size adjustment coefficient.
新的时间步长表示为:The new time step is expressed as:
Δtnew=f·Δtold (12)Δt new = f · Δt old (12)
式(12)中,Δtnew为调整后的新步长,Δtold调整前的旧步长。In formula (12), Δt new is the adjusted new step size, and Δt old is the old step size before adjustment.
时间步长与荷载值是一一对应的,时间步长调整后,荷载项必须做相应的调整,假定荷载是线性变换的,通过下面的公式对荷载项进行调整:There is a one-to-one correspondence between the time step and the load value. After the time step is adjusted, the load item must be adjusted accordingly. Assuming that the load is a linear transformation, the load item is adjusted by the following formula:
式(13)中,为第n步中第m+1子步的荷载值,为第n步中第m子步的荷载值,an+1为第n+1步荷载值,an为第n步荷载值,Δtmax为第n步与第n+1步之间的时间步长。In formula (13), is the load value of the m+1th substep in the nth step, is the load value of the mth substep in the nth step, a n+1 is the load value of the n+1th step, a n is the load value of the nth step, Δt max is the distance between the nth step and the n+1th step Time Step.
五、比较混合误差与误差允许值的大小;如果混合误差小于等于误差允许值,继续下一步计算;如果混合误差大于误差允许值,返回上一步进行修正计算。5. Compare the size of the mixed error and the allowable error value; if the mixed error is less than or equal to the allowable error value, continue to the next step of calculation; if the mixed error is greater than the allowable error value, return to the previous step for correction calculation.
整个计算过程实时监控,输出每一步的固相位移误差、孔隙水压误差、孔隙气压误差、混合误差、步长调整系数、时间步长等数据。The entire calculation process is monitored in real time, and data such as solid phase displacement error, pore water pressure error, pore air pressure error, mixing error, step adjustment coefficient, and time step are output at each step.
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, there may be various modifications and changes in the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included within the protection scope of this application.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810083355.XA CN108052783A (en) | 2018-01-29 | 2018-01-29 | A kind of unsaturated soil dynamic numerical calculation method based on adaptive step |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810083355.XA CN108052783A (en) | 2018-01-29 | 2018-01-29 | A kind of unsaturated soil dynamic numerical calculation method based on adaptive step |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108052783A true CN108052783A (en) | 2018-05-18 |
Family
ID=62124935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810083355.XA Pending CN108052783A (en) | 2018-01-29 | 2018-01-29 | A kind of unsaturated soil dynamic numerical calculation method based on adaptive step |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108052783A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109668813A (en) * | 2019-01-10 | 2019-04-23 | 清华大学 | Intelligent unsaturated soil soil water characteristic curve and infiltration coefficient detection system and method |
CN111209657A (en) * | 2019-12-30 | 2020-05-29 | 南京航空航天大学 | Solid deformation interface calculation method considering liquid surface tension |
CN113927584A (en) * | 2021-10-19 | 2022-01-14 | 深圳市优必选科技股份有限公司 | Robot control method, device, computer readable storage medium and robot |
CN114861134A (en) * | 2022-07-08 | 2022-08-05 | 四川大学 | A step size determination method and storage medium for calculating the motion trajectory of water droplets |
CN116680965A (en) * | 2023-08-04 | 2023-09-01 | 矿冶科技集团有限公司 | FDEM acceleration method based on self-adaptive time step excavation supporting simulation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102726273A (en) * | 2012-06-15 | 2012-10-17 | 中农先飞(北京)农业工程技术有限公司 | Decision-making method for soil moisture monitoring and intelligent irrigation of root zone of crop |
CN103760089A (en) * | 2014-01-29 | 2014-04-30 | 山东农业大学 | Experiment-numerical analysis combined determination method for relative permeability coefficient of unsaturated soil |
CN103971002A (en) * | 2014-05-12 | 2014-08-06 | 北京交通大学 | Method for calculating relative permeability coefficient of unsaturated soil |
CN104537232A (en) * | 2014-12-23 | 2015-04-22 | 天津大学 | Lisse phenomenon considered shallow groundwater level prediction method |
CN107328685A (en) * | 2017-06-26 | 2017-11-07 | 武汉大学 | Go out the method that stream method determines unsaturated soil Hydrodynamic Parameters with pressure plare/pressure membrane |
-
2018
- 2018-01-29 CN CN201810083355.XA patent/CN108052783A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102726273A (en) * | 2012-06-15 | 2012-10-17 | 中农先飞(北京)农业工程技术有限公司 | Decision-making method for soil moisture monitoring and intelligent irrigation of root zone of crop |
CN103760089A (en) * | 2014-01-29 | 2014-04-30 | 山东农业大学 | Experiment-numerical analysis combined determination method for relative permeability coefficient of unsaturated soil |
CN103971002A (en) * | 2014-05-12 | 2014-08-06 | 北京交通大学 | Method for calculating relative permeability coefficient of unsaturated soil |
CN104537232A (en) * | 2014-12-23 | 2015-04-22 | 天津大学 | Lisse phenomenon considered shallow groundwater level prediction method |
CN107328685A (en) * | 2017-06-26 | 2017-11-07 | 武汉大学 | Go out the method that stream method determines unsaturated soil Hydrodynamic Parameters with pressure plare/pressure membrane |
Non-Patent Citations (1)
Title |
---|
张西文: "饱和砂土地震液化自适应步长数值方法研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109668813A (en) * | 2019-01-10 | 2019-04-23 | 清华大学 | Intelligent unsaturated soil soil water characteristic curve and infiltration coefficient detection system and method |
CN111209657A (en) * | 2019-12-30 | 2020-05-29 | 南京航空航天大学 | Solid deformation interface calculation method considering liquid surface tension |
CN111209657B (en) * | 2019-12-30 | 2022-04-22 | 南京航空航天大学 | A Calculation Method of Solid Deformation Interface Considering Liquid Surface Tension |
CN113927584A (en) * | 2021-10-19 | 2022-01-14 | 深圳市优必选科技股份有限公司 | Robot control method, device, computer readable storage medium and robot |
CN113927584B (en) * | 2021-10-19 | 2023-04-21 | 深圳市优必选科技股份有限公司 | Robot control method and device, computer readable storage medium and robot |
CN114861134A (en) * | 2022-07-08 | 2022-08-05 | 四川大学 | A step size determination method and storage medium for calculating the motion trajectory of water droplets |
CN114861134B (en) * | 2022-07-08 | 2022-09-06 | 四川大学 | A step size determination method and storage medium for calculating the motion trajectory of water droplets |
CN116680965A (en) * | 2023-08-04 | 2023-09-01 | 矿冶科技集团有限公司 | FDEM acceleration method based on self-adaptive time step excavation supporting simulation |
CN116680965B (en) * | 2023-08-04 | 2023-09-29 | 矿冶科技集团有限公司 | FDEM acceleration method based on self-adaptive time step excavation supporting simulation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108052783A (en) | A kind of unsaturated soil dynamic numerical calculation method based on adaptive step | |
CN109255160A (en) | Unit time delay prediction method and unit time-delay sensitivity calculation method neural network based | |
CN107121932B (en) | A Robust Adaptive Control Method of Error Symbol Integral for Motor Servo System | |
AU2020101392A4 (en) | Water quality prediction method and system based on water quality model | |
CN109918787A (en) | Simulation method of water-gas two-phase homogeneous flow in water pipeline based on finite volume method | |
CN104635490A (en) | Output feedback control method for asymmetric servo cylinder positional servo system | |
CN103529869A (en) | Pressure control means, flow control devices, pressure and flow control method | |
CN104317198A (en) | Method for controlling nonlinear robust position of electro-hydraulic servo system with time-varying output constraints | |
CN105425587A (en) | Hysteresis nonlinear motor identification and control method | |
CN106777775A (en) | A kind of neural net method based on many section water level forecast river discharges | |
CN110308651B (en) | Electro-hydraulic servo system all-state constraint control method based on extended state observer | |
CN105867133A (en) | Method for self-adjustment error symbol integral robust control of electro-hydraulic torque servo system | |
CN106844990A (en) | Volume of concrete foundation thermal (temperature difference) stress and levels thermal (temperature difference) stress evaluation method | |
CN113656926A (en) | Pipeline transient flow simulation method based on Schohl convolution approximation | |
CN110457785A (en) | A material information mapping method based on material point method for large deformation response of structure | |
CN105525697A (en) | Smart bypass type viscous damper adopting laminated piezoelectric actuator for adjustment | |
CN105068426B (en) | The continuous sliding-mode control of electro-hydraulic position servo system based on interference compensation | |
CN106777770B (en) | The analogy method of hole stream in aqueduct based on finite volume method | |
CN105855296A (en) | Stability control method of mill roll system under nonlinear stiffness constraint of hydraulic cylinder | |
CN108762062A (en) | A kind of lift truck attachment clamping force self-adaptation control method and system | |
CN109139616B (en) | Symmetrical Control Method of Asymmetrical Hydraulic System Based on Output Feedback | |
CN104597757A (en) | Creep deformation modeling and compensation controlling method for corrugated pipe driving locating platform | |
CN107885924A (en) | A kind of performance simulation method of vehicle-mounted hydraulic damper | |
CN106529712A (en) | Ejector critical working point inject ratio prediction optimization method | |
CN103605381B (en) | The fractionating column liquid level controlling method that dynamic matrix control optimizes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180518 |