CN108051089A - 一种基于渥拉斯顿棱镜的测量样品偏振态的方法与系统 - Google Patents
一种基于渥拉斯顿棱镜的测量样品偏振态的方法与系统 Download PDFInfo
- Publication number
- CN108051089A CN108051089A CN201711154680.2A CN201711154680A CN108051089A CN 108051089 A CN108051089 A CN 108051089A CN 201711154680 A CN201711154680 A CN 201711154680A CN 108051089 A CN108051089 A CN 108051089A
- Authority
- CN
- China
- Prior art keywords
- light
- sample
- wollaston prism
- width
- polarization state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 65
- 238000005259 measurement Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000001093 holography Methods 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 7
- 238000012512 characterization method Methods 0.000 claims description 2
- 238000000605 extraction Methods 0.000 claims description 2
- 238000004088 simulation Methods 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 abstract 1
- 238000000926 separation method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J4/00—Measuring polarisation of light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J4/00—Measuring polarisation of light
- G01J4/04—Polarimeters using electric detection means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Holo Graphy (AREA)
Abstract
本发明公开了一种利用渥拉斯顿棱镜的测量样品全偏振态的方法与系统,准直透镜准直后的平行光经非偏振分光棱镜分成两束光,其中一束光穿过样品后作为物光,另一束光作为参考光,两束光经所述反射镜反射后通过非偏振分光棱镜合并。参考光和物光穿过渥拉斯顿棱镜之后,在不同位置形成两幅偏振态正交的干涉图样。利用所述相机将两幅全息图记录在一张图片上。由所述计算机从所记录的一幅图中提取获得两幅全息图,进行数值重建,最终得到穿过样品后物光对应的振幅和相位信息,经过计算机处理得到样品的偏振态信息。相比较传统Mueller显微镜的使用,避免了多次采集受环境的影响,提高了系统的稳定性和实时测量能力。
Description
技术领域
本发明涉及光学领域,特别涉及数字全息技术领域。
背景技术
数字全息术以其快速实时、非破坏性、非侵入性、全场测量等优点,被广泛用于流场测量、形变测量、形貌分析、显微成像等领域。但是常用的数字全息术只能得到待测光场的振幅和相位信息,而物体所携带的偏振态信息也是其最重要的性质之一。目前应用于生物学中的Mueller显微镜可以测量生物组织的Mueller矩阵,但是需要多次调整入射光的偏振态,记录多组强度信息来反解出生物组织偏振信息,过程非常繁琐且精度有限。在几何相位理论中,光波的偏振态信息和相位信息是结合在一起的,通过利用数字全息术测量样品的相位,可以很方便的计算获得样品的偏振态信息。
发明内容
为实现上述目的,本发明提出一种基于渥拉斯顿棱镜的测量样品偏振态信息的方法与系统,主要是利用偏振态和几何相位的关系,通过与数字全息术相结合,用相位信息计算偏振态信息。
本发明解决其技术问题所采用的技术方案是:一种基于渥拉斯顿棱镜的测量样品偏振态的方法,其特征在于包括如下步骤:
步骤1、调整光路,使得携带样品信息的物光束与参考光束干涉,并使相机上出现两幅大小相同、偏振态正交的全息图样;
步骤2、数字记录全息图样获得两幅全息图,和其中I1和I2表示全息图的强度,Ao1、Ao2、Ar1和Ar2表示物光和参考光经过渥拉斯顿棱镜后的振幅,和表示物光和参考光经过渥拉斯顿棱镜后的相位差;
步骤3、根据波动光学理论,数值模拟光波的衍射重建过程,对全息图进行数值重建,获得物光波场的振幅和相位分布信息;
步骤4、根据几何相位的相关定理,由数值重建的物光波场的振幅和相位分布计算出各物光波场上任一点的斯托克斯参量。
所述步骤1包含以下步骤:
a.调整光学元件获得两束扩束准直后偏振态已知的偏振光束(如图1,所得的光束1和光束2),并保证两束光强度相差较小;
b.其中一束光经样品调制(振幅、相位和偏振态发生变化)作为物光束,另一束光作为参考光束,两束光汇合后一起入射到渥拉斯顿棱镜;
c.调整渥拉斯顿棱镜的主光轴方向,使参考光束经渥拉斯顿棱镜后分为两束光强基本相等,偏振方向正交的线偏光,对于线偏振参考光束,使渥拉斯顿棱镜主光轴与参考光束的偏振方向成45°夹角,对于圆偏振参考光束,则渥拉斯顿棱镜主光轴方向可任意选择;
d.参考光束和物光束穿过渥拉斯顿棱镜之后,在不同位置形成两幅偏振态正交的干涉图样,选择合适的位置放置相机,使得不同位置的两幅全息图完全分开并用相机记录在一张图片上。
所述步骤3包含以下步骤:
a.从所记录的一幅图片中提取获得两幅数字全息图,并使两幅全息图中样品的位置完全一致,像素点对应;
b.对两幅数字全息图分别利用数字全息术中通用的数值重建算法进行数值重建,并进行相位解包裹处理,由两幅全息图分别获得穿过样品后物光波场的复振幅分布E1、E2,其中,β是图像采集器件的曝光参数。
所述步骤4包含以下步骤:
a.对步骤3获得的复振幅进行如下计算,此处χ和ψ分别表示物光波场上某一点的偏振态用庞加莱球表示时的方位角和极角;
b.根据庞加莱球和斯托克斯参量的关系,由下式得到归一化的斯托克斯参量,
至此,获得表征样品上任一点偏振态的斯托克斯参量。
本发明解决其技术问题所采用的技术方案是:包括一个激光器,一扩束准直装置,一偏振片,一样品,两反射镜,两非偏振分光棱镜,一渥拉斯顿棱镜,一相机和一计算机。其中,所述激光器发出的光经过所述准直装置准直后被所述非偏振分光棱镜分成两束,其中一束光穿过样品或经样品反射后携带样品信息作为物光束,另一束光作为参考光束,两束光经所述反射镜反射后通过非偏振分光棱镜汇合。旋转所述渥拉斯顿棱镜,使得参考光束经过渥拉斯顿棱镜后分为两束光强基本相等,偏振方向正交的线偏光。参考光束和物光束穿过渥拉斯顿棱镜之后,形成两幅空间分离且偏振态正交的干涉图样。利用所述相机将两幅全息图记录在一张图片上。由所述计算机从所记录的一幅图中提取获得两幅数字全息图,并使两幅全息图中样品的位置完全一致,像素点对应,进一步进行数值重建,最终得到物光波场对应的振幅和相位信息,经过计算机处理得到样品的偏振态信息。
有益效果
本发明克服了传统Mueller显微镜需要多次测量以计算获得样品偏振态信息的缺点,通过相机一次曝光采集即可以同时记录两幅偏振态正交的全息图,并结合几何相位原理计算获得样品的偏振态信息,可有效避免分次采集受到的环境的影响,提高系统实时测量的能力,尤其对于快速变化样品的偏振态测量具有重要意义。
附图说明
图1为利用渥拉斯顿棱镜的测量样品偏振态信息的原理光路;
图2为利用渥拉斯顿棱镜的透射式样品偏振态信息测量系统;
图3为利用渥拉斯顿棱镜的反射式样品偏振态信息测量系统;
图1中:1-偏振态已知的物光束,2-偏振态已知的参考光束,3-样品,4-非偏振分光棱镜,5-渥拉斯顿棱镜,6-相机。
图2中:1-激光器,2-透镜组,3-偏振片,4-非偏振分光棱镜,5-反射镜,6-透射式样品,7-反射镜,8-非偏振分光棱镜,9-渥拉斯顿棱镜,10-相机。
图3中:1-激光器,2-透镜组,3-偏振片,4-非偏振分光棱镜,5-非偏振分光棱镜,6-反射式样品,7-反射镜,8-非偏振分光棱镜,9-渥拉斯顿棱镜,10-相机。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:本发明设计的一种基于渥拉斯顿棱镜的透射式样品偏振态信息测量系统如图2所示,工作流程如下:
激光器1发出的光经过透镜组2准直成一束平行光,经偏振片3调制,入射到非偏振分光棱镜4,经非偏振分光棱镜4分成两束平行光,其中一束光被反射镜5反射后经透射式样品6调制作为物光束入射到非偏振分光棱镜8,另一束光经反射镜7反射后作为参考光束入射到非偏振分光棱镜8,非偏振分光棱镜8的使用使得参考光束和物光束同时入射到渥拉斯顿棱镜(其光轴与参考光束偏振方向夹角为45°),经渥拉斯顿棱镜9后分成两组光束。经样品调制后,入射光束的偏振态会发生变化,之后物光束和参考光束各自被分为两束偏振态正交的光束,分别干涉形成两幅全息图。使得不同位置的两幅全息图完全分开并用相机10记录在一张图片上。由所述计算机从所记录的一幅图中提取获得两幅数字全息图,并使两幅全息图中样品的位置完全一致,像素点对应,利用数字全息重建算法对全息图进行数值重建,分别得到两幅全息图的振幅和相位信息如下:其中β为图像采集器件的曝光参数。进一步进行如下计算:此处χ和ψ分别表示样品上某一点的偏振态用庞加莱球表示时的方位角和极角,可以获得样品上任意一点的方位角和极角信息,由此计算出物光波场归一化的斯托克斯参量:
实施例2:本发明设计的一种基于渥拉斯顿棱镜的反射式样品偏振态信息测量系统光路如图3所示,工作流程如下:
激光器1发出的光经过透镜组2准直成一束平行光,经偏振片3调制偏振态,入射到非偏振分光棱镜4,经非偏振分光棱镜4分成两束平行光,其中一束光被非偏振分光棱镜5反射后经反射式样品6反射作为物光束入射到非偏振分光棱镜8,另一束光经反射镜7反射后作为参考光束入射到非偏振分光棱镜8,非偏振分光棱镜8使得参考光束和物光束同时入射到渥拉斯顿棱镜9(其光轴与参考光束偏振方向夹角为45度),经渥拉斯顿棱镜9后分成两组光束。经样品调制后,入射光束的偏振态会发生变化,之后物光束和参考光束各自被分为两束偏振态正交的光束,分别干涉形成两幅全息图。使得不同位置的两幅全息图完全分开并用相机10记录在一张图片上。由所述计算机从所记录的一幅图中提取获得两幅数字全息图,并使两幅全息图中样品的位置完全一致,像素点对应,利用数字全息重建算法对全息图进行数值重建,分别得到两幅全息图的振幅和相位信息如下:其中β为图像采集器件的曝光参数。进一步进行如下计算:此处χ和ψ分别表示样品上某一点的偏振态用庞加莱球表示时的方位角和极角,可以获得样品上任意一点的方位角和极角信息,由此计算出物光波场归一化的斯托克斯参量:
Claims (6)
1.一种利用渥拉斯顿棱镜的测量样品偏振态的方法,其特征在于包括如下步骤:
步骤1、调整光路,使得携带样品信息的物光束与参考光束干涉,并使相机上出现两幅大小相同、偏振态正交的全息图样;
步骤2、数字记录全息图样获得两幅全息图,和其中I1和I2表示全息图的强度,Ao1、Ao2、Ar1和Ar2表示物光和参考光经过渥拉斯顿棱镜后的振幅,和表示物光和参考光经过渥拉斯顿棱镜后的相位差;
步骤3、根据波动光学理论,数值模拟光波的衍射重建过程,对全息图进行数值重建,获得物光波场的振幅和相位分布信息;
步骤4、根据几何相位的相关定理,由数值重建的物光波场的振幅和相位分布计算出各物光波场上任一点的斯托克斯参量。
所述步骤1包含以下步骤:
a.调整光学元件获得两束扩束准直后偏振态已知的偏振光束(如图1,所得的光束1和光束2),并保证两束光强度相差较小;
b.其中一束光经样品调制(振幅、相位和偏振态发生变化)作为物光束,另一束光作为参考光束,两束光汇合后一起入射到渥拉斯顿棱镜;
c.调整渥拉斯顿棱镜的主光轴方向,使参考光经渥拉斯顿棱镜后分为两束光强基本相等,偏振方向正交的线偏光,对于线偏振参考光,使渥拉斯顿棱镜主光轴与参考光的偏振方向成45°夹角,对于圆偏振参考光,则渥拉斯顿棱镜主光轴方向可任意选择;
d.参考光和物光穿过沃拉斯顿棱镜之后,在不同位置形成两幅偏振态正交的干涉图样,选择合适的位置放置相机,使得不同位置的两幅全息图完全分开并用相机记录在一张图片上。
所述步骤3包含以下步骤:
a.从所记录的一幅图片中提取获得两幅数字全息图,并使两幅全息图中样品的位置完全一致,像素点对应;
b.对两幅数字全息图分别利用数字全息术中通用的数值重建算法进行数值重建,并进行相位进行解包裹处理,由两幅全息图分别获得穿过样品后物光波场的复振幅分布E1、E2,其中,β是图像采集器件的曝光参数。
所述步骤4包含以下步骤:
a.对步骤3获得的复振幅进行如下计算,此处χ和ψ分别表示样品上某一点的偏振态用庞加莱球表示时的方位角和极角;
b.根据庞加莱球和斯托克斯参量的关系,由下式得到归一化的斯托克斯参量,
至此,获得表征样品上任一点偏振态的斯托克斯参量。
2.一种利用渥拉斯顿棱镜的测量样品偏振态的系统,包括一个激光器,一扩束准直装置,一偏振片,一样品,两反射镜,两非偏振分光棱镜,一渥拉斯顿棱镜,一相机和一计算机。其中,所述激光器发出的光经过所述准直装置准直后被所述非偏振分光棱镜分成两束,其中一束光穿过样品后作为物光束,另一束光作为参考光束,两束光经所述反射镜反射后通过非偏振分光棱镜汇合。旋转所述渥拉斯顿棱镜,使得参考光束经过渥拉斯顿棱镜后分为两束光强基本相等,偏振方向正交的线偏光。参考光束和物光束穿过渥拉斯顿棱镜之后,形成两幅空间分离且偏振态正交的干涉图样。利用所述相机将两幅全息图记录在一张图片上。由所述计算机从所记录的一幅图中提取获得两幅数字全息图,并使两幅全息图中样品的位置完全一致,像素点对应,进一步进行数值重建,最终得到物光波场对应的振幅和相位信息,经过计算机处理得到样品的偏振态信息。
3.根据权利要求2所述的利用渥拉斯顿棱镜的测量样品偏振态的系统,其特征在于:所述准直装置为一透镜组。
4.根据权利要求2所述的利用渥拉斯顿棱镜的测量样品偏振态的系统,其特征在于:所述非偏振分光棱镜用于将光的能量分为两部分。
5.根据权利要求2所述的利用渥拉斯顿棱镜的测量样品偏振态的系统,其特征在于:所述渥拉斯顿棱镜用于产生两组空间分离,偏振方向正交并存在一定相位差的全息图。
6.根据权利要求2所述的利用渥拉斯顿棱镜的测量样品偏振态的系统,其特征在于:所述图像采集装置为CCD或CMOS等图像采集器件。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711154680.2A CN108051089B (zh) | 2017-11-20 | 2017-11-20 | 一种基于渥拉斯顿棱镜的测量样品偏振态的方法与系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711154680.2A CN108051089B (zh) | 2017-11-20 | 2017-11-20 | 一种基于渥拉斯顿棱镜的测量样品偏振态的方法与系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108051089A true CN108051089A (zh) | 2018-05-18 |
CN108051089B CN108051089B (zh) | 2020-11-20 |
Family
ID=62119831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711154680.2A Active CN108051089B (zh) | 2017-11-20 | 2017-11-20 | 一种基于渥拉斯顿棱镜的测量样品偏振态的方法与系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108051089B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113091896A (zh) * | 2021-03-18 | 2021-07-09 | 西北工业大学 | 基于偏振光栅的动态测量任意光场完整信息的方法及光路 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001013079A1 (en) * | 1999-08-18 | 2001-02-22 | Swinburne University | Method and apparatus for the resolution of beams of electromagnetic radiation |
US20110181881A1 (en) * | 2010-01-25 | 2011-07-28 | Sigma Space Corporation | Polarization switching lidar device and method |
CN107101724A (zh) * | 2017-06-12 | 2017-08-29 | 哈尔滨工程大学 | 一种基于共路数字全息的偏振态参量测量装置与方法 |
CN107179127A (zh) * | 2017-06-12 | 2017-09-19 | 哈尔滨工程大学 | 偏振态参量的点衍射式数字全息测量装置与方法 |
CN107290058A (zh) * | 2017-06-12 | 2017-10-24 | 哈尔滨工程大学 | 基于偏振正交全息的琼斯矩阵参量同步测量装置与方法 |
-
2017
- 2017-11-20 CN CN201711154680.2A patent/CN108051089B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001013079A1 (en) * | 1999-08-18 | 2001-02-22 | Swinburne University | Method and apparatus for the resolution of beams of electromagnetic radiation |
US20110181881A1 (en) * | 2010-01-25 | 2011-07-28 | Sigma Space Corporation | Polarization switching lidar device and method |
CN107101724A (zh) * | 2017-06-12 | 2017-08-29 | 哈尔滨工程大学 | 一种基于共路数字全息的偏振态参量测量装置与方法 |
CN107179127A (zh) * | 2017-06-12 | 2017-09-19 | 哈尔滨工程大学 | 偏振态参量的点衍射式数字全息测量装置与方法 |
CN107290058A (zh) * | 2017-06-12 | 2017-10-24 | 哈尔滨工程大学 | 基于偏振正交全息的琼斯矩阵参量同步测量装置与方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113091896A (zh) * | 2021-03-18 | 2021-07-09 | 西北工业大学 | 基于偏振光栅的动态测量任意光场完整信息的方法及光路 |
Also Published As
Publication number | Publication date |
---|---|
CN108051089B (zh) | 2020-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107991242A (zh) | 一种基于偏振分光棱镜的测量样品偏振态的方法与系统 | |
CN102859418B (zh) | 观察装置 | |
CN104634699B (zh) | 基于拉盖尔‑高斯光束的散斑对比度成像测量装置及方法 | |
CN107388959B (zh) | 基于透射式点衍射的三波长数字全息检测装置与方法 | |
CN107356196B (zh) | 三波长载频复用共路数字全息检测装置与方法 | |
CN105444896B (zh) | 基于六角星孔衍射的涡旋光束拓扑荷值测量方法 | |
DE112009001652T5 (de) | Mehrkanal-Erfassung | |
CN205384407U (zh) | 一种双波长反射式数字全息显微镜 | |
CN101147052A (zh) | 用于希耳伯特相位成像的系统和方法 | |
CN107462150B (zh) | 基于一维周期光栅和点衍射的双视场数字全息检测方法 | |
CN104198040A (zh) | 一种二维琼斯矩阵参量的全息测量方法及实施装置 | |
CN205384406U (zh) | 一种双波长透射式数字全息显微镜 | |
CN107014784A (zh) | 一种散射介质矢量透射矩阵的测量装置和方法 | |
CN204085698U (zh) | 一种二维琼斯矩阵参量的全息测量装置 | |
CN108592784A (zh) | 双波长透射点衍射式共路数字全息测量装置与方法 | |
CN107121196B (zh) | 一种基于视场反转共路数字全息的琼斯矩阵参量同步测量装置与方法 | |
CN106952668A (zh) | 多功能激光聚变诊断干涉仪 | |
CN107388986A (zh) | 基于二维相位光栅和点衍射的双视场数字全息检测装置与方法 | |
CN104777737A (zh) | 一种基于非相干数字全息技术的三维光谱成像装置及方法 | |
CN108051089A (zh) | 一种基于渥拉斯顿棱镜的测量样品偏振态的方法与系统 | |
CN107356194B (zh) | 基于二维周期光栅和点衍射的四视场数字全息检测装置与方法 | |
CN107290058B (zh) | 基于偏振正交全息的琼斯矩阵参量同步测量装置与方法 | |
CN108180824A (zh) | 双波长载频正交透射点衍射式共路数字全息测量装置与方法 | |
CN102539381A (zh) | 基于微离轴显微干涉投影的折射率层析装置 | |
JP7174604B2 (ja) | 光画像計測装置、光画像計測方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |