CN108038898A - 一种单帧二值结构光编解码方法 - Google Patents

一种单帧二值结构光编解码方法 Download PDF

Info

Publication number
CN108038898A
CN108038898A CN201711071098.XA CN201711071098A CN108038898A CN 108038898 A CN108038898 A CN 108038898A CN 201711071098 A CN201711071098 A CN 201711071098A CN 108038898 A CN108038898 A CN 108038898A
Authority
CN
China
Prior art keywords
mrow
characteristic point
msub
value
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711071098.XA
Other languages
English (en)
Other versions
CN108038898B (zh
Inventor
李中伟
詹国敏
钟凯
刘洁
史玉升
王从军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201711071098.XA priority Critical patent/CN108038898B/zh
Publication of CN108038898A publication Critical patent/CN108038898A/zh
Application granted granted Critical
Publication of CN108038898B publication Critical patent/CN108038898B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/08Indexing scheme for image data processing or generation, in general involving all processing steps from image acquisition to 3D model generation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

本发明属于三维重构技术领域,并公开了一种单帧二值结构光编解码方法,包括以下步骤:1)对获取的编码图案中的特征点进行粗提取;2)对步骤1)查找到备选位置进行精提取;3)特征点的亚像素位置确定;4)对步骤3)获得的每个特征点进行解码;5)特征点通过编码值与极线约束原理可唯一确定的对应关系,实现双目视觉中的对应点查找,最后利用双目重构算法完成三维测量。本发明利用单帧二值的编码图像进行双目立体视觉的唯一性匹配,并实现精确的特征点提取。实现了在单帧结构光投影条件下的三维测量,该方法适合于高速三维测量。

Description

一种单帧二值结构光编解码方法
技术领域
本发明属于三维重构技术领域,更具体地,涉及一种单帧二值结构光编解码方法。
背景技术
面结构光三维测量方法通过向被测物体投影结构光图像,并用相机拍摄物体表面,获取经过物体表面调制后图像。通过特定的算法匹配每个特征位置的对应关系,根据三角测量原理,重建被测物体表面的三维数据。面结构光三维测量方法的关键是利用主动投影结构光获取两相机图像中特征点的对应关系,从而利用双目视觉原理求出三维坐标。
根据投影图像编码测量的不同,大部分结构光三维测量方法可以分为两大类:多帧与单帧结构光测量方法。多帧结构光通过顺序投影多帧编码图像,通过每帧图像相同位置的编码信息来检索对应点,因此能实现全分辨率的三维面形测量。但是动态物体的运动会引起相应的误差。单帧结构光测量方法只投影单幅编码图像,通过每个特征点的邻域编码信息进行对应点查找,此方法非常适合动态三维测量。但由于采用了邻域的编码信息降低了该方法的空间分辨率,同时也影响了被测物体边缘处的测量。另一方面由于仅采用单帧图像编码,无法采用多帧编码的方法消去物体表面纹理带来的影响,故编码时需考虑尽量增大编码方法的信噪比。
综上所述:单帧结构光编码方法适合于高速三维测量,但在精度、稳定性、空间分辨率几方面有着不足。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种单帧二值结构光编解码方法,该方法能实现了高速三维测量,同时具有较高的测量空间分辨率与测量稳定性。
为实现上述目的,按照本发明,提供了一种单帧二值结构光编解码方法,其特征在于,包括以下步骤:
1)对编码图案中的特征点进行粗提取:投影仪将编码图案投影到被测物体上,两个CCD相机对被测物体表面的编码图案进行采集获得编码图像,然后利用卷积模板对所述编码图像进行卷积操作,并通过卷积操作得到对称值分布图,从所述对称值分布图中提取峰值位置与谷值位置,所述峰值位置与谷值位置分别为编码图案中P+与P-两种类型特征点的备选位置,其中,所述投影仪位于两个CCD相机之间,所述卷积模板为如下(2n+1)×(2n+1)矩阵:
上述矩阵中,空白处的数值均为0,并且n为正整数;
2)对步骤1)中的备选位置进行精提取:将备选位置的每个像素进行180°旋转,然后求解每个像素的相关性值ρc,并提取大于相关性阈值的像素区域作为精提取区域;
3)特征点的亚像素位置确定:利用步骤2)的精提取区域获得每个大于相关性阈值的像素的连通域,根据相关性因子ρc进行重心法求解,得到每个特征点的亚像素的位置;
4)对步骤3)获得的每个特征点进行解码:对每个特征点分别在x轴方向和y轴方向上求解梯度,根据梯度的极值对精提取区域进行判断,找到特征点对应的四个角的坐标位置,再利用高斯卷积模板求解编码区域的灰度值,并利用编码区域的均值作为判断的阈值,得到每个角的黑白编码值,最终根据特征点的类型,求出每个特征点的编码;其中,x轴和y轴组成平面直角坐标系,并且x轴为水平方向;
5)通过编码值与极线约束原理实现双目视觉中特征点的对应点查找,然后利用双目重构算法完成被测物体的三维测量。
优选地,所述编码图案包括多个特征点P+与其四周的a1~a4四个编码组成的区域以及P-与其四周的四个编码a3~a6组成的区域,在编码图案中用黑白二值分别代表编码的0、1,并且在编码图案的序列周期内,每一列的编码具有唯一性。
优选地,步骤2)中得到特征点精提取区域的具体步骤如下:
2.1)提取特征点备选区域的对称值,设为矩阵Mc,将该矩阵转置得到其转置矩阵M'c
2.2)使用以下公式获得相关性因子ρc:
其中,Mci表示备选区域的像素矩阵,M'ci表示备选区域像素矩阵的转置,分别为矩阵Mc与M'c的均值,t为编码图像实际特征点区域中像素个数;
2.3)筛选出相关性因子的结果,得到特征点精提取区域。
优选地,所述卷积模板的大小根据图像实际特征点区域的大小进行确定。
总体而言,本发明利用单帧二值的编码图像进行双目立体视觉的唯一性匹配,并实现精确的特征点提取,可以实现在单帧结构光投影条件下的三维测量,适合于高速三维测量,能够取得下列有益效果:
1)通过合理的编码方法与设计,尽可能的减小了邻域编码的区域,实现的最大密度下的特征点分布。
2)设计的编码图案使用二值的编码方法,相较于彩色或灰度编码跟适合于高速投影,且具有较高的鲁棒性。
3)提出的特征点查找与提取算法,对于投影的二值编码图案具有较高的精度和鲁棒性。
附图说明
图1为结构光三维测量原理示意图;
图2为本发明提出的二值单帧编码图;
图3为本发明的解码重建算法流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
参照图1~图3,一种单帧二值结构光编解码方法,适用于典型的高速三维测量方法,该方法基于单帧编码的结构光图像编码架构。三维测量设备101由投影装置103与CCD相机102组成,测量时严格保持DLP投影仪与两个CCD相机的相对位置不变。测量时,由投影装置103向被测物体104投影二值单帧编码图像,两个相机对被测物体表面的图像进行采集,并传输至PC机105上完成后续解码与三维重建算法(S101-S105)。
本发明提出的单帧编码图案如图2所示,编码图案由角点特征点(P+、P-)与其四周的编码(a1-a6)构成。在图像中用黑白二值分别代表编码的0、1,在序列周期内,每一列的编码具有唯一性。特征点通过编码值与极线约束原理可以确定唯一的对应关系,实现双目视觉中的对应点查找。
如图3所示,本发明提供的单帧编码图案的特征点查找与解码方法,该方法主要包括下述步骤:
S101:对获取的编码图案中的特征点进行粗提取。根据角点灰度分布特征,其在水平方向与垂直方向具有对称性,故针对这个特点设计模板对全图进行卷积操作,得到对称值分布图,利用分布图的极值预期可以实现对特征点的粗提取。
第1.1步利用以下模板对全图进行卷积操作,模板的大小根据图像实际特征点区域的大小进行确定,通过卷积操作得到对称值分布图。所述卷积模板为如下(2n+1)×(2n+1)矩阵:
上述矩阵中,空白处的数值均为0,并且n为正整数;
第1.2步,从得到的对称值分布图中提取区域峰值与谷值位置,位置分别确定为P+与P-两种类型特征点的备选位置。
S102:对S101查找到备选位置进行精提取,利用对称值分布图的旋转对称性,对特征备选位置区域与该区域旋转结果进行相关性计算,大于相关性阈值的位置为精提取结果。
第2.1步,提取备选特征点区域对称值,设为矩阵Mc。将矩阵转置得到M'c
第2.2步,使用以下公式计算相关性因子ρc:
其中,Mci表示备选区域的像素矩阵,M'ci表示备选区域像素矩阵的转置,分别为矩阵Mc与M'c的均值,t为编码图像实际特征点区域中像素个数。
第2.3步,使用一个阈值来筛选出相关性因子的结果(由于因子为归一化的结果,阈值可以设置为定值,通常为0.7),得到特征点精提取区域。
S103:确定特征点的亚像素位置。利用S102的相关性因子结果,取得每个大于相关性阈值的联通域,根据相关性值ρ进行重心法求解得到每个特征点的亚像素精度位置结果。
S104:求解每个特征点的编码值,具体步骤如下:
第4.1步,在每个特征点位置的x、y方向上分别求解梯度,根据梯度的极值对解码区域进行判断,找到特征点解码位置四个角的坐标位置。
第4.2步,为了避免噪声的影响,在解码位置利用高斯模板(模板通常略小于图像的编码区域)使用卷积的方法求解编码区域的灰度值。利用求得的区域均值作为判断阈值,得到每个角的0、1编码。最终根据特征点类型(P+、P-),按照表1的解码公式求出每个特征点的编码。
表1角码公式表
S105:特征点通过编码值与极线约束原理可以确定唯一的对应关系,实现双目视觉中的对应点查找,最后利用双目重构算法完成三维测量。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种单帧二值结构光编解码方法,其特征在于,包括以下步骤:
1)对编码图案中的特征点进行粗提取:投影仪将编码图案投影到被测物体上,两个CCD相机对被测物体表面的编码图案进行采集获得编码图像,然后利用卷积模板对所述编码图像进行卷积操作,并通过卷积操作得到对称值分布图,从所述对称值分布图中提取峰值位置与谷值位置,所述峰值位置与谷值位置分别为编码图案中P+与P-两种类型特征点的备选位置,其中,所述投影仪位于两个CCD相机之间,所述卷积模板为如下(2n+1)×(2n+1)矩阵:
上述矩阵中,空白处的数值均为0,并且n为正整数;
2)对步骤1)中的备选位置进行精提取:将备选位置的每个像素进行180°旋转,然后求解每个像素的相关性值ρc,并提取大于相关性阈值的像素区域作为精提取区域;
3)特征点的亚像素位置确定:利用步骤2)的精提取区域获得每个大于相关性阈值的像素的连通域,根据相关性因子ρc进行重心法求解,得到每个特征点的亚像素的位置;
4)对步骤3)获得的每个特征点进行解码:对每个特征点分别在x轴方向和y轴方向上求解梯度,根据梯度的极值对精提取区域进行判断,找到特征点对应的四个角的坐标位置,再利用高斯卷积模板求解编码区域的灰度值,并利用编码区域的均值作为判断的阈值,得到每个角的黑白编码值,最终根据特征点的类型,求出每个特征点的编码;其中,x轴和y轴组成平面直角坐标系,并且x轴为水平方向;
5)通过编码值与极线约束原理实现双目视觉中特征点的对应点查找,然后利用双目重构算法完成被测物体的三维测量。
2.根据权利要求1所述的一种单帧二值结构光编解码方法,其特征在于,所述编码图案包括多个特征点P+与其四周的a1~a4四个编码组成的区域以及P-与其四周的四个编码a3~a6组成的区域,在编码图案中用黑白二值分别代表编码的0、1,并且在编码图案的序列周期内,每一列的编码具有唯一性。
3.根据权利要求1所述的一种单帧二值结构光编解码方法,其特征在于,步骤2)中得到特征点精提取区域的具体步骤如下:
2.1)提取特征点备选区域的对称值,设为矩阵Mc,将该矩阵转置得到其转置矩阵Mc';
2.2)使用以下公式获得相关性因子ρc:
<mrow> <mi>&amp;rho;</mi> <mi>c</mi> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>t</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mrow> <mi>C</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mover> <msub> <mi>M</mi> <mi>C</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <msub> <mi>M</mi> <mrow> <mi>C</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;prime;</mo> </msup> <mo>-</mo> <mover> <mrow> <msup> <msub> <mi>M</mi> <mi>C</mi> </msub> <mo>&amp;prime;</mo> </msup> </mrow> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> </mrow> <msqrt> <mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>t</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mrow> <mi>C</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mover> <msub> <mi>M</mi> <mi>C</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>t</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msup> <msub> <mi>M</mi> <mrow> <mi>C</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;prime;</mo> </msup> <mo>-</mo> <mover> <mrow> <msup> <msub> <mi>M</mi> <mi>C</mi> </msub> <mo>&amp;prime;</mo> </msup> </mrow> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> </mrow>
其中,Mci表示备选区域的像素矩阵,Mc'i表示备选区域像素矩阵的转置,分别为矩阵Mc与Mc'的均值,t为编码图像实际特征点区域中像素个数;
2.3)筛选出相关性因子的结果,得到特征点精提取区域。
4.根据权利要求1所述的一种单帧二值结构光编解码方法,其特征在于,所述卷积模板的大小根据图像实际特征点区域的大小进行确定。
CN201711071098.XA 2017-11-03 2017-11-03 一种单帧二值结构光编解码方法 Active CN108038898B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711071098.XA CN108038898B (zh) 2017-11-03 2017-11-03 一种单帧二值结构光编解码方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711071098.XA CN108038898B (zh) 2017-11-03 2017-11-03 一种单帧二值结构光编解码方法

Publications (2)

Publication Number Publication Date
CN108038898A true CN108038898A (zh) 2018-05-15
CN108038898B CN108038898B (zh) 2020-06-30

Family

ID=62093684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711071098.XA Active CN108038898B (zh) 2017-11-03 2017-11-03 一种单帧二值结构光编解码方法

Country Status (1)

Country Link
CN (1) CN108038898B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093321A1 (zh) 2018-11-08 2020-05-14 成都频泰鼎丰企业管理中心(有限合伙) 三维测量设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667303A (zh) * 2009-09-29 2010-03-10 浙江工业大学 一种基于编码结构光的三维重建方法
CN103292741A (zh) * 2013-05-29 2013-09-11 哈尔滨工程大学 一种基于k均值颜色聚类的物体表面三维轮廓的结构光视觉测量方法
CN103335611A (zh) * 2013-06-13 2013-10-02 华中科技大学 基于gpu的物体三维面形测量方法
CN104197861A (zh) * 2014-08-25 2014-12-10 深圳大学 基于结构光灰度向量的三维数字成像方法
CN104408732A (zh) * 2014-12-10 2015-03-11 东北大学 一种基于全向结构光的大视场深度测量系统及方法
CN104899882A (zh) * 2015-05-28 2015-09-09 北京工业大学 一种复杂场景的深度获取方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667303A (zh) * 2009-09-29 2010-03-10 浙江工业大学 一种基于编码结构光的三维重建方法
CN103292741A (zh) * 2013-05-29 2013-09-11 哈尔滨工程大学 一种基于k均值颜色聚类的物体表面三维轮廓的结构光视觉测量方法
CN103335611A (zh) * 2013-06-13 2013-10-02 华中科技大学 基于gpu的物体三维面形测量方法
CN104197861A (zh) * 2014-08-25 2014-12-10 深圳大学 基于结构光灰度向量的三维数字成像方法
CN104408732A (zh) * 2014-12-10 2015-03-11 东北大学 一种基于全向结构光的大视场深度测量系统及方法
CN104899882A (zh) * 2015-05-28 2015-09-09 北京工业大学 一种复杂场景的深度获取方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GUOMIN ZHAN, MENGQI WU, KAI ZHONG, ZHONGWEI LI, YUSHENG SHI: "A robust automatic registration method for hand-held structured light 3D scanner", 《PROC. SPIE 9276, OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS》 *
LIZ,ZHONGK,LIYFETAL.: "Multiview phase shifting- a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects", 《OPTICSLETTERS》 *
ZHONGK,LIZ,SHIYETAL.: "Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping", 《OPTICSANDLASERSINENGINEERING》 *
朱红,钟凯,詹国敏,李中伟,史玉升: "动态三维测量中图像同步高速投影与采集的原理及实现", 《现代制造工程》 *
李中伟; 钟凯; 沈其文: "三维测量技术在铸造中的应用", 《2014中国铸造活动周论文集》 *
湛承诚; 徐志强; 王从军; 钟凯; 李中伟: "基于结构光测量技术的三维人像建模", 《新技术新工艺》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093321A1 (zh) 2018-11-08 2020-05-14 成都频泰鼎丰企业管理中心(有限合伙) 三维测量设备
CN112930468A (zh) * 2018-11-08 2021-06-08 成都频泰鼎丰企业管理中心(有限合伙) 三维测量设备
JP2022514440A (ja) * 2018-11-08 2022-02-10 成都頻泰鼎豐企業管理中心(有限合夥) 三次元測定機器
CN112930468B (zh) * 2018-11-08 2022-11-18 成都频泰鼎丰企业管理中心(有限合伙) 三维测量设备
JP7418455B2 (ja) 2018-11-08 2024-01-19 成都頻泰鼎豐企業管理中心(有限合夥) 三次元測定機器及び測定システム
US11953313B2 (en) 2018-11-08 2024-04-09 Chengdu Pin Tai Ding Feng Business Administration Three-dimensional measurement device

Also Published As

Publication number Publication date
CN108038898B (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
CN107945268B (zh) 一种基于二元面结构光的高精度三维重建方法及系统
CN104331897B (zh) 基于极线校正的亚像素级相位立体匹配方法
CN100554873C (zh) 一种基于二维编码的三维形貌测量方法
CN103868524B (zh) 一种基于散斑图案的单目测量系统标定方法及装置
CN103983213B (zh) 一种结构光编码方法及相关装置
CN104197861B (zh) 基于结构光灰度向量的三维数字成像方法
CN103400366B (zh) 基于条纹结构光的动态场景深度获取方法
CN108122254B (zh) 基于结构光的三维图像重建方法、装置及存储介质
CN104541127B (zh) 图像处理系统以及图像处理方法
CN105890546A (zh) 基于正交格雷码和线移相结合的结构光三维测量方法
CN104897083B (zh) 一种基于投影仪散焦解相位的光栅投影三维快速测量方法
CN105180904B (zh) 基于编码结构光的高速运动目标位姿测量方法
CN108305286A (zh) 基于颜色编码的多目立体视觉脚型三维测量方法、系统和介质
CN108242064A (zh) 基于面阵结构光系统的三维重建方法及系统
CN106530337A (zh) 基于图像灰度引导的非局部立体像对密集匹配方法
CN201218726Y (zh) 基于彩色结构光的文物三维重建装置
CN109242957A (zh) 一种基于多重约束的单帧编码结构光三维重建方法
CN108592823A (zh) 一种基于双目视觉彩色条纹编码的解码方法
CN107036556A (zh) 基于分段量化相位编码的结构光三维测量方法
CN102445165A (zh) 基于单幅彩色编码光栅的立体视觉测量方法
Hervieu et al. Stereoscopic image inpainting: distinct depth maps and images inpainting
WO2018219156A1 (zh) 结构光编码方法、装置及终端设备
CN109373912A (zh) 一种基于双目视觉的非接触式六自由度位移测量方法
CN101794461A (zh) 一种三维建模方法及系统
CN104270624B (zh) 一种分区域的3d视频映射方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant