CN108039821A - A kind of current stress optimization double Method of Phase-Shift Controlling of double active full-bridge DC-DC converters - Google Patents

A kind of current stress optimization double Method of Phase-Shift Controlling of double active full-bridge DC-DC converters Download PDF

Info

Publication number
CN108039821A
CN108039821A CN201711266394.5A CN201711266394A CN108039821A CN 108039821 A CN108039821 A CN 108039821A CN 201711266394 A CN201711266394 A CN 201711266394A CN 108039821 A CN108039821 A CN 108039821A
Authority
CN
China
Prior art keywords
msub
mrow
mfrac
converter
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711266394.5A
Other languages
Chinese (zh)
Other versions
CN108039821B (en
Inventor
宋文胜
安峰
杨柯欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201711266394.5A priority Critical patent/CN108039821B/en
Publication of CN108039821A publication Critical patent/CN108039821A/en
Application granted granted Critical
Publication of CN108039821B publication Critical patent/CN108039821B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter

Abstract

The present invention discloses a kind of double Method of Phase-Shift Controlling of current stress optimization of double active full-bridge DC DC converters, including:According to the averaging model of double active full-bridge DC DC converter output voltages, build the state mean space equation of output voltage, then sliding-model control is carried out to the differential term of output voltage in the state mean space equation of output voltage, obtain the predicted value of converter output voltage, with reference to Lagrangian and double power modules of the active full-bridge DC DC converters under dual Phaseshift controlling, interior phase-shift phase of the converter under current stress Optimal Control Strategy is obtainedD 1, evaluation function is built according to prediction output voltage and reference voltageJ, to evaluation functionJDerivation processing is carried out, double active full-bridge DC DC converters is obtained and optimizes the outer phase-shift phase under dual phase shift predictive control strategy in current stressD 2.The method of the present invention has the advantages that dynamic response is fast, efficient, control process is simple and is easy to Digital Implementation, has very strong practicality.

Description

A kind of current stress optimization double Phaseshift controllings of double active full-bridge DC-DC converters Method
Technical field
The present invention relates to the technical field of power electronics, and being specially a kind of electric current of double active full-bridge DC-DC converters should The double Method of Phase-Shift Controlling of power optimization.
Background technology
Double active full-bridge DC-DC converters due to its with power density height, electrical isolation, energy in bidirectional flow and easily Many advantages, such as realizing Sofe Switch, and it is widely used in the technologies such as electric automobile, photovoltaic generation, uninterrupted power source and energy storage neck Domain.
At present, double active full-bridge DC-DC converters have two kinds of common control modes:
Pulse width modulation controlled, this method is simple and is easily achieved, but due to the virtual value of full-bridge inverting output AC voltage Input direct voltage can only be less than, therefore its range of regulation is restricted.Except this, this method controls the dynamic characteristic of downconverter It is poor.
Phaseshift controlling, under the control method, changer system inertia is small, dynamic response is fast and Sofe Switch easy to implement. But be only the phase-shift phase between the square-wave voltage that two H bridges export due to controlled quentity controlled variable in single Phaseshift controlling, and converter master Will be by transformer leakage inductance (or series connection auxiliary induction) come transmission energy.Therefore, when input voltage and output voltage mismatch, The inductive current stress of converter can greatly increase, and excessive current stress can cause transducer loose increase, efficiency to decline very To the damage of switching device.In order to reduce current stress, a variety of current stress optimization methods are suggested, the optimization method proposed Although can effectively reduce current stress, the control structure of optimization method is complex, while the power of converter Control is controlled only by traditional PI to realize, causes the dynamic response of converter slower.
The content of the invention
In view of the above-mentioned problems, it is an object of the invention to provide one kind can solve existing current stress system optimizing control The current stress optimization two-phase of the double active full-bridge DC-DC converters for the problems such as middle dynamic response is slowly and control structure is complicated moves control Method processed.Technical solution is as follows:
A kind of current stress optimization double Method of Phase-Shift Controlling of double active full-bridge DC-DC converters, including:
S1:According to the averaging model of double active full-bridge DC-DC converter output voltages, the shape of structure converter output voltage State mean space equation:
Wherein, C2To export lateral capacitance, UoFor output voltage, f is switching frequency, and L is auxiliary induction, and R is load resistance, UinFor the input voltage of converter, D1、D2Respectively interior phase-shift phase and outer phase-shift phase of the converter under dual Phaseshift controlling;
S2:Sliding-model control is carried out to the state mean space equation of the converter output voltage, and according to discretization The state mean space equation of converter output voltage after processing, is calculated converter and is exported in next controlling cycle The predicted value of voltage:
Wherein, Uo(tk)、Uin(tk)、io(tk) it is respectively tkThe sampling and outputting voltage of moment converter, input voltage and defeated Go out electric current;Uo(tk+1) it is tk+1The converter output voltage that moment is predicted;
S3:According to the power module of Lagrangian and converter under dual Phaseshift controlling, converter is calculated Interior phase-shift phase D under current stress Optimal Control Strategy1
Wherein, p0For the transimission power of converter, k is voltage conversion ratio;
S4:According to prediction output voltage and reference output voltage structure evaluation function J:
Wherein, Uo *(tk) be converter reference output voltage;
Derivation processing is carried out to evaluation function J, converter is calculated and optimizes dual phase shift PREDICTIVE CONTROL in current stress Outer phase-shift phase D under strategy2
Wherein, Δ Uo(tk) it is tkThe output voltage of moment converter passes through the output of outer shroud proportional, integral PI controllers Value.
Further, the side of the state mean space equation of double active full-bridge DC-DC converter output voltages is built Method includes:
According to the symmetry of H bridges output voltage and inductive current waveform, in half period, by the working status of converter It is divided into four-stage;For each working status, the state equation of output voltage is established respectively:
Wherein, iL1,iL2,iL3,iL4The average value of inductive current in each stage, T are represented respectivelyhsFor the one of switch periods Half;
According to output voltage in the state equation of four-stage, according to equivalent time average principle, the output electricity is built The state mean space equation of pressure.
Further, the method for the prediction output voltage of acquisition double active full-bridge DC-DC converters is:Using Europe Draw forward approach to carry out discrete processes to the differential term of output voltage in the state mean space equation of converter output voltage, obtain Prediction output voltage of the converter in next controlling cycle.
Further, the converter is obtained outside the optimization that current stress optimizes under dual phase shift predictive control strategy Phase-shift phase
D2Method be:
It is and right with square structure object function of the difference of double active full-bridge DC-DC converter output voltages and reference voltage Object function derivation, it is zero to obtain outer phase-shift phase to make its derivative, and the outer phase-shift phase is compensated, and obtains double active full-bridges The outer phase-shift phase D of DC-DC converter2
Wherein,a1For intermediate variable, no physics Meaning.
Further, the Lagrangian is defined as:
E=Imax+λ(p-p*)
Wherein, E represents Lagrangian, and λ is Lagrange multiplier, p*For the given power of converter;ImaxFor conversion The current stress perunit value of device.
The beneficial effects of the invention are as follows:The present invention is averaged according to the state of double active full-bridge DC-DC converter output voltages Spatial model, predicts output voltage of the converter in next controlling cycle, and according to prediction output voltage and reference voltage Difference square establish evaluation function J, make its derivative be zero evaluation function J derivations, obtain optimization phase-shift phase.Simultaneously because open The influence of the factors such as pipe tube voltage drop, dead time and control delay is closed, optimization phase-shift phase is compensated, obtains final phase Move controlled quentity controlled variable;And current stress optimal control method proposed by the present invention, for converter load resistance and input voltage Mutation can respond rapidly to;Have the advantages that dynamic response is fast, efficient, control process is simple and is easy to Digital Implementation, have Stronger practicality.
Brief description of the drawings
Fig. 1 is the topology diagram of double active full-bridge DC-DC converters.
Fig. 2 is double active full-bridge DC-DC converters in dual Method of Phase-Shift Controlling (0≤D1≤D2≤ 1) transformer both sides under Voltage and inductive current waveform diagram.
Fig. 3 is double active full-bridge DC-DC converters in dual Method of Phase-Shift Controlling (0≤D2≤D1≤ 1) transformer both sides under Voltage and inductive current waveform diagram.
Fig. 4 is that double active full-bridge DC-DC converters optimize the control under dual phase shift forecast Control Algorithm in current stress Flow chart.
Fig. 5 is voltage electricity when double active full-bridge DC-DC converters start under conventional current stress optimization control method Flow oscillogram.
Fig. 6 is double active full-bridge DC-DC converters when starting under current stress optimizes dual phase shift forecast Control Algorithm Voltage and current waveform.
Fig. 7 is electricity when double active full-bridge DC-DC converters load switching under conventional current stress optimization control method Current voltage oscillogram.
Fig. 8 is loaded in the case where current stress optimizes dual phase shift forecast Control Algorithm for double active full-bridge DC-DC converters and cut Voltage and current waveform when changing.
Fig. 9 is double active full-bridge DC-DC converters when input voltage switches under conventional current stress optimization control method Oscillogram.
Figure 10 is that double active full-bridge DC-DC converters input electricity in the case where current stress optimizes dual phase shift forecast Control Algorithm Oscillogram when crush-cutting changes.
Embodiment
The present invention is described in further details with specific embodiment below in conjunction with the accompanying drawings.The present embodiment is according to Fig. 1 Double active full-bridge DC-DC converters topology diagram, to for double active full-bridge DC-DC converters current stress optimization Dual phase shift forecast Control Algorithm is described in detail.
First, according to the averaging model of double active full-bridge DC-DC converter output voltages, converter output voltage is built State mean space model and its state differential equation.
As shown in Fig. 2, when double active full-bridge DC-DC converters are under dual Phaseshift controlling, phase-shift phase meets 0≤D1≤D2 It is total according to voltage and current waveform of the converter under dual Phaseshift controlling, double active full-bridge converters at this time during≤1 relation Share eight kinds of working statuses.Due to the output voltage of H bridges and the symmetry of inductive current waveform, therefore only need to be in half period It is modeled, its output voltage state equation is:
Wherein, UoFor output voltage, R is load resistance, C2To export lateral capacitance, ThsFor the half of switch periods, iL1、iL2 And iL4The average value for the inductive current being illustrated respectively in the period, D1For the interior phase-shift phase of converter, D2For outer phase-shift phase.
Each differential equation in above-mentioned is merely represented in output voltage and inductive current and load current under the working status Between relation, can represent the differential equation of converter characteristic in whole switch periods to establish, be inscribed when demand obtains each Inductor current value:
Wherein, iL(t0)、iL(t1)、iL(t2)、iL(t3)、iL(t4) it is illustrated respectively in t0、t1、t2、t3、t4When the electricity inscribed Electrification flow valuve;N is transformer voltage ratio;L is auxiliary induction;F is switching frequency;K is voltage conversion ratio.
Further, according to it is each when inscribe inductor current value, obtain double active full-bridge DC-DC converters in each period The average value of interior inductive current:
Convolution (1), formula (2) and formula (3), the state for being derived by double active full-bridge DC-DC converter output voltages are put down Equal space equation:
With reference to figure 3, when phase-shift phase meets 0≤D1≤D2During≤1 relation, it is defeated can ibid to obtain double active full-bridge DC-DC converters Go out the state mean space equation of voltage:
Discrete processes, the letter between structure prediction output voltage and sampling and outputting voltage are carried out to state mean space equation Number relational expression.The differential term of output voltage reflects the variation tendency of output voltage to a certain extent in formula (4), using Euler Forward approach carries out sliding-model control to formula (4) respectively, obtains:
And then obtain double prediction output voltages of the active full-bridge DC-DC converter in next controlling cycle:
Wherein, Uo(tk) represent in tkThe output voltage of moment converter, i.e. sampled voltage;Uo(tk+1) represent according to current The circuit parameter of sample information and converter, predict in tk+1The output voltage of moment converter.
Similarly, according to formula (5), in 0≤D2≤D1The prediction of double active full-bridge DC-DC converter output voltages is obtained under≤1 Value:
With square structure evaluation function of the difference of the predicted value of output voltage and reference value:
The stabilization of double active full-bridge DC-DC converter output voltages in order to control, is derived pre- according to formula (7) and formula (8) Output voltage is surveyed, define the predicted value of output voltage and the difference of reference value square is evaluation function J:
From formula (9), the smaller output voltage for representing converter in subsequent time of evaluation function is closer to reference to electricity Pressure, make it that evaluation function is minimum, obtains its derivation:
Wherein,
Due to actual switch pipe tube voltage drop, dead time and control delay etc. factor influence so that theoretical model with Actual physics model causes the output voltage of converter inaccurate there are deviation, therefore need to add phase-shift phase compensation, and then is used Optimize the outer phase-shift phase D under dual phase shift forecast Control Algorithm in the current stress of double active full-bridge DC-DC converters2
Wherein, Δ Uo(tk) it is tkThe output voltage of moment converter passes through the output of outer shroud proportional, integral (PI) controller Value.
Similarly, when converter meets 0≤D2≤D1During≤1 relation, obtain being used for the double active full-bridge DC-DC changes of PREDICTIVE CONTROL The outer phase-shift phase D of parallel operation stress optimization2
Build Lagrangian:With 0≤D1≤D2Exemplified by≤1, defining Lagrangian is:
E=Imax+λ(p-p*)(13)
Wherein, E represents Lagrangian, and λ is Lagrange multiplier, p*For giving for double active full-bridge DC-DC converters Determine power;ImaxFor the current stress perunit value of converter.
Formula (6) and formula (7) are substituted into formula (13), and derivation is carried out to Lagrangian and is obtained:
λ in formula (14) is eliminated, obtains outer phase-shift phase D2With interior phase-shift phase D1Between relational expression:
Convolution (11), formula (12) and formula (15), obtain converter phase shift in the optimization under current stress optimal control Measure D1
Reference table 1, which show under the criterion of double active full-bridge DC-DC converter operation modes and every kind of mode most Low current stress and the optimal phase-shift phase D calculated1And D2
Table 1
With reference to figure 4, by input voltage, output voltage and the output current to double active full-bridge DC-DC converters into Row real-time sampling, the state mean space equation of associative transformation device output voltage, predicts it in next controlling cycle Output voltage, and the evaluation function J of output voltage is established, by evaluation function derivation, obtaining optimization phase-shift phase.
Understand that in conventional current stress optimization control algolithm, the output voltage of converter reaches steady with reference to figure 5 and Fig. 6 Determining state needs 323ms;And under control strategy in the present invention, the output voltage of converter reaches stable state and needs only to 44ms, the response of its output voltage is rapid, far smaller than, better than conventional current stress optimization control algolithm.
Understood with reference to figure 7 and Fig. 8, when load resistance is mutated, in conventional current stress optimization control algolithm, output electricity Pressure, which returns to stable state, needs 168ms, and under control strategy in the present invention, load voltage and electric current remain steady Fixed, its dynamic response is rapid.
Understood with reference to figure 9 and Figure 10, when input voltage mutation, in conventional current stress optimization control algolithm, input Voltage needs 379ms to stable state, and under control strategy in the present invention, the output voltage of converter responds rapidly to, and begins Keep stablizing eventually.
The current stress of the present invention optimizes dual phase shift forecast Control Algorithm, for double active full-bridge DC-DC converters It can be responded rapidly to when load resistance and input voltage mutation, with dynamic response is fast, efficient, control process is simple and easy In the Digital Implementation the advantages that, there is very strong practicality.

Claims (5)

  1. A kind of 1. double Method of Phase-Shift Controlling of current stress optimization of double active full-bridge DC-DC converters, it is characterised in that including:
    S1:According to the averaging model of double active full-bridge DC-DC converter output voltages, the state of structure converter output voltage is put down Equal space equation:
    <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mfrac> <mrow> <msub> <mi>dU</mi> <mi>o</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>D</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>4</mn> <mi>f</mi> <mi>L</mi> </mrow> </mfrac> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>-</mo> <mfrac> <msub> <mi>U</mi> <mi>o</mi> </msub> <mi>R</mi> </mfrac> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>&amp;le;</mo> <mn>1</mn> </mrow>
    <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mfrac> <mrow> <msub> <mi>dU</mi> <mi>o</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msub> <mi>D</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>-</mo> <mn>2</mn> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>4</mn> <mi>f</mi> <mi>L</mi> </mrow> </mfrac> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>-</mo> <mfrac> <msub> <mi>U</mi> <mi>o</mi> </msub> <mi>R</mi> </mfrac> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>&amp;le;</mo> <mn>1</mn> </mrow>
    Wherein, C2To export lateral capacitance, UoFor output voltage, f is switching frequency, and L is auxiliary induction, and R is load resistance, UinFor The input voltage of converter, D1、D2Respectively interior phase-shift phase and outer phase-shift phase of the converter under dual Phaseshift controlling;
    S2:Sliding-model control is carried out to the state mean space equation of the converter output voltage, and according to sliding-model control The state mean space equation of converter output voltage afterwards, is calculated converter output voltage in next controlling cycle Predicted value:
    <mrow> <msub> <mi>U</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>D</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>2</mn> <msup> <mi>f</mi> <mn>2</mn> </msup> <msub> <mi>LC</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>i</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>fC</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>+</mo> <msub> <mi>U</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>&amp;le;</mo> <mn>1</mn> </mrow>
    <mrow> <msub> <mi>U</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>D</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>-</mo> <mn>2</mn> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>4</mn> <msup> <mi>f</mi> <mn>2</mn> </msup> <msub> <mi>LC</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>i</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>fC</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>+</mo> <msub> <mi>U</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>&amp;le;</mo> <mn>1</mn> </mrow>
    Wherein, Uo(tk)、Uin(tk)、io(tk) it is respectively tkSampling and outputting voltage, input voltage and the output electricity of moment converter Stream;Uo(tk+1) it is tk+1The converter output voltage that moment is predicted;
    S3:According to the power module of Lagrangian and converter under dual Phaseshift controlling, converter is calculated in electricity Flow the interior phase-shift phase D under stress optimization control strategy1
    <mrow> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>p</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msup> <mi>k</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </msqrt> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>&amp;le;</mo> <mn>1</mn> </mrow>
    <mrow> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msqrt> <mfrac> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <msub> <mi>p</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </msqrt> <mo>-</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> <msub> <mi>p</mi> <mn>0</mn> </msub> </mrow> <msqrt> <mrow> <msub> <mi>p</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </msqrt> </mfrac> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>&amp;le;</mo> <mn>1</mn> </mrow>
    Wherein, p0For the transimission power of converter, k is voltage conversion ratio;
    S4:According to prediction output voltage and reference output voltage structure evaluation function J:
    <mrow> <mi>J</mi> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>U</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>U</mi> <mi>o</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> </mrow>
    Wherein, Uo *(tk) be converter reference output voltage;
    Derivation processing is carried out to evaluation function J, converter is calculated and optimizes dual phase shift predictive control strategy in current stress Under outer phase-shift phase D2
    <mrow> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>-</mo> <msqrt> <mrow> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>8</mn> <msub> <mi>fLi</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <msubsup> <mi>D</mi> <mn>1</mn> <mn>2</mn> </msubsup> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>8</mn> <msup> <mi>f</mi> <mn>2</mn> </msup> <msub> <mi>LC</mi> <mn>2</mn> </msub> <mo>&amp;lsqb;</mo> <msubsup> <mi>U</mi> <mi>o</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>U</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;Delta;U</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>4</mn> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </msqrt> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>&amp;le;</mo> <mn>0.5</mn> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>&amp;le;</mo> <mn>1</mn> </mrow>
    <mrow> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>-</mo> <msqrt> <mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>4</mn> <msub> <mi>fLi</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>4</mn> <msup> <mi>f</mi> <mn>2</mn> </msup> <msub> <mi>LC</mi> <mn>2</mn> </msub> <mo>&amp;lsqb;</mo> <msubsup> <mi>U</mi> <mi>o</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>U</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;Delta;U</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </msqrt> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>&amp;le;</mo> <mn>0.5</mn> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>&amp;le;</mo> <mn>1</mn> </mrow>
    Wherein, Δ Uo(tk) it is tkThe output voltage of moment converter passes through the output valve of outer shroud proportional, integral PI controllers.
  2. 2. the double Method of Phase-Shift Controlling of current stress optimization of double active full-bridge DC-DC converters according to claim 1, its It is characterized in that, building the method for the state mean space equation of double active full-bridge DC-DC converter output voltages includes:
    According to the symmetry of H bridges output voltage and inductive current waveform, in half period, the working status of converter is divided into Four-stage;For each working status, the state equation of output voltage is established respectively:
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mfrac> <mrow> <msub> <mi>dU</mi> <mi>o</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>i</mi> <msub> <mi>L</mi> <mn>1</mn> </msub> </msub> <mo>-</mo> <mfrac> <msub> <mi>U</mi> <mi>o</mi> </msub> <mi>R</mi> </mfrac> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <msub> <mi>T</mi> <mrow> <mi>h</mi> <mi>s</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mfrac> <mrow> <msub> <mi>dU</mi> <mi>o</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>i</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <mo>-</mo> <mfrac> <msub> <mi>U</mi> <mi>o</mi> </msub> <mi>R</mi> </mfrac> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <msub> <mi>T</mi> <mrow> <mi>h</mi> <mi>s</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <msub> <mi>T</mi> <mrow> <mi>h</mi> <mi>s</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mfrac> <mrow> <msub> <mi>dU</mi> <mi>o</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mfrac> <msub> <mi>U</mi> <mi>o</mi> </msub> <mi>R</mi> </mfrac> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <msub> <mi>T</mi> <mrow> <mi>h</mi> <mi>s</mi> </mrow> </msub> <mo>,</mo> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mrow> <mi>h</mi> <mi>s</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mfrac> <mrow> <msub> <mi>dU</mi> <mi>o</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>i</mi> <msub> <mi>L</mi> <mn>4</mn> </msub> </msub> <mo>-</mo> <mfrac> <msub> <mi>U</mi> <mi>o</mi> </msub> <mi>R</mi> </mfrac> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mrow> <mi>h</mi> <mi>s</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow> <mi>h</mi> <mi>s</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <msub> <mi>L</mi> <mn>1</mn> </msub> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <msub> <mi>L</mi> <mn>3</mn> </msub> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <msub> <mi>L</mi> <mn>4</mn> </msub> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced>
    Wherein, iL1,iL2,iL3,iL4The average value of inductive current in each stage, T are represented respectivelyhsFor the half of switch periods;Root According to output voltage in the state equation of four-stage, according to equivalent time average principle, the state for building the output voltage is put down Equal space equation.
  3. 3. the double Method of Phase-Shift Controlling of current stress optimization of double active full-bridge DC-DC converters according to claim 1,
    It is characterized in that:The method for obtaining the prediction output voltage of double active full-bridge DC-DC converter is:Before Euler Discrete processes are carried out to the differential term of output voltage in the state mean space equation of converter output voltage to method, are converted Prediction output voltage of the device in next controlling cycle.
  4. 4. the double Method of Phase-Shift Controlling of current stress optimization of double active full-bridge DC-DC converters according to claim 1,
    It is characterized in that, obtain the converter optimizes the outer phase-shift phase D under dual phase shift predictive control strategy in current stress2 Method be:
    With square structure object function of the difference of double active full-bridge DC-DC converter output voltages and reference voltage, and to target Function derivation, it is zero to obtain outer phase-shift phase to make its derivative, and the outer phase-shift phase is compensated, and obtains double active full-bridge DC-DC The outer phase-shift phase D of converter2
    <mrow> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>-</mo> <msqrt> <mrow> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>-</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> </mrow> </msqrt> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>&amp;le;</mo> <mn>0.5</mn> </mrow>
    Wherein,a1For intermediate variable.
  5. 5. the double Method of Phase-Shift Controlling of current stress optimization of double active full-bridge DC-DC converter according to claim 1 its It is characterized in that, the Lagrangian is defined as:
    E=Imax+λ(p-p*)
    Wherein, E represents Lagrangian, and λ is Lagrange multiplier, p*For the given power of converter, ImaxFor converter Current stress perunit value.
CN201711266394.5A 2017-12-05 2017-12-05 Current stress optimization two-phase shift control method of double-active full-bridge DC-DC converter Active CN108039821B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711266394.5A CN108039821B (en) 2017-12-05 2017-12-05 Current stress optimization two-phase shift control method of double-active full-bridge DC-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711266394.5A CN108039821B (en) 2017-12-05 2017-12-05 Current stress optimization two-phase shift control method of double-active full-bridge DC-DC converter

Publications (2)

Publication Number Publication Date
CN108039821A true CN108039821A (en) 2018-05-15
CN108039821B CN108039821B (en) 2019-12-20

Family

ID=62095325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711266394.5A Active CN108039821B (en) 2017-12-05 2017-12-05 Current stress optimization two-phase shift control method of double-active full-bridge DC-DC converter

Country Status (1)

Country Link
CN (1) CN108039821B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004836A (en) * 2018-07-09 2018-12-14 东南大学 Frequency conversion optimal control method suitable for modular multilevel commutator transformer
CN109002671A (en) * 2018-09-29 2018-12-14 国网四川省电力公司电力科学研究院 A kind of modeling method of bidirectional DC-DC converter
CN109039082A (en) * 2018-07-09 2018-12-18 东南大学 Reflux power optimization method suitable for modular multilevel commutator transformer
CN109861545A (en) * 2019-02-19 2019-06-07 合肥工业大学 Double active bridge DC converter direct Power Control methods based on energy closed loop
CN111817570A (en) * 2020-07-17 2020-10-23 国网辽宁省电力有限公司电力科学研究院 DAB converter wide-range regulation and control method based on multi-mode model prediction
CN112054694A (en) * 2020-09-16 2020-12-08 广东电网有限责任公司电力科学研究院 Bidirectional converter optimization control method and device based on minimum current stress
CN115149818A (en) * 2022-07-27 2022-10-04 山东大学 Current-free magnetic bias quick start control method and system based on extended phase shift modulation
CN115800766A (en) * 2023-01-30 2023-03-14 广东电网有限责任公司肇庆供电局 Model reference self-adaptive control method and device based on double-active-bridge converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997216A (en) * 2014-05-23 2014-08-20 西安交通大学 Modeling method of bidirectional full-bridge direct current converter under unilateral bridge PWM
CN105048821A (en) * 2015-08-25 2015-11-11 西南交通大学 Load current feedforward control method of increasing full-bridge isolation DC-DC convertor output voltage dynamic response
CN105099200A (en) * 2015-07-11 2015-11-25 中国矿业大学(北京) Alternating-current phasor analysis method and modeling method for phase-shifting control dual active bridge direct-current converters
US20150349647A1 (en) * 2014-06-02 2015-12-03 Utah State University Multi-mode control for a dc-to-dc converter
CN105391299A (en) * 2015-12-24 2016-03-09 西安理工大学 Single strategy model prediction control method of Buck converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997216A (en) * 2014-05-23 2014-08-20 西安交通大学 Modeling method of bidirectional full-bridge direct current converter under unilateral bridge PWM
US20150349647A1 (en) * 2014-06-02 2015-12-03 Utah State University Multi-mode control for a dc-to-dc converter
CN105099200A (en) * 2015-07-11 2015-11-25 中国矿业大学(北京) Alternating-current phasor analysis method and modeling method for phase-shifting control dual active bridge direct-current converters
CN105048821A (en) * 2015-08-25 2015-11-11 西南交通大学 Load current feedforward control method of increasing full-bridge isolation DC-DC convertor output voltage dynamic response
CN105391299A (en) * 2015-12-24 2016-03-09 西安理工大学 Single strategy model prediction control method of Buck converter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OUSSEYNOU YADE等: "Modulation strategy for a Dual Active Bridge converter using Model Predictive Control", 《2015 IEEE INTERNATIONAL SYMPOSIUM ON PREDICTIVE CONTROL OF ELECTRICAL DRIVES AND POWER ELECTRONICS (PRECEDE)》 *
何志兴等: "模块化多电平变换器模型预测控制", 《中国电机工程学报》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039082B (en) * 2018-07-09 2020-07-07 东南大学 Backflow power optimization method suitable for modular multilevel direct current transformer
CN109039082A (en) * 2018-07-09 2018-12-18 东南大学 Reflux power optimization method suitable for modular multilevel commutator transformer
CN109004836A (en) * 2018-07-09 2018-12-14 东南大学 Frequency conversion optimal control method suitable for modular multilevel commutator transformer
CN109004836B (en) * 2018-07-09 2020-07-24 东南大学 Frequency conversion optimization control method suitable for modular multilevel direct current transformer
CN109002671A (en) * 2018-09-29 2018-12-14 国网四川省电力公司电力科学研究院 A kind of modeling method of bidirectional DC-DC converter
CN109861545A (en) * 2019-02-19 2019-06-07 合肥工业大学 Double active bridge DC converter direct Power Control methods based on energy closed loop
CN109861545B (en) * 2019-02-19 2019-12-20 合肥工业大学 Direct power control method of double-active-bridge direct current converter based on energy closed loop
CN111817570A (en) * 2020-07-17 2020-10-23 国网辽宁省电力有限公司电力科学研究院 DAB converter wide-range regulation and control method based on multi-mode model prediction
CN112054694A (en) * 2020-09-16 2020-12-08 广东电网有限责任公司电力科学研究院 Bidirectional converter optimization control method and device based on minimum current stress
CN112054694B (en) * 2020-09-16 2021-08-27 广东电网有限责任公司电力科学研究院 Bidirectional converter optimization control method and device based on minimum current stress
CN115149818A (en) * 2022-07-27 2022-10-04 山东大学 Current-free magnetic bias quick start control method and system based on extended phase shift modulation
CN115800766A (en) * 2023-01-30 2023-03-14 广东电网有限责任公司肇庆供电局 Model reference self-adaptive control method and device based on double-active-bridge converter
CN115800766B (en) * 2023-01-30 2023-05-05 广东电网有限责任公司肇庆供电局 Model reference self-adaptive control method and device based on double active bridge converters

Also Published As

Publication number Publication date
CN108039821B (en) 2019-12-20

Similar Documents

Publication Publication Date Title
CN108039821A (en) A kind of current stress optimization double Method of Phase-Shift Controlling of double active full-bridge DC-DC converters
CN106230257B (en) A kind of two-way DC converter feedback linearization contragradience sliding-mode control
CN108039820B (en) Model prediction single-phase-shift control method of double-active full-bridge DC-DC converter
CN104022662B (en) PWM rectifier control method and device based on Model Predictive Control
CN108288917A (en) Triple phase shift dead beat optimal control methods of double active full-bridge DC-DC converters
CN107968571A (en) A kind of double active three phase-shifting control methods of bridging parallel operation
CN105048821B (en) Improve the load-current feedforward control method that full-bridge isolates DC DC converter output voltage dynamic responses
CN111817570B (en) DAB converter wide-range regulation and control method based on multi-mode model prediction
CN104600753B (en) A kind of micro-capacitance sensor multi-inverter parallel progress control method based on capacitance voltage differential
CN105391271A (en) Low-frequency quick finite set model prediction control method applied to power electronic system
CN110190753B (en) DC converter state feedback model prediction control method
CN111600492A (en) Efficiency optimization control method of double-active full-bridge direct current converter
CN103997216B (en) The modeling method of two-way full-bridge direct current converter under unilateral bridge PWM
CN114726196B (en) Prediction decoupling control method and system for phase-shift discrete set model of TAB converter
Zhou et al. Multi-objective optimization control for input-series output-parallel dual-active-bridge DC-DC converter in EER application
CN112217226B (en) Improved model-free predictive control method suitable for bidirectional DC-DC converter
CN105141136B (en) It is a kind of to be applied to the direct Power Control method that full-bridge isolates DC DC converters
CN103929083B (en) A kind of pulse rotation control method being applicable to five level H-bridge cascade connection types STATCOM
CN104935204A (en) Method for improving inner current loop gain control of single-phase full-bridge inversion power supply
CN112583276B (en) Bidirectional double-active full-bridge converter and linearization direct power control method thereof
CN104868742B (en) It is a kind of to realize the virtual power control method that full-bridge isolates DC DC converter decompression transformation pattern minimum current stress
CN113489342A (en) Double-active-bridge converter double phase-shifting control method based on transformer excitation inductance
CN103684022B (en) Based on the three-phase voltage type current transformer control method of switched system Multi-step predictive control
Guo et al. Model Predictive Control for the Three-Port Isolated Bidirectional DC/DC Converter with Soft Switching
Zhang et al. Return power optimization strategy of DAB converter based on model predictive control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant