CN108051504A - 校正质谱检测糖基正确率的方法及产品 - Google Patents

校正质谱检测糖基正确率的方法及产品 Download PDF

Info

Publication number
CN108051504A
CN108051504A CN201711054200.5A CN201711054200A CN108051504A CN 108051504 A CN108051504 A CN 108051504A CN 201711054200 A CN201711054200 A CN 201711054200A CN 108051504 A CN108051504 A CN 108051504A
Authority
CN
China
Prior art keywords
hole
sample
glycosyl
correction
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711054200.5A
Other languages
English (en)
Inventor
马庆伟
梁飞
黄亚娟
丁欢
付书辉
梁坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Yixin Bochuang Biological Technology Co Ltd
Original Assignee
Beijing Yixin Bochuang Biological Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Yixin Bochuang Biological Technology Co Ltd filed Critical Beijing Yixin Bochuang Biological Technology Co Ltd
Priority to CN201711054200.5A priority Critical patent/CN108051504A/zh
Publication of CN108051504A publication Critical patent/CN108051504A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Abstract

本发明提供了一种通过改善糖基样本二次结晶的方法,包括在乙腈水溶液中分别加入三氟乙酸溶液、DHB基质以配制基质溶液,然后加入特定比例的样本溶液在芯片上进行点样结晶。本发明还提供了提高质谱检测生物靶分子的准确率的质谱校正方法,包括在具有多个竖直交叉排列的亲水区域定位孔、疏水孔外区域、中心校正孔、验证校正孔、备用校正孔的芯片上,分别点样糖基样本结晶,点样基质溶液并结晶,并通过质谱轰击校正孔位的糖基样本,以对待测样本的质谱结果进行校正。本发明还提供了适用上述质谱校正和检测的芯片。本发明改进基质溶液配方,能够获得结晶形态较佳的一次结晶和二次结晶效果,其校正方法有助于获得更加稳定和准确的质谱检测结果。

Description

校正质谱检测糖基正确率的方法及产品
技术领域
本发明涉及一种通过改善生物样本结晶及校正方式来提高MALDI-TOF质谱检测正确率的方法,能质谱检测糖基,属于质谱检测技术领域。
背景技术
基质辅助激光解析电离飞行时间质谱(MALDI-TOF MS)技术已成为目前蛋白质组学研究中的经典技术。在该技术的成功应用过程中,合适的样品前处理方法起着首要和关键的作用。只有将合适的样品前处理方法与合适的有机基质结合起来,才能成功实现对核酸和蛋白质等生物大分子的准确鉴定。对于基质、溶剂、盐(金属离子)和样品制备方法的选择是MALDI分析高聚物成败的关键因素。最优化的条件是使样品分子和基质均匀地形成共结晶。MALDI方法分析大分子,重要的关键之一是选择合适的基质。结果表明,效果较佳的基质只有几种。水溶性合成高分子如聚乙二醇(PEG)、聚丙二醇经常出现于早期的MALDI研究中,这是因为分析多肽的基质也可以应用于它们,对于另外一些高分子,可以从高分子和基质的溶解性中找到一些选择基质的思路。一般来说,选择基质时应使基质与高分子的极性比较一致,彼此之间具有兼容性。
微阵列芯片以高密度阵列为特征。微阵列技术就是利用分子杂交原理,使同时被比较的标本与微阵列杂交,通过检测杂交信号强度及数据处理,把他们转化成不同标本中特异基因的丰度,从而全面比较不同标本的基因表达水平的差异。微阵列芯片因其高度均一性,结构稳定性,样品用量少及高通量而成为芯片领域中发展最迅速的一部分。微阵列不仅仅在生物遗传领域有着广泛的用途,在其他定量和相对定量分析方面也有着潜在的用途。
微阵列芯片因其微孔尺寸相同,微孔与周围亲疏水性质的差别,较好的限制了样品所处的范围,使得所分析的区域保持一致,使定量分析成为可能。质谱成图因为其无需标记,无需分离,通过对图像的分析来进行混合物中组成物质的定量分析,使多组分的同时检测成为可能,因此利用微阵列芯片中质谱成图进行多组分的同时定量分析,是一种具有广泛应用前景的定量分析技术。微阵列芯片中质谱成图在定量分析中的应用很大程度上取决于样本结晶的均一性,由于质谱数据采集中的质量歧视,质谱图的峰高或峰面积无法作为样品的定量分析的依据,因此如何获得可靠的,稳定的定量数据就显得尤为重要。
在应用MALDI-TOF MS时,通常将生物样本与一种饱和的低分子量无机化合物溶液(称为基质)进行混合加在靶板上,待干后样本与基质共结晶后形成了以基质包裹构架的样本固体沉淀。样本基质结晶体经激光辐射,基质从激光中吸收能量,能量蓄积并迅速产热,从而使基质晶体升华,使样品吸附,基质与样品之间发生电荷转移使得样品分子电离,离子在加速电场下获得相同的动能,经高压加速、聚焦后进入飞行时间检测器。根据离子飞行时间的不同进行分析得出离子质荷比(m/z)和离子峰值,形成质量图谱,检测准确性高。通过软件分析比较,筛选并确定出特异性指纹图谱,从而实现对目标微生物种或菌株的区分和鉴定。MALDI-TOF MS可用于分析多种类型的样本,包括有机分子溶液、核酸、蛋白质以及整个微生物,其中基因、蛋白质和微生物是目前在临床质谱检测实验室应用最广的项目。
基质辅助激光解吸电离质谱(MALDI-TOF MS)离子源可电离相对分子质量为100~1000 000的生物分子,通过高压电与短激光脉冲作用,让基质晶体升化,使基质与样本分子气化进入质谱仪的气相,其最突出的特点是准分子离子化很强、对样本中杂质的耐受量大,直接分析核酸、蛋白质经电离产生的混合物,能为临床检验中标准物质的研究提供有效的技术保障,是临床检验的参考方法的首选。因此芯片上的样本结晶形态和质量好坏直接影响质谱的检定结果。
在提高芯片的样本结晶形态和质量的研究中,现有的研究重点在于如何改进芯片的质量。例如,中国授权专利201410090967.3、“制备亲疏水相间的微阵列芯片及其用于质谱成像定量分析的方法”提供了一种通过在芯片上设置疏水和亲水区域来制备检测芯片,其中采用丝网印刷技术将疏水性聚合物(聚二甲基硅氧烷或聚甲基丙烯酸甲酯)按照设计好的模板刷在导电玻璃上,其中涂布区为疏水区,空白区作为预留的亲水区。然后,用亲水材料(如样品体系的水溶液)涂布空白区,形成均一间隔的亲水区和疏水区。该方法通过利用丝网印刷技术来设计模板形状,预先在亲水区留出空白区(又称“留白处理”),因此需要特殊的印刷设备和操作软件,同时在涂布疏水区时靶板要绝对静置。同时,丝网印刷技术的精度低,亲疏水区域的分界不能达到微米精度。并且,需要将待测混合物体系水溶液均匀地铺在亲水区,芯片烘干固化,置于烘箱中60摄氏度固化2h,增加了生产时间和成本。
中国授权专利201110401165.6、“对生物样品进行富集和除盐净化处理的方法”公开了一种利用疏水和亲水材料制备具有封闭图案化表面的检测靶板的方法,包括通过在基底上构筑具有较大直径的聚合物涂层(如聚甲基丙烯酸甲酯、聚苯乙烯或光刻胶)作为挡层圆区,然后以含氟单分子层或蒸镀金属层作为疏水层贴在整个基底上。由于该疏水层不能粘附在上述挡层圆区,因此将靶板浸入有机溶剂中进行超声处理,可以除去挡层圆区。最后,再将所述聚合物涂层在所述圆区内部突变较小直径的同心圆,从而获得疏水外圈(含氟单分子层或蒸镀金属层)-亲水中圈-疏水内圈(聚合物涂层)的同心圆图案的质谱靶板,因此该方法又称“挡层涂布”。然而,该方法在基底上构筑疏水-亲水-疏水区域的封闭图案化表面,需要进行两步疏水处理,即采用含氟的试剂在100~250℃下加热生长1~5个小时,工艺复杂,过程耗时。由于该方法需要精确控制两次聚合物涂层的间距,间距过小导致外圈和内圈相连,同时由于使用两种不同的疏水材料来分别突变不同的基底表面,所获得的疏水区液滴的接触角过小,导致疏水效果差,影响了普通实验室的应用。
中国专利申请200610023671.5、公开了“一种低丰度蛋白靶上一步除盐与富集的方法”,其中通过疏水聚合物(聚甲基丙烯酸甲酯、聚乙烯、聚苯乙烯、聚氟乙烯等)预先在靶板的样品池中央部分进行涂布,然后进行蛋白点样,使得蛋白样品富集在疏水聚合物层上。然后,将基质溶液加入点样区,使得蛋白样品中的污染物和无机盐扩散出去,最后得到样品和基质均匀细致的结晶。由于该方法是直接将蛋白样品加到疏水层,通过加入过量的基质溶液来进行纯化,虽然客观上有一定纯化效果,但造成了蛋白样品的浪费。同时,如果手动操作将0.2μl疏水性聚合物溶液点在每个Kapton膜的小孔内,耗时,且0.2μl溶液的精度难以控制,影响小孔表面疏水均一性;如果自动操作,需要配置相应点样设备,增加成本,制备复杂,并不适合不易制备的微量蛋白样品的检测和应用。
由于上述靶板的在先研究中,或是靶板表面没有亲水疏水差异,(如中国专利200610023671.5),导致结晶形态差,或是形成亲水疏水差异的涂层,但亲疏水分界不能达到微米精度或液滴接触角过小,但制备过程过于复杂,不能节约时间和成本(如中国专利201410090967.3、专利201110401165.6),或是需要额外的装置和检测软件,或是需要过多的珍贵蛋白样本进行检测,这些都导致质谱检测样本峰的准确度低,信噪比低,基线高。
在最接近的现有技术中,发明人在先前提交的中国专利(CN201710539756、用于飞行时间质谱检测蛋白和核酸的通用芯片的制备方法;CN201710539893、用于飞行时间质谱检测蛋白和核酸的通用芯片)中,提出了通过制备新的质谱芯片来提高样本结晶形态和质量,该芯片主要包括主体表面具有微整列排列的亲水性点样孔和疏水性孔外区,亲水性点样孔覆盖150-800nm的亲水性薄膜,疏水性孔外区覆盖150nm-2μm疏水性薄膜,其表面水滴接触角>120°,其中所述亲水性薄膜为特殊的二氧化硅氧化物薄膜、氧化锌薄膜、氧化铝薄膜等,疏水性孔外区通过硅烷偶联剂进行处理形成疏水性薄膜。该发明在一定程度上能够提高样本的结晶质量。然而,该发明的研究重点主要在于提供一种两用型的质谱芯片,联合特殊设计的芯片适配器,通过适配器上不同的卡槽设计,可放置多张芯片,能实现核酸与蛋白不同样品同时进样检测,节省质谱开门关门时间。由于该发明的研究重点并未集中在针对单一样本的质谱检测中,如何提高单一样本的结晶质量,因此本发明人仍然需要以此为基础进行研究。
另外,除了基因、蛋白和微生物之外,研究蛋白质糖基化不仅可以加深对糖蛋白的生物功能的认识,而且对探讨疾病发生、发现疾病标记物和开发新药具有重要意义。免疫球蛋白(英文全称,IgG),又称抗体是一种重要的糖蛋白,主要分布在血浆(或血清)中。它由两条相同的分子量较小的轻链和两条分子量较大的重链通过二硫键连接而成,抗体的糖基位于重链FC片段上,为N-连接糖。IgG的糖基化对于调节IgG的细胞毒性和抗炎、促炎等炎性潜力非常关键。自身免疫状态和IgG抗体的特定糖基化模式之间的联系已在患类风湿性关节炎和几自身免疫血管炎的患者中被观察到,其中已报道与IgG抗体的降低的半乳糖基化和唾液酸化相关。对IgG糖基结构分析已成为当前研究的热点。陶磊等人(《药物分析杂志》,2011年第11期)分析IgG1型单抗中糖基切除对其结构与功能的影响,结果表明糖基切除后抗体的圆二色谱发生改变,抗原结合能力下降,体外CDC活性基本消失。
然而糖基结构中富含多羟基且基本不含发色团,呈电中性等性质,使得糖类分析非常困难、复杂结构的检测更是异常艰难。因此,需要快速、简单且精确的方式分析糖基结构的技术,并且通过各种方法进行糖基分析。为了进行糖基分析,必须首先从包含在生物样品中分离纯化糖基。一般是将糖蛋白上的糖基切掉并分离纯化后进行分析。因为糖基本身没有发色基团,而且其在质谱仪上不易离子化,为了在分离纯化和结构鉴定过程中能够更有效地检测到糖基,一般进行柱前衍生的方法。该方法主要是对糖基进行标记,使糖基带上紫外或荧光基团,提高检测的灵敏度,同时又可以使糖基带上疏水基团,降低糖基的极性,使糖基在反相色谱柱上得到保留,利于糖基的分离。目前对糖基进行衍生化标记的试剂主要包括2-AB标记衍生糖基的方法。
中国专利申请201410844142.6、发明名称“快速全面检测单克隆抗体N糖基化位点上寡糖的方法”公开了通过酶解反应切除寡糖,然后使用2-AB溶液标记寡糖,纯化寡糖后通过LC-荧光-ESI-MS分析。然而,该方法需要通过氨丙基固相萃取柱进行纯化,过柱纯化步骤复杂并且成本较高,因此不适于批处理切除糖基和2-AB标记及纯化。此外,陶磊等人同时公开了从抗体或蛋白上切除或测定糖基的方法。然而,该方法也需要色谱柱或过柱纯化,导致不能高通量或批处理,因此限制了批处理切除糖基和2-AB标记及纯化。
中国专利申请200610084289.5、发明名称“糖基切除装置”公开了用于从碱溶液中切除糖基的装置,包括反应槽和分离纯化的离子交换柱。然而,该装置只适于从复合碳水化合物中切除糖基,且整个装置包括复杂的构成部件,因此也不适于批处理切除糖基和2-AB标记及纯化。
另外,使用2-AB试剂标记糖基的一般步骤为:(1)通过糖苷酶从糖蛋白切除糖基;(2)对获得的糖基进行纯化;(3)2-AB标记糖基;(4)标记后糖基的纯化,也就是传统的二步纯化法。其中,对于血清或血浆IgG的糖基分析,还需IgG的分离纯化步骤。因此对于血清(或血浆)IgG的糖基分析,相当于需要进行三次纯化,其中在标记之前必须纯化糖基,否则出现杂质干扰,导致切糖不完全,因此二步法存在步骤繁琐并且可能造成糖基产物的损失。同时,在一些现有技术中,在酶切前需要更换缓冲液,否则导致切糖酶活性变弱,切糖不充分,从而不能保证检测结果的灵敏度和准确度。
鉴于MALDI-TOF MS可用于分析多种类型的样本,包括有机分子溶液、核酸、蛋白质以及整个微生物,其中基因、蛋白质和微生物是目前在临床质谱检测实验室应用最广的项目,同时糖基或糖基作为潜在的研究重点,因此在现有的芯片基础上,需要一种通过改善样本结晶条件以提高MALDI-TOF质谱检测生物靶分子准确率的方法。
发明内容
本发明原理之一在于,通过改善样本结晶条件以提高MALDI-TOF质谱检测生物靶分子准确率的方法,该方法不针对如何改进现有的质谱芯片,而是通过摸索和优化质谱芯片的结晶条件,来提高对生物靶分子在芯片上的结晶水平,从而能够充分利用现有的质谱芯片,以减少检测成本。
本发明原理之二在于,针对糖基靶分子在芯片上结晶性质,提供一种糖基靶分子的通用结晶方法。
本发明原理之三在于,在改善样本结晶条件的基础上,进一步提供一种样本质谱检测的校正方法,从而为提高MALDI-TOF质谱检测生物靶分子准确率确定前提条件。
因此,本发明第一个目的是提供一种改善糖基样本一次结晶的方法,步骤包括:
(1)采用去离子水与高效液相色谱级的乙腈按照1:1的体积比混合,加入体积分数为0.1%的三氟乙酸溶液,得到混合溶液;
(2)称取50mg DHB基质(2,5-二羟基苯甲酸)用混合溶液充分溶解,DHB基质浓度为50mg/mL;
(3)取DHB基质和柠檬酸二胺溶液,按照9:1体积比混合均匀,即得基质溶液。
(4)选取0.5μL-1μL基质溶液和0.5μL-1μL样本,在芯片上进行点样结晶。
在一个实施方案中,其中步骤2中加入50mg的DHB,并且通过2000-3000rpm震荡3-10min,8000-12000rpm离心3-10min,得到DHB溶液。
在其他的实施方案中,其中步骤4中选取0.5μL样本和0.75μL基质溶液进行结晶。
在上述任一实施方案中,上述操作选自操作间十万级洁净度,环境温度20-25℃,环境湿度20-30%条件下进行。
本发明第二个目的是提供一种能够提高质谱检测生物靶分子的准确率的质谱芯片,该芯片包括:由硅材料或玻璃或钛合金组成的芯片主体,其表面具有多个竖直交叉排列的亲水区域定位孔、疏水孔外区域、中心校正孔、验证校正孔、备用校正孔;
其中,定位孔具有亲水特性,用于滴定基质溶液或样本;疏水孔外区域,表面具有疏水特性;定位孔和孔外区域形成的微阵列芯片表面亲疏水间隔的结构,可以辅助液体样本收缩凝聚在亲水区域内,使样本结晶集中,且呈现标准圆形,提高离子化效率;
中心校正孔和验证校正孔,用于校正蛋白标准的滴定位置验证校正孔,用来验证校正效果;
备用校正孔,作为备用,中心校正孔或验证校正孔如果出现异常,可用备用校正孔。
在一个实施方案中,定位孔在芯片上为(4-8)×(4-8)的竖直交叉方向排列,中心校正孔、验证校正孔以及备用校正孔在芯片中间位置竖向排列,数量均为1或2个。在一个具体实施方案中,中心校正孔、验证校正孔以及备用校正孔的数量为1个。
在另一实施方案中,所述芯片亲水性定位孔覆盖150-800nm的亲水性薄膜,疏水性孔外区覆盖150nm-2μm疏水性薄膜,其表面水滴接触角>120°在一个具体实施方案中,所述亲水性薄膜为二氧化硅氧化物薄膜、氧化锌薄膜、氧化铝薄膜等,疏水性孔外区通过硅烷偶联剂进行处理形成疏水性薄膜。在另一具体实施方案中,所述硅烷偶联剂选自乙烯基硅烷、氨基硅烷或二甲基二氯硅烷。
本发明第三个目的是提供一种可提高质谱检测生物靶分子的准确率的质谱校正方法,步骤包括:
(1)如上所述,配制基质溶液,并配置待测靶分子样本以及校正的蛋白标准品溶液;
(2)在亲水区域定位孔,点0.5-1μL生物靶分子样本溶液,自然挥干后形成一次结晶;
(3)在中心校正孔、验证校正孔,点0.5-1μL校正蛋白标准品溶液,自然挥干后形成一次结晶;
(4)分别在亲水区域定位孔、中心校正孔、验证校正孔,在一次结晶表面,点0.5-1μL基质溶液,自然挥干后形成二次结晶;
(5)通过激光飞行时间质谱分别轰击中心校正孔位、验证校正孔的校正样本蛋白标准品溶液,获得蛋白标准品峰分子量的谱图;
(6)当蛋白标准品的两个峰分子量偏差小于200PPM,即为校正有效
(7)校正成功后,即可对亲水区域定位孔的待测生物靶分子样本进行质谱检测。
在一个实施方案中,选取0.5μL样本和0.75μL基质溶液进行结晶。
在另一实施方案中,所述生物靶分子是糖基待测样本,所述校正样本蛋白标准品溶液是蛋白标准品P14R(synthetic pepitide)和ACTH fragment 18‐39(human)的标准多肽混合液。
在上述任一实施方案中,所述质谱,参数设置如下:
Turing mode:linear;
Mass Range:1000-4000;
Max Laser Rep Rate:20.0;
Power:80;
Profiles:50;
Shots:10。
真空阈值:当真空度<5E-6,开始检测;
在一个优选实施方案中,所述MALDI-TOF质谱是CLIN-TOF-II飞行时间质谱。
本发明第四个目的是保护上述方法中所用的能够提高质谱检测生物靶分子的准确率的质谱芯片。
附图说明
图1为生物样本一次结晶图;
图2为基质溶液与样本二次结晶对比图,其中(a)0.5μL基质溶液+0.5μL样本,(b)1μL基质溶液+0.5μL样本,(c)0.75μL基质溶液+0.5μL样本。
图3为改进的微阵列质谱检测芯片表面结构示意图,包括:(1)亲水区域定位孔;(2)疏水孔外区域;(3)中心校正孔;(4)验证校正孔;(5)备用校正孔;
图4为3例蛋白标准品样本检测质谱图;
图5为3例糖基待测样本检测质谱图;
技术效果
1、本发明的激光质谱检测是基于微阵列质谱检测芯片,其微阵列芯片表面结构增加校正孔,提高质谱峰质量精度,从而提高糖基质谱检测的正确率;
2、本发明提出一种优选的基质溶液配方,及洁净度环境温湿度条件,使生物样本一次结晶形态较佳;
3、本发明提出一种优选的基质溶液与样本体积配比,使基质溶液与样品在芯片表面共结晶更均匀,检测结果更佳。
4、本发明提出的通过改善结晶形态及校正方法,选取3例临床糖基样本,检测准确率达到100%;
5、本发明改进基质溶液配方,能够获得结晶形态较佳的一次结晶和二次结晶效果,并且其校正方法能够有助于获得更加稳定和准确的质谱检测结果
具体实施方案
以下结合附图及实施例对本发明做进一步说明。
实施例一、基质溶液的配制
所述基质溶液主要成分为DHB,加入一定比例的乙腈,加速基质一次结晶的挥发,快速形成均一完好一次结晶。
基质溶液的配制步骤如下:
(1)采用去离子水与高效液相色谱级的乙腈按照1:1的体积比混合,加入体积分数为0.1%的三氟乙酸溶液,得到混合溶液;
(2)称取50mg DHB基质(2,5-二羟基苯甲酸)用混合溶液充分溶解,DHB基质浓度为50mg/mL;
(3)取DHB基质和柠檬酸二胺溶液,按照9:1体积比混合均匀,即得基质溶液。
上述2,5-二羟基苯甲酸规格要在含量99%以上,可以选购SIGMA品牌。
上述2,5-二羟基苯甲酸粉末50mg用精度大于0.001g的电子天平进行称量,优选地,本实施例称量2,5-二羟基苯甲酸50.05mg。
上述柠檬酸二胺粉末0.010-0.020mg用精度大于0.001g的电子天平进行称量,可以选购国药集团品牌,分析纯(AR),浓度>99%。
上述去离子水可以选购thermo Fisher品牌、规格100ml的去离子水;乙腈可以选购赛默飞世尔品牌、高效液相色谱级(HPLC)。
实施例二、生物样本一次结晶形态
依据基质辅助激光解吸电离原理,选取标准的生物蛋白样品(P14R标准多肽),在
在(1)亲水区域定位孔,点0.5-1μL制备好的蛋白样品溶液,自然挥干后形成一次结晶;
(2)中心校正孔,点0.5-1μL制备好的蛋白样品溶液,自然挥干后形成一次结晶;
(3)验证校正孔,点0.5-1μL制备好的蛋白样品溶液,自然挥干后形成一次结晶;
如图1显示,左图为亲水区域定位孔的结晶图,右图为中心校正孔的结晶图。二个结晶外形均呈现规整的圆形,表面圆润如玉石,质地规则均一,晶体各向生长细致,为理想的蛋白结晶形态。
应当指出的是,实施例一和二应当在操作间十万级洁净度,环境温度20-25℃,环境湿度20-30%条件下进行。
实施例三、通过二次结晶,确定基质与样本溶液的最佳比例
依据基质辅助激光解吸电离原理,选取标准的化学样品或生物样品[蛋白标准品P14R(synthetic pepitide)或/和ACTH fragment 18‐39(human)]根据合适浓度配比混合,分别在3个孔中点0.5、0.75、1μL蛋白溶液,自然挥干后形成一次结晶;
然后在一次结晶表面,均点0.75μL基质溶液,自然挥干后形成二次结晶;
二次结晶的对比如图2所示。其中,0.5μL和1μL基质溶液的结晶不规则,厚度不均匀,中间空,周围厚。因此当激光轰击样品时,样本峰准确度差,噪声高,基线高。
而0.75μL基质溶液规则,厚度均匀,晶向生长细致,质地密集,可以预料当激光轰击样品时,样本峰准确度200PPM,噪声S/N≥3。
由此确定选用0.5μL样本和0.75μL基质溶液进行结晶,为最佳方案。
实施例四、糖基样本检测前蛋白标准品校正
(一)糖基样本检测前蛋白标准品的预处理
由于理论糖基的m/z值都比较小,而蛋白标准品(P14R(synthetic pepitide)和ACTH fragment 18‐39(human))标准多肽混合液中有适合糖基检测校正的m/z值(M/Z=1535.84和2467.70),而且购买方便价格低廉。所选用的蛋白标准品是由sigma官网购买的m/z值为1535.84的蛋白标准品P14R(synthetic pepitide)和m/z值为2467.70的蛋白标准品ACTH fragment 18‐39(human)。
(二)预处理
在微阵列质谱检测芯片的中心校正孔及验证校正孔,点0.5μL蛋白标准品,自然风干后,再点0.75μL基质溶液,自然挥干后,将微阵列质谱检测芯片载入芯片适配器,进样,放入CLIN-TOF-II飞行时间质谱样品室。
设置CLIN-TOF-II飞行时间质谱参数:
Mass Range:1000-4000;
Max Laser Rep Rate:20.0;
Power:60;
Profiles:50;
Shots:10。
真空阈值:
当真空度<5E-6,开始检测;
(三)蛋白标品校正
第一、激光轰击中心校正孔位的蛋白标准品。
对蛋白标准品谱图2根标准品峰分子量进行校正,其中每个峰的分子量偏差小于200PPM,即可。
第二、激光轰击验证校正孔位的蛋白标准品
对蛋白标准品谱图2根标准品峰分子量进行验证,其中每个峰的分子量偏差小于200PPM,即为校正有效。
(四)仪器校正
第一、激光轰击中心校正孔位的蛋白标准品
对蛋白标准品谱图2根标准品峰分子量进行校正,其中每个峰的分子量偏差小于200PPM,即可。
第二、激光轰击验证校正孔位的蛋白标准品
对蛋白标准品谱图2根标准品峰分子量进行验证,其中每个峰的分子量偏差小于200PPM,即为校正有效,见附图4。
校正成功后,将仪器Power值60调为80后即可检测糖基样本。
实施例五、糖基样本检测
准备工作:
3例糖基样本是由3例混合血浆通过相同的方法制备而成。血浆样本经过:(1)用亲和IgG的柱子经过分离纯化得到IgG;(2)通过糖苷酶从IgG糖蛋白切除糖基;(3)对获得的糖基进行纯化;(4)2-AB标记糖基;(5)标记后糖基的纯化。即对血浆中的IgG的糖基进行分析:
配制好的基质溶液,3例糖基样本(已知常出现的2个显著糖基峰m/z值为1606.484、1768.626),清洗干净的微阵列质谱检测芯片。
(二)糖基样本点样:
在微阵列质谱检测芯片表面选取3个亲水区域定位孔及中心校正孔、验证校正孔,点0.5μL糖基样本溶液,自然挥干后,中心校正孔及验证校正孔点0.75μL基质溶液,3个亲水区域定位孔点0.75μL基质溶液,自然挥干后,将微阵列质谱检测芯片载入芯片适配器,进样,放入CLIN-TOF-II飞行时间质谱样品室。
(三)设置CLIN-TOF-II飞行时间质谱参数:
Turing mode:linear;
Mass Range:1000-4000;
Max Laser Rep Rate:20.0;
Power:80;
Profiles:50;
Shots:10。
(d)真空阈值当真空度<5E-6,开始检测;
(五)样本采集
激光轰击亲水区域定位孔的糖基样本,采集3张糖基样本质谱图;部分详图见附图5。
(六)谱图分析
选用北京毅新博创生物科技有限公司的糖基理论值数据库进行糖基样本分析得出3例样本的糖基实测m/z值与糖基数据库理论值相同,结果全部正确,即糖基样本的实测结果准确率100%。
由糖基理论值数据库分析鉴定报告如下:
表3
理论m/z值 1606.484 1768.626
1号实测m/z值 1607.981 1769.637
2号实测m/z值 1607.322 1768.883
3号实测m/z值 1607.442 1768.82
………………………………………………
以上报告得出,3例糖基样本,每例4根显著质谱峰,检测范围为1000-4000,其中两个峰,每个峰m/z值与理论值相符合,检测结果准确率100%。
其中,如图5所示,能够根据具体的糖基m/z理论值表能够快速、清晰、准确的判断对应的糖型。
综上可知,本发明改进基质溶液配方,能够获得结晶形态较佳的一次结晶和二次结晶效果,并且其校正方法能够有助于获得更加稳定和准确的质谱检测结果。

Claims (10)

1.一种可提高质谱检测糖基靶分子的准确率的质谱校正方法,步骤包括:
(1)配制基质溶液,并配置糖基靶分子样本以及校正蛋白样本的溶液;
(2)在亲水区域定位孔,点0.5-1μL糖基靶分子样本溶液,自然挥干后形成一次结晶;
(3)在中心校正孔、验证校正孔,点0.5-1μL校正蛋白标准品溶液,自然挥干后形成一次结晶;
(4)分别在亲水区域定位孔、中心校正孔、验证校正孔,在一次结晶表面,点0.5-1μL基质溶液,自然挥干后形成二次结晶;
(5)通过激光飞行时间质谱分别轰击中心校正孔位、验证校正孔的校正蛋白样本,获得蛋白标准品峰分子量的谱图;
(6)当蛋白标准品的两个峰分子量偏差小于200PPM,即为校正有效
(7)校正成功后,即可对亲水区域定位孔的待测糖基靶分子样本进行质谱检测;
其中,步骤(1)中将乙腈水溶液中加入体积分数为0.1%的三氟乙酸溶液、终浓度为50mg/mL的DHB基质溶液,以配制基质溶液。
2.权利要求1的方法,其中选取0.5μL样本和0.75μL基质溶液进行结晶。
3.权利要求2的方法,其中所述校正蛋白样本是P14R(synthetic pepitide)或/和ACTHfragment 18-39(human)溶液的标准多肽混合液。
4.权利要求1-3任一项的方法,其中所述质谱的参数设置如下:
Turing mode:linear;
Mass Range:1000-4000;
Max Laser Rep Rate:20.0;
Power:80;
Profiles:50;
Shots:10;
真空阈值:当真空度<5E-6,开始检测。
5.权利要求5的方法,其中所述质谱是CLIN-TOF-II飞行时间质谱。
6.权利要求1-5的方法中所用的能够提高质谱检测生物靶分子的准确率的质谱芯片,该芯片包括:由硅材料或玻璃或钛合金组成的芯片主体,其表面具有多个竖直交叉排列的亲水区域定位孔、疏水孔外区域、中心校正孔、验证校正孔、备用校正孔;
其中,定位孔具有亲水特性,用于滴定基质溶液或样本;疏水孔外区域,表面具有疏水特性;定位孔和孔外区域形成的微阵列芯片表面亲疏水间隔的结构,可以辅助液体样本收缩凝聚在亲水区域内,使样本结晶集中,且呈现标准圆形,提高离子化效率;
中心校正孔和验证校正孔,用于校正蛋白标准的滴定位置验证校正孔,用来验证校正效果;
备用校正孔,作为备用,中心校正孔或验证校正孔如果出现异常,可用备用校正孔。
7.权利要求6的方法,其中定位孔在芯片上为(4-8)×(4-8)的竖直交叉方向排列,中心校正孔、验证校正孔以及备用校正孔在芯片中间位置竖向排列,数量均为1或2个。
8.权利要求7的方法,其中所述芯片亲水性定位孔覆盖150-800nm的亲水性薄膜,疏水性孔外区覆盖150nm-2μm疏水性薄膜,其表面水滴接触角>120°。
9.权利要求8的方法,其中所述亲水性薄膜为二氧化硅氧化物薄膜、氧化锌薄膜、氧化铝薄膜等,疏水性孔外区通过硅烷偶联剂进行处理形成疏水性薄膜。
10.权利要求8的方法,其中所述硅烷偶联剂选自乙烯基硅烷、氨基硅烷或二甲基二氯硅烷。
CN201711054200.5A 2017-10-31 2017-10-31 校正质谱检测糖基正确率的方法及产品 Pending CN108051504A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711054200.5A CN108051504A (zh) 2017-10-31 2017-10-31 校正质谱检测糖基正确率的方法及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711054200.5A CN108051504A (zh) 2017-10-31 2017-10-31 校正质谱检测糖基正确率的方法及产品

Publications (1)

Publication Number Publication Date
CN108051504A true CN108051504A (zh) 2018-05-18

Family

ID=62118829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711054200.5A Pending CN108051504A (zh) 2017-10-31 2017-10-31 校正质谱检测糖基正确率的方法及产品

Country Status (1)

Country Link
CN (1) CN108051504A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181258A (zh) * 2013-05-24 2014-12-03 北京蛋白质组研究中心 基于石墨烯的糖蛋白n-糖链一步法富集-衍生化处理及maldi-tof-ms分析方法
CN104597114A (zh) * 2015-01-21 2015-05-06 华中师范大学 高分辨质谱仪负离子模式低质量区的质量校正试剂盒及校正方法
US20150219616A1 (en) * 2014-02-05 2015-08-06 Phillips 66 Company Systems for quantitation of naphthenic acids in water and crude oil
CN104931572A (zh) * 2015-05-14 2015-09-23 中国疾病预防控制中心传染病预防控制所 微生物鉴定用质谱仪分子量校正标准品及其制备方法与应用
CN107179412A (zh) * 2017-07-05 2017-09-19 北京毅新博创生物科技有限公司 用于飞行时间质谱检测蛋白和核酸的通用芯片的制备方法
CN107177689A (zh) * 2017-07-05 2017-09-19 北京毅新博创生物科技有限公司 用于飞行时间质谱检测蛋白和核酸的通用芯片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181258A (zh) * 2013-05-24 2014-12-03 北京蛋白质组研究中心 基于石墨烯的糖蛋白n-糖链一步法富集-衍生化处理及maldi-tof-ms分析方法
US20150219616A1 (en) * 2014-02-05 2015-08-06 Phillips 66 Company Systems for quantitation of naphthenic acids in water and crude oil
CN104597114A (zh) * 2015-01-21 2015-05-06 华中师范大学 高分辨质谱仪负离子模式低质量区的质量校正试剂盒及校正方法
CN104931572A (zh) * 2015-05-14 2015-09-23 中国疾病预防控制中心传染病预防控制所 微生物鉴定用质谱仪分子量校正标准品及其制备方法与应用
CN107179412A (zh) * 2017-07-05 2017-09-19 北京毅新博创生物科技有限公司 用于飞行时间质谱检测蛋白和核酸的通用芯片的制备方法
CN107177689A (zh) * 2017-07-05 2017-09-19 北京毅新博创生物科技有限公司 用于飞行时间质谱检测蛋白和核酸的通用芯片

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAROLINE S. CHU1 等: "Profile of native N-linked glycan structures from human serumusing high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry", 《PROTEOMICS》 *
余兴 等: "辉光放电质谱分析中质谱干扰及其校正方法的现状", 《理化检验(化学分册)》 *

Similar Documents

Publication Publication Date Title
JP4160558B2 (ja) 結果主導型ストラテジーを利用して生体分子を特徴付けるための方法
Muddiman et al. Application of secondary ion and matrix‐assisted laser desorption‐ionization time‐of‐flight mass spectrometry for the quantitative analysis of biological molecules
CN108760909A (zh) 一种食用农产品农药残留非靶标、多指标、快速侦测的电子化方法
El‐Baba et al. Characterizing synthetic polymers and additives using new ionization methods for mass spectrometry
Roessner et al. Metabolite measurements
CN107884467A (zh) 改善质谱检测糖基结晶的方法及产品
CN107841453A (zh) 微生物收集装置及收集检测方法
CN101158666B (zh) 一种用含有抗体组的基质去捕获生物样品中生物标志的分析方法
CN110392830B (zh) 用于改进的精度、鉴定和定量的iroa代谢组学工作流程
CN108008002A (zh) 校正质谱检测核酸样品的准确率的方法及产品
CN107991491A (zh) 校正质谱检测蛋白样品的准确率的方法及产品
CN107884466A (zh) 校正质谱检测微生物样品的准确率的方法及产品
CN108051504A (zh) 校正质谱检测糖基正确率的方法及产品
Merkley et al. A proteomics tutorial
CN108008003A (zh) 改善质谱检测核酸结晶的方法及产品
CN101191795A (zh) 免疫组质谱检测消化系统肿瘤生物标志群的试剂盒和方法
CN112540139B (zh) 一种代谢谱检测用的分子量校准品试剂盒及其制备方法、使用方法
EP2426499A1 (en) Immunosuppressant monitoring by MALDI mass spectrometry
Miliotis et al. Development of silicon microstructures and thin-film MALDI target plates for automated proteomics sample identifications
US20030027231A1 (en) Methods for using mass spectrometry to identify and classify filamentous fungi, yeasts, molds and pollen
AU2001264867A1 (en) Methods for using mass spectrometry to identify and classify filamentous fungi, yeasts, molds and pollen
CN108051503A (zh) 改善质谱检测微生物结晶的方法及产品
CN107941894A (zh) 改善质谱检测蛋白结晶的方法及产品
CN112526039B (zh) 一种血清代谢谱分子量校准品试剂盒及其制备方法、使用方法
CN112526040B (zh) 一种唾液或尿液代谢谱分子量校准品试剂盒及其制备方法、使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180518

WD01 Invention patent application deemed withdrawn after publication