CN108028552B - 用于无线功率发送单元的谐振器控制技术 - Google Patents

用于无线功率发送单元的谐振器控制技术 Download PDF

Info

Publication number
CN108028552B
CN108028552B CN201680053183.0A CN201680053183A CN108028552B CN 108028552 B CN108028552 B CN 108028552B CN 201680053183 A CN201680053183 A CN 201680053183A CN 108028552 B CN108028552 B CN 108028552B
Authority
CN
China
Prior art keywords
parameter
pru
ptu
ratio
dominant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680053183.0A
Other languages
English (en)
Other versions
CN108028552A (zh
Inventor
H·希兰尼莫尔
A·霍什内维斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN108028552A publication Critical patent/CN108028552A/zh
Application granted granted Critical
Publication of CN108028552B publication Critical patent/CN108028552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

描述了用于无线功率发送单元的谐振器控制技术。可以定义一个或多个新颖的参数以与PTU所进行的主导PRU选择相结合地使用。在各个实施例中,多个PRU中的每一个可以确定一个或多个这样的参数的值,并且可以将这些值报告给PTU。在一些实施例中,PTU可以识别要用作选择准则的参数,并且可以基于由多个PRU所报告的该参数的相应值来识别主导PRU。描述并要求保护其它实施例。

Description

用于无线功率发送单元的谐振器控制技术
相关申请
本申请要求2015年10月14日提交的美国临时专利申请No.62/241,591的优先权,后者的全部内容通过引用合并于此。
技术领域
本文描述的实施例总体涉及无线功率传输系统。
背景技术
在无线功率传输系统中,功率发送单元(PTU)可以能够将功率无线传输到位于该PTU的传输场内的兼容设备。为了实现功率传输,PTU可以向谐振器线圈施加电流,该谐振器线圈可以经由与一个或多个功率接收单元(PRU)的谐振器线圈的谐振感应耦合来将功率传输到这些PRU。期望PTU在功率传输期间施加到谐振器线圈的电流可以取决于功率正在被传输到的PRU的特性。
附图说明
图1示出第一操作环境的实施例。
图2示出第二操作环境的实施例。
图3示出第三操作环境的实施例。
图4示出第一逻辑流程的实施例。
图5示出第二逻辑流程的实施例。
图6示出第一存储介质的实施例。
图7示出第二存储介质的实施例。
图8示出设备的实施例。
图9示出无线网络的实施例。
具体实施方式
各个实施例可以总体涉及用于无线功率发送单元的谐振器控制技术。根据一些这样的技术,可以定义一个或多个新颖的参数,以用作与PTU所进行的主导PRU选择有关的准则。在各个实施例中,多个PRU中的每一个可以确定一个或多个这样的参数的值,并且可以将这些值报告给PTU。在一些实施例中,PTU可以识别要用作选择准则的参数,并且可以基于由多个PRU针对该参数所报告的各个值来识别主导PRU。描述并要求保护其它实施例。
各个实施例可以包括一个或多个要素。要素可以包括被布置为执行某些操作的任何结构。根据给定的一组设计参数或性能约束所期望的,每个要素可以被实现为硬件、软件或其任何组合。尽管举例来说,可以用特定拓扑中的有限数量的要素来描述实施例,但是根据给定的实现方式所期望的,该实施例可以在替代拓扑中包括更多或更少的要素。值得注意的是,对“一个实施例”或“实施例”的任何引用意味着结合该实施例描述的特定特征、结构或特性被包括在至少一个实施例中。说明书中各处出现的短语“在一个实施例中”、“在一些实施例中”和“在各个实施例中”并不一定都指同一实施例。
本文的实施例总体涉及无线功率传输系统。各个实施例可以涉及根据一个或多个无线功率传输标准执行的无线功率传输。可以在一些实施例中使用的无线功率传输技术和/或标准可以包括例如由Alliance for Wireless Power颁布的Rezence标准、由Wireless Power Consortium颁布的Qi标准和由Power Matters Alliance颁布的Power2.0标准。可以在一些实施例中使用的无线功率传输技术和/或标准的附加示例可以包括可以由Alliance for Wireless Power和Power Matters Alliance在2015年合并所形成的组织颁布的技术和/或标准。实施例不限于这些示例。
各个实施例可以涉及根据一个或多个无线通信标准执行的无线通信。例如,一些实施例可以涉及Bluetooth Low Energy(也称为Bluetooth Smart)无线网络中根据2014年12月发布的Bluetooth Core Specification 4.2和/或其任何前身、后续和/或变型进行的无线通信。可以在各个实施例中使用的无线通信技术和/或标准的附加示例可以包括但不限于IEEE无线通信标准(例如,IEEE 802.11、IEEE 802.11a、IEEE 802.11b、IEEE 802.11g、IEEE 802.11n、IEEE 802.11u、IEEE 802.11ac、IEEE 802.11ad、IEEE 802.11af和/或IEEE802.11ah标准)、IEEE 802.11High Efficiency WLAN(HEW)Study Group开发的High-Efficiency Wi-Fi标准、Wi-Fi Alliance(WFA)无线通信标准(例如,Wi-Fi、Wi-Fi Direct、Wi-Fi Direct Services、Wireless Gigabit(“WiGig”)、WiGig Display Extension(WDE)、WiGig Bus Extension(WBE)、WiGig Serial Extension(WSE)标准)和/或WFA NeighborAwareness Networking(NAN)Task Group开发的标准。一些实施例可以涉及根据一个或多个下一代60GHz(“NG60”)无线局域网(WLAN)通信标准和/或一个或多个毫米波(mmWave)无线通信标准执行的无线通信。
各个实施例可以涉及根据一个或多个宽带无线通信标准执行的无线通信。例如,一些实施例可以涉及根据一个或多个第三代合作伙伴项目(3GPP)、3GPP长期演进(LTE)和/或3GPP LTE-Advanced(LTE-A)技术和/或标准(包括其前身、修订、后续和/或变型)执行的无线通信。可以在各个实施例中使用的宽带无线通信技术/标准的附加示例可以包括但不限于全球移动通信系统(GSM)/增强数据率GSM演进(EDGE)、通用移动通信系统(UMTS)/高速分组接入(HSPA)和/或带有通用分组无线服务(GPRS)的GSM系统(GSM/GPRS)、诸如IEEE802.16m和/或IEEE 802.16p的IEEE 802.16无线宽带标准、先进国际移动通信(IMT-ADV)、全球微波接入互操作性(WiMAX)和/或WiMAX II、码分多址(CDMA)2000(例如,CDMA2000lxRTT、CDMA2000EV-DO、CDMA EV-DV等)、高性能无线城域网(HIPERMAN)、无线宽带(WiBro)、高速下行链路分组接入(HSDPA)、高速正交频分复用(OFDM)分组接入(HSOPA)、高速上行链路分组接入(HSUPA)技术和/或标准,包括其前身、修订、后续和/或变型。可以在一些实施例中使用的无线通信技术和/或标准的其它示例可以包括但不限于机器类型通信(MTC)标准(例如,在3GPP技术报告(TR)23.887、3GPP技术规范(TS)22.368和/或3GPP TS23.682中体现的标准)和/或诸如由NFC Forum开发的近场通信(NFC)标准,包括上述任何内容的任何前身、修订、后续和/或变型。
图1示出可以表示各个实施例的操作环境100的示例。在操作环境100中,无线充电站101被配置有将功率无线传输到传输区域109内的能力设备(capable device)的能力。值得注意的是,传输区域109的尺寸和形状以及其相对于无线充电站101的位置和取向可以根据实施例而不同,并且不限于图1中所描绘的示例。在该示例中,无线充电站101向位于传输区域109内的无线可充电设备(WCD)103、105和107提供功率。更具体地,无线充电站101包括功率发送单元(PTU)102,无线充电站使用PTU将功率传输到WCD 103、105和107处的相应功率接收单元(PRU)104、106和108。PTU 102可以将电流ITX_COIL施加到发送(Tx)谐振器线圈110,这可以使得能够经由与PRU 104、106和108处的接收(Rx)谐振器线圈的谐振感应耦合将功率无线传输到PRU 104、106和108。
在功率传输操作期间,PTU 102可以根据一个或多个算法来选择、调整和/或控制ITX_COIL。根据任何特定的这种算法,可以基于PRU 104、106和108的特性和/或与将功率无线传输到这些PRU相关联的特性来选择、调整和/或控制ITX_COIL。根据第一示例算法,可以在PTU 102处选择、调整和/或控制ITX_COIL,以便基本上最大化整体无线充电系统效率η,该效率可以根据公式(1)和(2)如下定义:
Figure BDA0001596399230000041
Figure BDA0001596399230000042
这里,N表示功率正在被传输到的PRU的数量,PIN表示传输到PTU 102的DC功率,
Figure BDA0001596399230000043
表示由第i个PRU报告的该PRU的整流器的输出处的DC电压的值,并且
Figure BDA0001596399230000044
表示由第i个PRU报告的从该PRU的整流器输出的DC电流的值。
根据可以在各个实施例中潜在使用的一些算法,可以基于特定“主导(dominant)”PRU的特性和/或与将功率无线传输到该主导PRU相关联的特性来选择、调整和/或控制ITX_COIL。这样的算法可以被称为“基于主导PRU的”算法。根据示例的基于主导PRU的算法,可以在PTU 102处选择、调整和/或控制ITX_COIL,以便使主导PRU的整流器的输出处的DC电压VRECT与主导PRU的VRECT的优选值VRECT_SET之间的差值最小化。实施例不限于本示例。
为了应用基于主导PRU的算法,PTU 102可能首先需要识别主导PRU。根据一种方法,主导PRU可以被定义为消耗其最高百分比的额定输出功率的PRU。在一些实施例中,给定PRU消耗的其额定输出功率的百分比ρ可以根据公式(3)和(4)如下确定:
Figure BDA0001596399230000051
PRECT=VRECT*IRECT (4)
这里,PRECT表示PRU的整流器输出的平均功率,PRECT_MAX表示PRU额定的最大PRECT功率,VRECT表示PRU的整流器输出处的DC电压,并且IRECT表示PRU的整流器输出的DC电流。
在操作环境100中,当PRU 104、106和108关于功率、电流、电压、温度等具有类似的要求/能力时,将主导PRU识别为消耗其最高百分比的额定输出功率的PRU可以起到很好的效果。例如,当PRU 104、106和108都是具有相同PRU类别的PRU时,该方法可以起到很好的效果。然而,如果PRU 104、106和108关于这些参数中的一些或全部参数具有不同的相应要求/能力,则PTU 102在注意到其中的PRU的相应需求/能力的同时优化系统中的无线功率传输时可能遇到困难。例如,如果PRU 104、106和108是分别具有不同PRU类别的PRU,则PTU 102可能难以优化系统中的无线功率传输。
本文公开了用于无线功率发送单元的谐振器控制技术,其可以在各个实施例中实现以便改进主导PRU选择。根据一些这样的技术,可以定义一个或多个新颖的参数,以潜在地用作与PTU所进行的主导PRU选择有关的准则。在各个实施例中,多个PRU中的每一个都可以确定一个或多个这样的参数的值,并且可以将这些值报告给PTU。在一些实施例中,PTU可以识别要用作选择准则的参数,并且可以基于由多个PRU所报告的该参数的各个值来识别主导PRU。实施例在这方面不受限制。
图2示出根据各个实施例的操作环境200的示例,其可以表示用于无线功率发送单元的一种或多种所公开的谐振器控制技术的实现方式。在操作环境200中,PRU 104、106和108可以针对可能在PTU 102处潜在地用作主导PRU选择准则的一个或多个参数来确定相应参数值212、214和216。在一些实施例中,例如,可以基于PRU 104、106和108处的各种条件的测量(例如,温度测量、电流测量和电压测量)来确定这些参数值中的一些或全部。在这样的实施例中,PRU 104、106和108可以确定相应的测量213、215和217,并且可以基于那些测量213、215和217来确定参数值212、214和216中的一些或全部。实施例在这方面不受限制。
在各个实施例中,在分别确定参数值212、214和216之后,PRU 104、106和108可以将它们发送到PTU 102。在一些实施例中,PRU 104、106和108可以将参数值212、214和216经由低功耗蓝牙信令发送到PTU 102。在各个实施例中,PRU 104、106和108可以量化参数值212、214和216中的一些或全部,并且可以将量化值发送到PTU 102。在一些这样的实施例中,PRU 104、106和108可以使用对于PRU 104、106和108以及对于PTU 102都已知的量化方案/表来量化参数值212、214和216中的一些或全部。在各个实施例中,PTU 102可以识别要用作选择准则的参数,可以识别在从PRU 104、106和108接收的参数值内针对该参数所报告的相应值,并且可以基于那些相应值来识别PRU 104、106和108中的一个。应理解,尽管在操作环境200中描绘了三个PRU,但是实施例不限于该示例,并且更多和更少数量的PRU都是可能的且可以考虑的。实施例在这方面不受限制。
在一些实施例中,要报告给PTU 102的参数值可以包括温度比参数的值。在各个实施例中,对于PRU i,温度比τi可以根据公式(5)如下定义:
Figure BDA0001596399230000061
这里,t表示PRU i的温度,TMIN表示PRU i的最低操作温度,并且TMAX表示PRU i的最高操作温度。
在一些实施例中,要报告给PTU 102的参数值可以包括电流比参数的值。在各个实施例中,对于PRU i,电流比σi可以根据公式(6)如下定义:
Figure BDA0001596399230000062
这里,IRECT表示从PRU i的整流器输出的DC电流,并且IRECT_MAX表示PRU i处的最大容许整流器操作电流。
在一些实施例中,要报告给PTU 102的参数值可以包括电压比参数的值。在各个实施例中,对于PRU i,电压比vi可以根据公式(7)如下定义:
Figure BDA0001596399230000071
这里,VRECT表示PRU i的整流器输出处的DC电压,并且VRECT_HIGH表示PRU i处的最大操作VRECT
在一些实施例中,要报告给PTU 102的参数值可以包括PRU功率比参数的值。在各个实施例中,对于PRU i,PRU功率比αi可以根据公式(8)如下定义:
Figure BDA0001596399230000072
这里,PRECT表示PRU i的整流器输出的平均功率,并且PRECT_MAX表示PRU i的最大额定整流器功率。
在一些实施例中,要报告给PTU 102的参数值可以包括PRU-PTU功率比参数的值。在各个实施例中,对于PRU i,PRU-PTU功率比ηi可以根据公式(9)和(10)如下定义:
Figure BDA0001596399230000073
PPTU=VPTU_COIL_RMS*IPTU_COIL_RMS (10)
在一些实施例中,每次PTU 102识别主导PRU时,它可以基于特定准则来确定主导PRU。在各个实施例中,每次PTU 102识别主导PRU时,它可以基于相同的特定准则来进行。例如,在一些实施例中,PTU 102可以基于温度比来执行每次主导PRU确定。在PTU 102针对每次主导PRU确定使用同一准则的各个实施例中,PRU可以报告与该准则对应的参数的值,而不报告其它参数的值。例如,在PTU 102基于电压比执行每次主导PRU确定的实施例中,PRU104、106和108可以向PTU 102报告电压比值,但可以不向PTU 102报告温度比值、电流比值、PRU功率比值或PRU-PTU功率比值。实施例不限于本示例。
在一些实施例中,PTU 102用来确定主导PRU的准则可以包括从与值被报告给PTU102的多个相应参数对应的多个可能准则中选择的最佳准则。例如,在各个实施例中,PRU104、106和108可以向PTU 102报告温度比值、电流比值、电压比值、PRU功率比值和PRU-PTU功率比值,并且PTU 102可以将最佳准则选择为温度比、电流比、电压比、PRU功率比和PRU-PTU功率比中的一个。
在一些实施例中,PTU 102可以在每次充电会话时更新其最佳准则选择。在各个实施例中,例如,在每次充电会话期间,PTU 102可以选择温度比、电流比、电压比、PRU功率比和PRU-PTU功率比中的一个作为在该充电会话期间确定主导PRU所基于的最佳准则。在一些实施例中,每次它更新其最佳准则选择时,PTU 102可以根据公式(11)如下确定主导PRUi*
i*=argmaxiγi (11)
这里,γi可以是τi、σi、vi、αi或ηi,并且可以根据最佳准则更新不同而改变。
在各个实施例中,不是每次充电会话都对其最佳准则选择进行一次更新,而是PTU102可以根据其它间隔/频次来更新其最佳准则选择。在一些实施例中,例如,PTU 102可以以周期性时间间隔(例如,每T秒)更新其最佳准则选择。在示例实施例中,T可以等于3秒。在各个实施例中,每次新PRU被添加到系统时,PTU 102都可以更新其最佳准则选择。在一些实施例中,PTU 102可以基于γi的值来确定是否更新其最佳准则选择。在各个实施例中,例如,当γi的值超过定义的阈值时,PTU 102可以放弃更新其最佳准则选择。在这样的实施例中,如果γi的值下降到定义的阈值以下,则PTU 102可以更新其最佳准则选择,并且可以在γi的值保持低于阈值时继续周期性地更新该选择。实施例在这方面不受限制。
在一些实施例中,对于每个PRU,PTU 102可以比较温度比、电流比、电压比、PRU功率比和PRU-PTU功率比参数的值,并且可以选择具有最高值的参数作为最佳准则。在这样的实施例中,对于PRU i,γi的值可以由公式(12)如下给出:
γi=max(τiiiii) (12)
在各个实施例中,对于给定的PRU,可以根据该PRU的特定特性将不同的权重分派给不同的准则。例如,对于对温度特别敏感的PRU,可以将较高的权重分派给其温度比τi的值。在一些实施例中,这样的权重可以根据PRU的不同和/或根据准则的不同而改变。在各个实施例中,对于PRU i,可以根据一组权重{c1,i,c2,i,c3,i,c4,i,c5,i}对一组参数值{τii,viii}进行加权。在这样的实施例中,对于PRU i,γi的值可以由公式(13)如下给出:
γi=max(τi*c1,ii*c2,ii*c3,ii*c4,ii*c5,i) (13)
在一些这样的实施例中,c1,i、c2,i、c3,i、c4,i和c5,i可以合计为1。实施例在这方面不受限制。
在各个实施例中,关于给定的PRU,候选准则可以被划分为两个等级。在一些这样的实施例中,候选准则可以基于诸如PRU的PRU类别、PRU的其它特性以及候选准则的相对重要性的因素而被划分为两个等级。在各个实施例中,该划分可以是静态的。在一些其它实施例中,该划分可以是动态的,并且可以随时间而变化。在各个实施例中,如果与较高等级准则对应的那些参数值中的最高参数值大于阈值,则可以忽略较低等级准则,并且可以选择与该最高参数值对应的准则作为最佳准则。在一些实施例中,如果与较高等级准则对应的那些参数值中的最高参数值小于阈值,则可以将它和与较低等级准则对应的那些参数值中的最高参数值进行比较,并且可以选择两者中的较大者作为最佳准则。
在示例实施例中,较高等级可以包括温度比、电流比和电压比,并且较低等级可以包括PRU功率比和PRU-PTU功率比。然后,可以根据公式(14)如下确定与较高等级准则对应的那些参数值中的最高参数值(其可以表示为θi):
θi=max(τiii) (14)
如果θi大于为0.8的阈值Th,则可以确定γi等于θi。如果θi小于Th,则γi可以根据公式(15)如下确定:
γi=max(θiii) (15)
在各个实施例中,可以结合这种两等级方法来应用归一化权重。例如,如果根据一组权重{c1,i,c2,i,c3,i,c4,i,c5,i}来对参数值{τii,viii}进行加权,则γi可以根据公式(16)和(17)如下确定:
θi=max(τi*c1,ii*c2,ii*c3,i) (16)
Figure BDA0001596399230000101
图3示出根据各个实施例的操作环境300的示例,其可以表示用于无线功率发送单元的一种或多种所公开的谐振器控制技术的实现方式。在操作环境300中,PTU 102总体可以操作以通过应用主导评估算法330,将PRU 104、106和108中的一个识别为主导PRU。在各个实施例中,PTU 102可以应用主导评估算法330,以为PRU 104、106和108确定相应的主导评估值332、334和336。在一些实施例中,PTU 102可以应用主导评估算法330,以基于相应的参数值集合322、324和326来确定主导评估值332、334和336。在各个实施例中,PTU 102可以基于主导评估值332、334和336来将PRU 104、106和108中的一个识别为主导PRU。在一些实施例中,PTU 102可以识别主导评估值332、334和336中的最大值,并且可以例如根据上面的公式(11),将与该最大主导评估值相关联的PRU识别为主导PRU。例如,如果主导评估值332比主导评估值334和336都大,则PTU 102可以将PRU 104识别为主导PRU。值得注意的是,在各个实施例中,取决于主导评估算法330的性质和/或包含在参数值集合322、324和326中的参数值,PTU 102可以识别与最小主导评估值相关联的PRU作为主导PRU。实施例在这方面不受限制。
在操作环境300中,如在图2的操作环境200中那样,PTU 102可以分别从PRU 104、106和108接收参数值212、214和216。在一些实施例中,PTU 102可以分别基于参数值212、214和216来确定参数值集合322、324和326。在各个实施例中,参数值集合322、324和326可以分别包括参数值212、214和216中的一些或全部。在一些实施例中,参数值集合322、324和326的构成可以部分取决于用作主导评估算法330的特定算法。更具体地,在各个实施例中,主导评估算法330可以在由参数值212、214和216描述的参数中指明要结合识别主导PRU来考虑的特定参数,并且参数值集合322、324和326可以包括那些参数的值。例如,如果参数值212、214和216包括PRU 104、106和108的相应温度比、电流比和电压比,并且主导评估算法330指明主导PRU将要基于对温度比和电流比的考虑来识别,则参数值集合322、324和326可以包括PRU 104、106和108的相应温度比和电流比,但不包括它们关联的电压比。实施例不限于本示例。
在一些实施例中,参数值集合322、324和326可以包括PRU 104、106和108的相应温度比参数值,例如可以根据上面的公式(5)来确定。在各个实施例中,参数值集合322、324和326可以附加地或替代地包括PRU 104、106和108的相应电流比参数值,例如可以根据上面的公式(6)来确定。在一些实施例中,参数值集合322、324和326可以附加地或替代地包括PRU 104、106和108的相应电压比参数值,例如可以根据上面的公式(7)来确定。在各个实施例中,参数值集合322、324和326可以附加地或替代地包括PRU 104、106和108的相应PRU功率比参数值,例如可以根据上面的公式(8)来确定。在一些实施例中,参数值集合322、324和326可以附加地或替代地包括PRU 104、106和108的相应PRU-PTU功率比参数值,例如可以根据上面的公式(9)和(10)来确定。在各个实施例中,参数值集合322、324和326可以附加地或替代地包括一种或多种其它类型的参数的值。实施例在这方面不受限制。
在一些实施例中,PTU 102可以被配置有选择主导评估算法330的能力。在各个实施例中,主导评估算法330的给定选择可以应用在特定时间间隔期间。例如,在一些实施例中,PTU 102可以每T秒更新其主导评估算法330的选择,使得主导评估算法330的给定选择适用于T秒的持续时间。在各个这样的实施例中,T可以等于3。在一些实施例中,PTU 102可以针对每次充电会话执行主导评估算法330的重新选择。值得注意的是,在上述两种场景中,主导评估算法330的重新选择可以涉及或可以不涉及不同算法的选择。实施例在这方面不受限制。
在各个实施例中,根据主导评估算法330,参数值集合322、324和326可以各自包括多个参数值,并且主导评估值332、334和336可以被分别确定为包含在参数值集合322、324和326中的最大值。例如,在一些实施例中,参数值集合322、324和326可以各自包括相应的温度比、电流比、电压比、PRU功率比和PRU-PTU功率比参数值,并且主导评估值332、334和336可以根据上面的公式(12)来确定。实施例不限于本示例。
在各个实施例中,根据主导评估算法330,可以将主导评估值332、334和336分别确定为包含在参数值集合322、324和326中的最大加权值。例如,在一些实施例中,可以将不同的权重应用于参数值集合322、324和326中所包含的不同值,并且可以将主导评估值332、334和336识别为例如根据上面的公式(13)由这种加权得到的最大值。在各个实施例中,可以将同一权重集合应用于参数值集合322、324和326中的每一个。在一些其它实施例中,所应用的权重集合可以在参数值集合322、324和326之间不同。在各个这样的实施例中,根据主导评估算法330,可以基于给定PRU的特定特性来选择应用于与该PRU对应的参数值集合的特定权重集合。例如,如果PRU 104对温度特别敏感并且参数值集合322包括PRU 104的温度比参数的值,则该温度比参数值可以比参数值集合324和326中所包含的温度比参数值更重地加权。实施例不限于本示例。
可以参考以下附图和所附示例进一步描述上述实施例的操作。一些附图可以包括逻辑流程。尽管本文给出的这些附图可以包括特定的逻辑流程,但是可以理解,逻辑流程仅仅提供了如何能够实现本文描述的总体功能的示例。此外,给定的逻辑流程不一定必须按照所给出的顺序执行,除非另有说明。另外,给定的逻辑流程可以由硬件元件、由处理器执行的软件元件或其任何组合来实现。实施例在这方面不受限制。
图4示出根据一些实施例的逻辑流程400的示例,其可以表示一种或多种所公开的谐振器控制技术的实现方式。如图4所示,可以在402处选择主导评估算法以用于将多个PRU中的一个识别为主导PRU。例如,在图3的操作环境300中,PTU 102可以选择主导评估算法330。在404处,可以应用所选择的主导评估算法来确定多个PRU中的每一个的相应主导评估值。例如,在图3的操作环境300中,PTU 102可以应用主导评估算法330,以基于相应的参数值集合322、324和326来确定主导评估值332、334和336。在406处,可以基于主导评估值来确定主导PRU的身份。例如,在图3的操作环境300中,PTU 102可以操作以基于主导评估值332、334和336来将PRU 104、106和108中的一个识别为主导PRU。实施例不限于这些示例。
图5示出根据各个实施例的逻辑流程500的示例,其可以表示一种或多种所公开的谐振器控制技术的实现方式。如图5中所示,可以在502处识别主导PRU。例如,在图3的操作环境300中,PTU 102可以操作以将PRU 104、106和108中的一个识别为主导PRU。在504处,可以识别主导PRU的优选操作参数。例如,在图3的操作环境300中,在识别出主导PRU之后,PTU102可以操作以识别主导PRU的优选整流器电压。在506处,可以基于主导PRU的优选操作参数来控制PTU的操作参数。例如,在图3的操作环境300中,PTU 102可以控制其谐振器线圈电流,以最小化主导PRU的优选整流器电压与主导PRU的实际整流器电压之间的差值。实施例不限于这些示例。
本发明的各个实施例可以全部或部分地以软件和/或固件来实现。该软件和/或固件可以采取包含在非瞬时性计算机可读存储介质中或上的指令的形式。然后,那些指令可以被一个或多个处理器读取和执行,以使得能够执行本文所描述的操作。指令可以是任何合适的形式,例如但不限于源代码、编译代码、解译代码、可执行代码、静态代码、动态代码等。这样的计算机可读介质可以包括用于以一个或多个计算机可读的形式存储信息的任何有形的非瞬时性介质,例如但不限于只读存储器(ROM))、随机存取存储器(RAM)、磁盘存储介质、光存储介质、闪存等。实施例在这方面不受限制。
图6示出存储介质600的实施例。存储介质600可以包括任何非瞬时性计算机可读存储介质或机器可读存储介质,例如光学、磁性或半导体存储介质。在各个实施例中,存储介质600可以包括制造物品。在一些实施例中,存储介质600可以存储计算机可执行指令,例如用于实现图4的逻辑流程400和图5的逻辑流程500中的一个或两者的计算机可执行指令。计算机可读存储介质或机器可读存储介质的示例可以包括能够存储电子数据的任何有形介质,包括易失性存储器或非易失性存储器、可移除或不可移除存储器、可擦除或不可擦除存储器、可写或可重写存储器等。计算机可执行指令的示例可以包括任何合适类型的代码,例如源代码、编译代码、解译代码、可执行代码、静态代码、动态代码、面向对象的代码、可视代码等。实施例在这方面不受限制。
图7示出存储介质700的实施例。存储介质700可以包括任何非瞬时性计算机可读存储介质或机器可读存储介质,例如光学、磁性或半导体存储介质。在各个实施例中,存储介质700可以包括制造物品。在一些实施例中,存储介质700可以存储计算机可执行指令。在各个实施例中,这样的计算机可执行指令可以包括用于实现无线充电站101和/或PTU 102的计算机可执行指令。在一些实施例中,这样的计算机可执行指令可以包括用于实现WCD(例如,WCD 103、105或107)和/或用于实现PRU(例如,PRU 104、106或108)的计算机可执行指令。计算机可读存储介质或机器可读存储介质的示例可以包括能够存储电子数据的任何有形介质,包括易失性存储器或非易失性存储器、可移除或不可移除存储器、可擦除或不可擦除存储器、可写或可重写存储器等。计算机可执行指令的示例可以包括任何合适类型的代码,例如源代码、编译代码、解译代码、可执行代码、静态代码、动态代码、面向对象的代码、可视代码等。实施例在这方面不受限制。
图8示出可以实现无线充电站101、PTU 102、WCD 103、105和107、PRU 104、106和108、逻辑流程400、逻辑流程500、存储介质600以及存储介质700中的一个或多个的通信设备800的实施例。在各个实施例中,设备800可以包括逻辑电路828。逻辑电路828可以包括物理电路,例如用于执行针对无线充电站101、PTU 102、WCD 103、105和107、PRU 104、106和108、逻辑流程400以及逻辑流程500中的一个或多个所描述的操作。如图8中所示,设备800可以包括无线电接口810、基带电路820和计算平台830,但是实施例不限于这种配置。
设备800可以将无线充电站101、PTU 102、WCD 103、105和107、PRU 104、106和108、逻辑流程400、逻辑流程500、存储介质600、存储介质700和逻辑电路828中的一个或多个的结构和/或操作中的一些或全部实现在单个计算实体中,例如完全在单个设备内。替代地,设备800可以使用分布式系统架构(例如,客户端-服务器架构、3层架构、N层架构、紧密耦合或集群架构、点对点架构、主从架构、共享数据库架构以及其它类型的分布式系统)将无线充电站101、PTU 102、WCD 103、105和107、PRU 104、106和108、逻辑流程400、逻辑流程500、存储介质600、存储介质700以及逻辑电路828中的一个或多个的结构和/或操作的部分分布在多个计算实体上。实施例在这方面不受限制。
在一个实施例中,无线电接口810可以包括适于发送和/或接收单载波或多载波调制信号(例如,包括补码键控(CCK)、正交频分复用(OFDM)和/或单载波频分多址(SC-FDMA)符号)的组件或组件的组合,但是实施例不限于任何特定的空中接口或调制方案。无线电接口810可以包括例如接收机812、频率综合器814和/或发射机816。无线电接口810可以包括偏置控件、晶体振荡器和/或一个或多个天线818-f。在另一实施例中,无线电接口810可以根据需要使用外部压控振荡器(VCO)、表面声波滤波器、中频(IF)滤波器和/或RF滤波器。由于潜在的RF接口设计的多样性,省略了对它的扩展描述。
基带电路820可以与无线电接口810进行通信以处理接收信号和/或发送信号,并且可以包括例如用于对接收到的信号进行下变换的模数转换器822、用于对用于发送的信号进行上变换的数模转换器824。此外,基带电路820可以包括用于相应接收/发送信号的PHY链路层处理的基带或物理层(PHY)处理电路826。基带电路820可以包括例如用于MAC/数据链路层处理的介质访问控制(MAC)处理电路827。基带电路820可以包括用于例如经由一个或多个接口834与MAC处理电路827和/或计算平台830通信的存储器控制器832。
在一些实施例中,PHY处理电路826可以包括帧结构和/或检测模块,与诸如缓冲存储器的附加电路相结合以构造和/或解构通信帧。替代地或附加地,MAC处理电路827可以共享用于这些功能中的某些功能的处理,或者独立于PHY处理电路826执行这些处理。在一些实施例中,MAC和PHY处理可以集成到单个电路中。
计算平台830可以为设备800提供计算功能。如图所示,计算平台830可以包括处理组件840。除了基带电路820之外或替代它,设备800可以使用处理组件840来执行无线充电站101、PTU 102、WCD 103、105和107、PRU 104、106和108、逻辑流程400、逻辑流程500、存储介质600、存储介质700以及逻辑电路828中的一个或多个的处理操作或逻辑。处理组件840(和/或PHY 826和/或MAC 827)可以包括各种硬件元件、软件元件或两者的组合。硬件元件的示例可以包括设备、逻辑设备、组件、处理器、微处理器、电路、处理器电路、电路元件(例如,晶体管、电阻器、电容器、电感器等)、集成电路、专用集成电路(ASIC)、可编程逻辑器件(PLD)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、存储器单元、逻辑门、寄存器、半导体器件、芯片、微芯片、芯片组等。软件元件的示例可以包括软件组件、程序、应用、计算机程序、应用程序、系统程序、软件开发程序、机器程序、操作系统软件、中间件、固件、软件模块、例程、子程序、功能、方法、进程、软件接口、应用程序接口(API)、指令集、计算代码、计算机代码、代码段、计算机代码段、字、值、符号或其任何组合。确定是否使用硬件元件和/或软件元件实现实施例可以根据任何数目的因素而变化,例如期望的计算速率、功率水平、耐热性、处理周期预算、输入数据速率、输出数据速率、存储器资源、数据总线速度和其它设计或性能约束,如给定的实现方式所期望的那样。
计算平台830可以进一步包括其它平台组件850。其它平台组件850包括公共计算元件,例如一个或多个处理器、多核处理器、协处理器、存储器单元、芯片组、控制器、外设、接口、振荡器、定时设备、视频卡、音频卡、多媒体输入/输出(I/O)组件(例如,数字显示器)、电源等。存储器单元的示例可以包括但不限于一个或多个较高速度存储器单元形式的各种类型的计算机可读和机器可读存储介质,例如只读存储器(ROM)、随机存取存储器(RAM)、动态RAM(DRAM)、双数据速率DRAM(DDRAM)、同步DRAM(SDRAM)、静态RAM(SRAM)、可编程ROM(PROM)、可擦除可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)、闪存、聚合物存储器(例如,铁电聚合物存储器、双向存储器、相变或铁电存储器、硅-氧化物-氮化物-氧化物-硅(SONOS)存储器)、磁卡或光学卡、诸如独立磁盘冗余阵列(RAID)驱动器的设备阵列、固态存储器设备(例如,USB存储器、固态驱动器(SSD))和适用于存储信息的任何其它类型的存储介质。
设备800可以是例如超移动设备、移动设备、固定设备、机器到机器(M2M)设备、个人数字助理(PDA)、移动计算设备、智能电话、电话、数字电话、蜂窝电话、用户设备、电子书阅读器、手持设备、单向寻呼机、双向寻呼机、消息收发设备、计算机、个人计算机(PC)、台式计算机、膝上型计算机、笔记本计算机、上网本计算机、手持式计算机、平板计算机、服务器、服务器阵列或服务器群、网页服务器、网络服务器、互联网服务器、工作站、小型计算机、主框架计算机、超级计算机、网络设备、网页设备、分布式计算系统、多处理器系统、基于处理器的系统、消费电子产品、可编程消费电子产品、游戏设备、显示器、电视机、数字电视机、机顶盒、无线接入点、基站、节点B、用户站、移动用户中心、无线电网络控制器、路由器、集线器、网关、网桥、交换机、机器或其组合。因此,根据适当的需要,可以在设备800的各个实施例中包括或省略本文描述的设备800的功能和/或特定配置。
可以使用单输入单输出(SISO)架构来实现设备800的实施例。然而,某些实现方式可以包括多个天线(例如,天线818-f),以便使用用于波束成形或空分多址(SDMA)的自适应天线技术和/或使用MIMO通信技术进行发送和/或接收。
可以使用分立电路、专用集成电路(ASIC)、逻辑门和/或单芯片架构的任何组合来实现设备800的组件和特征。此外,可以使用微控制器、可编程逻辑阵列和/或微处理器或在适当合适的情况下任何前述的组合来实现设备800的特征。注意,硬件、固件和/或软件元件可以在本文中共同或单独地称为“逻辑”或“电路”。
应理解,图8的框图中示出的示例性设备800可以表示许多潜在的实现方式的一个功能描述性示例。因此,在附图中描绘的块功能的划分、省略或包含不能推定出用于实现这些功能的硬件组件、电路、软件和/或元件将必然被划分、省略或包含在实施例中。
图9示出无线网络900的实施例。如图9中所示,无线网络包括接入点902和无线站904、906和908。在各个实施例中,无线网络900可以包括无线局域网(WLAN),例如实现一个或多个电气和电子工程师协会(IEEE)802.11标准(有时统称为“Wi-Fi”)的WLAN。在一些其它实施例中,无线网络900可以包括另一类型的无线网络,和/或可以实现其它无线通信标准。在各个实施例中,例如,无线网络900可以包括WWAN或WPAN,而不是WLAN。实施例不限于本示例。
在一些实施例中,无线网络900可以实现一个或多个宽带无线通信标准,例如3G或4G标准,包括其修订、后续和变型。3G或4G无线标准的示例可以包括但不限于IEEE 802.16m和802.16p标准、第三代合作伙伴项目(3GPP)长期演进(LTE)和LTE-Advanced(LTE-A)标准以及先进国际移动通信(IMT-ADV)标准(包括其修订、后续和变型)中的任何一种。其它合适的示例可以包括但不限于全球移动通信系统(GSM)/增强数据率GSM演进(EDGE)技术、通用移动通信系统(UMTS)/高速分组接入(HSPA)技术、全球微波接入互操作性(WiMAX)或WiMAXII技术、码分多址(CDMA)2000系统技术(例如,CDMA2000lxRTT、CDMA2000EV-DO、CDMA EV-DV等)、高性能无线城域网(HIPERMAN)技术(如由European Telecommunications StandardsInstitute(ETSI)Broadband Radio Access Networks(BRAN)定义的)、无线宽带(WiBro)技术、带有通用分组无线服务(GPRS)的GSM系统(GSM/GPRS)技术、高速下行链路分组接入(HSDPA)技术、高速正交频分复用(OFDM)分组接入(HSOPA)技术、高速上行链路分组接入(HSUPA)系统技术、LTE/系统架构演进(SAE)的3GPP Rel.8-12等。实施例在这方面不受限制。
在各个实施例中,无线站904、906和908可以与接入点902通信,以便获得至一个或多个外部数据网络的连接性。在一些实施例中,例如,无线站904、906和908可以经由接入点902和接入网910连接到互联网912。在各个实施例中,接入网910可以包括提供基于订阅的互联网连接性的专用网络,例如互联网服务提供商(ISP)网络。实施例不限于本示例。
在各个实施例中,两个或更多个无线站904、906和908可以通过交换点对点通信而彼此直接通信。例如,在图9的示例中,无线站904和906通过交换点对点通信914而彼此直接通信。在一些实施例中,可以根据一个或多个Wi-Fi Alliance(WFA)标准来执行这种点对点通信。例如,在各个实施例中,可以根据WFA Wi-Fi Direct标准(2010版)来执行这种点对点通信。在各个实施例中,可以附加地或替代地使用由WFA Wi-Fi Direct Services(WFDS)Task Group开发的一个或多个接口、协议和/或标准来执行这种点对点通信。实施例不限于这些示例。
可以使用硬件元件、软件元件或两者的组合来实现各个实施例。硬件元件的示例可以包括处理器、微处理器、电路、电路元件(例如,晶体管、电阻器、电容器、电感器等)、集成电路、专用集成电路(ASIC)、可编程逻辑器件(PLD)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、逻辑门、寄存器、半导体器件、芯片、微芯片、芯片组等。软件的示例可以包括软件组件、程序、应用、计算机程序、应用程序、系统程序、机器程序、操作系统软件、中间件、固件、软件模块、例程、子程序、功能、方法、进程、软件接口、应用程序接口(API)、指令集、计算代码、计算机代码、代码段、计算机代码段、字、值、符号或其任何组合。确定是否使用硬件元件和/或软件元件实现实施例可以根据任何数目的因素而变化,例如期望的计算速率、功率水平、耐热性、处理周期预算、输入数据速率、输出数据速率、存储器资源、数据总线速度和其它设计或性能约束。
至少一个实施例的一个或多个方面可以通过存储在机器可读介质上的代表性指令来实现,该机器可读介质表示处理器内的各种逻辑,指令在由机器读取时使机器制造逻辑以执行本文描述的技术。被称为“IP核”的这种表示可以被存储在有形的机器可读介质上并且被提供给各种客户或制造工厂,以加载到实际产生逻辑或处理器的制造机器中。一些实施例可以例如使用机器可读介质或物品来实现,该机器可读介质或物品可以存储一条指令或一组指令,如果机器执行指令,则可以使机器根据实施例执行方法和/或操作。这样的机器可以包括例如任何合适的处理平台、计算平台、计算设备、处理设备、计算系统、处理系统、计算机、处理器等,并且可以使用硬件和/或软件的任何合适的组合来实现。机器可读介质或物品可以包括例如任何合适类型的存储器单元、存储器设备、存储器物品、存储器介质、存储设备、存储物品、存储介质和/或存储单元,例如存储器、可移除或不可移除介质、可擦除或不可擦除介质、可写或可重写介质、数字或模拟介质、硬盘、软盘、光盘只读存储器(CD-ROM)、可记录光盘(CD-R)、可重写光盘(CD-RW)、光盘、磁介质、磁光介质、可移除存储卡或磁盘、各种类型的数字通用光盘(DVD)、磁带、盒式磁带等。指令可以包括使用任何合适的高级编程语言、低级编程语言、面向对象编程语言、可视编程语言、编译编程语言和/或解译编程语言实现的任何合适类型的代码,例如源代码、编译代码、解译代码、可执行代码、静态代码、动态代码、加密代码等。
以下示例属于进一步的实施例:
示例1是一种装置,包括存储器和用于功率发送单元(PTU)的逻辑,所述逻辑的至少一部分实现在耦合到所述存储器的电路中,所述逻辑用于:选择将要用于将多个功率接收单元(PRU)中的一个识别为主导PRU的主导评估算法;识别多个参数值集合,每个参数值集合对应于所述多个PRU中的相应一个;应用所选择的主导评估算法以确定多个主导评估值,每个主导评估值是基于所述多个参数值集合中的相应一个来确定的;以及基于所述多个主导评估值来识别所述主导PRU。
示例2是示例1所述的装置,每个参数值集合包括用于其对应PRU的温度比参数值。
示例3是示例1至2中任一项所述的装置,每个参数值集合包括用于其对应PRU的电流比参数值。
示例4是示例1至3中任一项所述的装置,每个参数值集合包括用于其对应PRU的电压比参数值。
示例5是示例1至4中任一项所述的装置,每个参数值集合包括用于其对应PRU的PRU功率比参数值。
示例6是示例1至5中任一项所述的装置,每个参数值集合包括用于其对应PRU的PRU-PTU功率比参数。
示例7是示例1至6中任一项所述的装置,每个主导评估值包括所述多个参数值集合中的相应一个中所包括的一个或多个参数值中所包含的参数值。
示例8是示例1至7中任一项所述的装置,每个主导评估值包括所述多个参数值集合中的相应一个的最大参数值。
示例9是示例1至8中任一项所述的装置,每个参数值集合包括单个参数值,每个主导评估值包括所述多个参数值集合的相应一个中的单个参数值。
示例10是示例1至6中任一项所述的装置,每个主导评估值包括所述多个参数值集合中的相应一个的加权最大参数值。
示例11是示例1至10中任一项所述的装置,所述逻辑用于:响应于在所述PTU的充电区域中检测到新PRU而选择所述主导评估算法。
示例12是示例1至10中任一项所述的装置,所述逻辑用于:在第一充电会话期间应用所选择的主导评估算法,以及在第二充电会话期间选择第二主导评估算法进行应用。
示例13是示例1至10中任一项所述的装置,所述逻辑用于:在第一时间间隔期间应用所选择的主导评估算法,以及在第二时间间隔期间选择第二主导评估算法进行应用。
示例14是示例13所述的装置,所述第一和第二时间间隔包括3秒的持续时间。
示例15是示例1至14中任一项所述的装置,所述逻辑用于:识别所述主导PRU的操作参数的优选值,以及基于所述主导PRU的操作参数的优选值来控制所述PTU的操作参数。
示例16是示例15所述的装置,受控的操作参数包括所述PTU的谐振器线圈电流。
示例17是示例15至16中任一项所述的装置,所述主导PRU的操作参数包括所述主导PRU的整流器电压。
示例18是示例15至17中任一项所述的装置,所述逻辑用于:控制所述PTU的操作参数,以使所述主导PRU的操作参数的实现值与所述主导PRU的操作参数的优选值之间的差值最小化。
示例19是一种系统,包括根据示例1至18中任一项所述的装置以及至少一个射频(RF)收发机。
示例20是示例19的系统,包括至少一个RF天线。
示例21是示例19至20中任一项所述的系统,包括至少一个处理器。
示例22是至少一种非瞬时性计算机可读存储介质,包括一组指令,所述指令响应于在功率发送单元(PTU)处被执行而使所述PTU:选择将要用于将多个功率接收单元(PRU)中的一个识别为主导PRU的主导评估算法;识别多个参数值集合,每个参数值集合对应于所述多个PRU中的相应一个;应用所选择的主导评估算法以确定多个主导评估值,每个主导评估值是基于所述多个参数值集合中的相应一个来确定的;以及基于所述多个主导评估值来识别所述主导PRU。
示例23是示例22所述的至少一种非瞬时性计算机可读存储介质,每个参数值集合包括用于其对应PRU的温度比参数值。
示例24是示例22至23中任一项所述的至少一种非瞬时性计算机可读存储介质,每个参数值集合包括用于其对应PRU的电流比参数值。
示例25是示例22至24中任一项所述的至少一种非瞬时性计算机可读存储介质,每个参数值集合包括用于其对应PRU的电压比参数值。
示例26是示例22至25中任一项所述的至少一种非瞬时性计算机可读存储介质,每个参数值集合包括用于其对应PRU的PRU功率比参数值。
示例27是示例22至26中任一项所述的至少一种非瞬时性计算机可读存储介质,每个参数值集合包括用于其对应PRU的PRU-PTU功率比参数值。
示例28是示例22至27中任一项所述的至少一种非瞬时性计算机可读存储介质,每个主导评估值包括所述多个参数值集合中的相应一个中所包括的一个或多个参数值中所包含的参数值。
示例29是示例22至28中任一项所述的至少一种非瞬时性计算机可读存储介质,每个主导评估值包括所述多个参数值集合中的相应一个的最大参数值。
示例30是示例22至29中任一项所述的至少一种非瞬时性计算机可读存储介质,每个参数值集合包括单个参数值,每个主导评估值包括所述多个参数值集合的相应一个中的单个参数值。
示例31是示例22至27中任一项所述的至少一种非瞬时性计算机可读存储介质,每个主导评估值包括所述多个参数值集合中的相应一个的加权最大参数值。
示例32是示例22至31中任一项所述的至少一种非瞬时性计算机可读存储介质,包括如下指令,所述指令响应于在所述PTU处被执行而使所述PTU:响应于在所述PTU的充电区域中检测到新PRU而选择所述主导评估算法。
示例33是示例22至31中任一项所述的至少一种非瞬时性计算机可读存储介质,包括如下指令,所述指令响应于在所述PTU处被执行而使所述PTU:在第一充电会话期间应用所选择的主导评估算法,以及在第二充电会话期间选择第二主导评估算法进行应用。
示例34是示例22至31中任一项所述的至少一种非瞬时性计算机可读存储介质,包括如下指令,所述指令响应于在所述PTU处被执行而使所述PTU:在第一时间间隔期间应用所选择的主导评估算法,以及在第二时间间隔期间选择第二主导评估算法进行应用。
示例35是示例34所述的至少一种非瞬时性计算机可读存储介质,所述第一和第二时间间隔包括3秒的持续时间。
示例36是示例22至35中任一项所述的至少一种非瞬时性计算机可读存储介质,包括如下指令,所述指令响应于在所述PTU处被执行而使所述PTU:识别所述主导PRU的操作参数的优选值,以及基于所述主导PRU的操作参数的优选值来控制所述PTU的操作参数。
示例37是示例36所述的至少一种非瞬时性计算机可读存储介质,受控的操作参数包括所述PTU的谐振器线圈电流。
示例38是示例36至37中任一项所述的至少一种非瞬时性计算机可读存储介质,所述主导PRU的操作参数包括所述主导PRU的整流器电压。
示例39是示例36至38中任一项所述的至少一种非瞬时性计算机可读存储介质,包括如下指令,所述指令响应于在所述PTU处被执行而使所述PTU:控制所述PTU的操作参数,以使所述主导PRU的操作参数的实现值与所述主导PRU的操作参数的优选值之间的差值最小化。
示例40是一种方法,包括:由功率发送单元(PTU)的电路选择将要用于将多个功率接收单元(PRU)中的一个识别为主导PRU的主导评估算法;识别多个参数值集合,每个参数值集合对应于所述多个PRU中的相应一个;应用所选择的主导评估算法以确定多个主导评估值,每个主导评估值是基于所述多个参数值集合中的相应一个来确定的;以及基于所述多个主导评估值来识别所述主导PRU。
示例41是示例40所述的方法,每个参数值集合包括用于其对应PRU的温度比参数值。
示例42是示例40至41中任一项所述的方法,每个参数值集合包括用于其对应PRU的电流比参数值。
示例43是示例40至42中任一项所述的方法,每个参数值集合包括用于其对应PRU的电压比参数值。
示例44是示例40至43中任一项所述的方法,每个参数值集合包括用于其对应PRU的PRU功率比参数值。
示例45是示例40至44中任一项所述的方法,每个参数值集合包括用于其对应PRU的PRU-PTU功率比参数。
示例46是示例40至45中任一项所述的方法,每个主导评估值包括所述多个参数值集合中的相应一个中所包括的一个或多个参数值中所包含的参数值。
示例47是示例40至46中任一项所述的方法,每个主导评估值包括所述多个参数值集合中的相应一个的最大参数值。
示例48是示例40至47中任一项所述的方法,每个参数值集合包括单个参数值,每个主导评估值包括所述多个参数值集合的相应一个中的单个参数值。
示例49是示例40至45中任一项所述的方法,每个主导评估值包括所述多个参数值集合中的相应一个的加权最大参数值。
示例50是示例40至49中任一项所述的方法,包括:响应于在所述PTU的充电区域中检测到新PRU而选择所述主导评估算法。
示例51是示例40至49中任一项所述的方法,包括:在第一充电会话期间应用所选择的主导评估算法,以及在第二充电会话期间选择第二主导评估算法进行应用。
示例52是示例40至49中任一项所述的方法,包括:在第一时间间隔期间应用所选择的主导评估算法,以及在第二时间间隔期间选择第二主导评估算法进行应用。
示例53是示例52所述的方法,所述第一和第二时间间隔包括3秒的持续时间。
示例54是示例40至53中任一项所述的方法,包括:识别所述主导PRU的操作参数的优选值,以及基于所述主导PRU的操作参数的优选值来控制所述PTU的操作参数。
示例55是示例54所述的方法,受控的操作参数包括所述PTU的谐振器线圈电流。
示例56是示例54至55中任一项所述的方法,所述主导PRU的操作参数包括所述主导PRU的整流器电压。
示例57是示例54至56中任一项所述的方法,包括:控制所述PTU的操作参数,以使所述主导PRU的操作参数的实现值与所述主导PRU的操作参数的优选值之间的差值最小化。
示例58是至少一种非瞬时性计算机可读存储介质,包括一组指令,所述指令响应于在计算设备上被执行而使所述计算设备执行根据示例40至57中任一项所述的方法。
示例59是一种装置,包括用于执行根据示例40至57中任一项所述的方法的模块。
示例60是一种系统,包括示例59所述的装置以及至少一个射频(RF)收发机。
示例61是示例60所述的系统,包括至少一个RF天线。
示例62是示例60至61中任一项所述的系统,包括至少一个处理器。
示例63是一种装置,包括:用于选择将要由功率发送单元(PTU)用于将多个功率接收单元(PRU)中的一个识别为主导PRU的主导评估算法的模块;用于识别多个参数值集合的模块,每个参数值集合对应于所述多个PRU中的相应一个;用于应用所选择的主导评估算法以确定多个主导评估值的模块,每个主导评估值是基于所述多个参数值集合中的相应一个来确定的;和用于基于所述多个主导评估值来识别所述主导PRU的模块。
示例64是示例63所述的装置,每个参数值集合包括用于其对应PRU的温度比参数值。
示例65是示例63至64中任一项所述的装置,每个参数值集合包括用于其对应PRU的电流比参数值。
示例66是示例63至65中任一项所述的装置,每个参数值集合包括用于其对应PRU的电压比参数值。
示例67是示例63至66中任一项所述的装置,每个参数值集合包括用于其对应PRU的PRU功率比参数值。
示例68是示例63至67中任一项所述的装置,每个参数值集合包括用于其对应PRU的PRU-PTU功率比参数。
示例69是示例63至68中任一项所述的装置,每个主导评估值包括所述多个参数值集合中的相应一个中所包括的一个或多个参数值中所包含的参数值。
示例70是示例63至69中任一项所述的装置,每个主导评估值包括所述多个参数值集合中的相应一个的最大参数值。
示例71是示例63至70中任一项所述的装置,每个参数值集合包括单个参数值,每个主导评估值包括所述多个参数值集合的相应一个中的单个参数值。
示例72是示例63至68中任一项所述的装置,每个主导评估值包括所述多个参数值集合中的相应一个的加权最大参数值。
示例73是示例63至72中任一项所述的装置,包括:响应于在所述PTU的充电区域中检测到新PRU而选择所述主导评估算法。
示例74是示例63至72中任一项所述的装置,包括:用于在第一充电会话期间应用所选择的主导评估算法的模块;和用于在第二充电会话期间选择第二主导评估算法进行应用的模块。
示例75是示例63至72中任一项所述的装置,包括:用于在第一时间间隔期间应用所选择的主导评估算法的模块;和用于在第二时间间隔期间选择第二主导评估算法进行应用的模块。
示例76是示例75所述的装置,所述第一和第二时间间隔包括3秒的持续时间。
示例77是示例63至76中任一项所述的装置,包括:用于识别所述主导PRU的操作参数的优选值的模块;和用于基于所述主导PRU的操作参数的优选值来控制所述PTU的操作参数的模块。
示例78是示例77所述的装置,受控的操作参数包括所述PTU的谐振器线圈电流。
示例79是示例77至78中任一项所述的装置,所述主导PRU的操作参数包括所述主导PRU的整流器电压。
示例80是示例77至79中任一项所述的装置,包括:用于控制所述PTU的操作参数以使所述主导PRU的操作参数的实现值与所述主导PRU的操作参数的优选值之间的差值最小化的模块。
示例81是一种系统,包括根据示例63至80中任一项所述的装置以及至少一个射频(RF)收发机。
示例82是示例81所述的系统,包括至少一个RF天线。
示例83是示例81至82中任一项所述的系统,包括至少一个处理器。
示例84是示例1至18中任一项所述的装置,所述逻辑用于:将所述主导PRU识别为与所述多个主导评估值中的最大值相关联的PRU。
示例85是示例1至18中任一项所述的装置,所述逻辑用于:将所述主导PRU识别为与所述多个主导评估值中的最小值相关联的PRU。
示例86是一种系统,包括根据示例84至85中任一项所述的装置以及至少一个射频(RF)收发机。
示例87是示例86所述的系统,包括至少一个RF天线。
示例88是示例86至87中任一项所述的系统,包括至少一个处理器。
示例89是示例22至39中任一项所述的至少一种非瞬时性计算机可读存储介质,包括如下指令,所述指令响应于在所述PTU处被执行而使所述PTU:将所述主导PRU识别为与所述多个主导评估值中的最大值相关联的PRU。
示例90是示例22至39中任一项所述的至少一种非瞬时性计算机可读存储介质,包括如下指令,所述指令响应于在所述PTU处被执行而使所述PTU:将所述主导PRU识别为与所述多个主导评估值中的最小值相关联的PRU。
示例91是示例40至57中任一项所述的方法,包括:将所述主导PRU识别为与所述多个主导评估值中的最大值相关联的PRU。
示例92是示例40至57中任一项所述的方法,包括:将所述主导PRU识别为与所述多个主导评估值中的最小值相关联的PRU。
示例93是至少一种非瞬时性计算机可读存储介质,包括一组指令,所述指令响应于在计算设备上被执行而使所述计算设备执行根据示例91至92中任一项所述的方法。
示例94是一种装置,包括用于执行根据示例91至92中任一项所述的方法的模块。
示例95是一种系统,包括示例94所述的装置以及至少一个射频(RF)收发机。
示例96是示例95所述的系统,包括至少一个RF天线。
示例97是示例95至96中任一项所述的系统,包括至少一个处理器。
示例98是示例63至80中任一项所述的装置,所述主导PRU被识别为与所述多个主导评估值中的最大值相关联的PRU。
示例99是示例63至80中任一项所述的装置,所述主导PRU被识别为与所述多个主导评估值中的最小值相关联的PRU。
示例100是一种系统,包括根据示例98至99中任一项所述的装置以及至少一个射频(RF)收发机。
示例101是示例100的系统,包括至少一个RF天线。
示例102是示例100至101中任一项所述的系统,包括至少一个处理器。
本文阐述了许多具体细节以提供对实施例的透彻理解。然而,本领域技术人员将会理解,可以在没有这些具体细节的情况下实践这些实施例。在其它实例中,没有详细描述公知的操作、组件和电路,以免掩盖实施例。可以理解,本文公开的具体结构和功能细节可以是代表性的,并且不一定限制实施例的范围。
可以使用表述“耦合”和“连接”及其派生词来描述一些实施例。这些术语并非意在作为彼此的同义词。例如,可以使用术语“连接”和/或“耦合”来描述一些实施例,以指示两个或更多个元件彼此直接物理接触或电接触。然而,术语“耦合”也可以表示两个或更多个元件彼此不直接接触,但仍然彼此协作或相互作用。
除非另有特别说明,否则可以理解的是,诸如“处理”、“计算”、“运算”、“确定”等的术语是指计算机或计算系统或类似电子计算设备的动作和/或处理,其将在计算系统的寄存器和/或存储器内表示为物理量(例如,电子)的数据操纵和/或转换成类似地表示为计算系统的存储器、寄存器或其它这样的信息存储、传输或显示设备内的物理量的其它数据。实施例在这方面不受限制。
应该注意的是,本文描述的方法不必按照所描述的顺序或者以任何特定的顺序执行。此外,关于本文中所识别的方法描述的各种活动可以以串行或并行方式来执行。
尽管本文已经示出和描述了特定实施例,但应该理解的是,被认为用于实现相同目的的任何布置可以替代所示的特定实施例。本公开旨在覆盖各种实施例的任何和所有修改或变化。应该理解,上面的描述是以说明性的方式进行的,而不是限制性的。上述实施例的组合以及本文中未具体描述的其它实施例在本领域技术人员阅读了上述说明之后对于他们而言将是显而易见的。因此,各个实施例的范围包括使用了上述构成、结构和方法的任何其它应用。
要强调的是,提供本公开的摘要是为了符合37C.F.R.§1.72(b),其要求将允许读者迅速确定技术公开的性质的摘要。提交时的理解是,它不会被用来解释或限制权利要求的范围或含义。另外,在前面的详细描述中,可以看出,出于使本公开精简的目的,各个特征在单个实施例中被组合在一起。本公开的方法不应被解释为反映了所要求保护的实施例需要比每个权利要求中明确记载的更多特征的意图。相反,如以下权利要求所反映的,发明主题在于比单个公开的实施例的所有特征少。因此,所附的权利要求特此被合并到具体实施方式中,每一项权利要求本身代表单独的优选实施例。在所附权利要求中,术语“包括”和“在其中”分别用作相应术语“包含”和“其中”的通俗英语等同物。此外,术语“第一”、“第二”和“第三”等仅被用作标记,并不旨在对其对象施加数字要求。
虽然已经用结构特征和/或方法动作专用的语言描述了主题,但是应当理解,所附权利要求中限定的主题不一定限于上述具体特征或动作。相反,上述具体特征和动作是作为实现权利要求的示例形式而公开的。

Claims (23)

1.一种装置,包括:
存储器;和
用于功率发送单元(PTU)的逻辑,所述逻辑的至少一部分实现在耦合到所述存储器的电路中,所述逻辑用于:
确定用于多个功率接收单元(PRU)中的每一个PRU的主导PRU选择参数的相应值;
基于与所述多个PRU中的一个PRU相关联的主导PRU选择参数值,将所述多个PRU中的该PRU识别为所述PTU的主导PRU;以及
基于所述PTU的主导PRU的操作参数来控制所述PTU的谐振器线圈的谐振器线圈电流以使所述主导PRU的整流器的输出处的直流(DC)电压与所述主导PRU的优选整流器输出电压之间的差值最小化,所述PTU的谐振器线圈与所述多个PRU的谐振器线圈耦合,以并行地向所述多个PRU发送功率。
2.根据权利要求1所述的装置,所述参数包括功率比。
3.根据权利要求2所述的装置,所述功率比包括平均整流器输出功率参数与最大额定整流器输出功率参数之间的比率。
4.根据权利要求1所述的装置,所述参数包括温度比。
5.根据权利要求1所述的装置,所述参数包括电压比。
6.根据权利要求5所述的装置,所述电压比包括整流器输出电压参数与最大操作整流器输出电压参数之间的比率。
7.根据权利要求5所述的装置,所述电压比包括整流器输出电压参数与最小操作整流器输出电压参数之间的比率。
8.根据权利要求1至7中任一项所述的装置,包括至少一个射频(RF)收发机。
9.一种计算机可读存储介质,包括一组指令,所述指令响应于在功率发送单元(PTU)处被执行而使所述PTU:
选择用于确定所述PTU的主导功率接收单元(PRU)的算法;
应用所选择的算法以将多个PRU中的一个PRU识别为所述PTU的主导PRU;以及
控制所述PTU的谐振器线圈的谐振器线圈电流,以使所述主导PRU的整流器的输出处的直流(DC)电压与所述主导PRU的优选整流器输出电压之间的差值最小化,所述PTU的谐振器线圈与所述多个PRU的谐振器线圈耦合,以并行地向所述多个PRU发送功率。
10.根据权利要求9所述的计算机可读存储介质,所选择的算法将功率比参数指定为用于主导PRU选择的准则。
11.根据权利要求10所述的计算机可读存储介质,所述功率比参数包括平均整流器输出功率参数与最大额定整流器输出功率参数之间的比率。
12.根据权利要求9所述的计算机可读存储介质,所选择的算法将温度比参数指定为用于主导PRU选择的准则。
13.根据权利要求9所述的计算机可读存储介质,所选择的算法将电压比参数指定为用于主导PRU选择的准则。
14.根据权利要求13所述的计算机可读存储介质,所述电压比参数包括整流器输出电压参数与最大操作整流器输出电压参数之间的比率。
15.根据权利要求13所述的计算机可读存储介质,所述电压比参数包括整流器输出电压参数与最小操作整流器输出电压参数之间的比率。
16.一种功率发送单元(PTU),包括:
谐振器;
无线电装置;和
逻辑,所述逻辑的至少一部分实现在耦合到所述谐振器和所述无线电装置的电路中,所述逻辑用于:
选择用作主导功率接收单元(PRU)识别的准则的参数;
基于所选择的参数,确定所述PTU的主导PRU的身份;以及
基于所述主导PRU的身份,控制所述PTU的谐振器线圈的谐振器线圈电流以使所述主导PRU的整流器的输出处的直流(DC)电压与所述主导PRU的优选整流器输出电压之间的差值最小化,所述PTU的谐振器线圈与所述多个PRU的谐振器线圈耦合,以并行地向所述多个PRU发送功率。
17.根据权利要求16所述的PTU,所选择的参数包括功率比参数。
18.根据权利要求17所述的PTU,所述功率比参数包括平均整流器输出功率参数与最大额定整流器输出功率参数之间的比率。
19.根据权利要求16所述的PTU,所选择的参数包括温度比参数。
20.根据权利要求16所述的PTU,所选择的参数包括电压比参数。
21.根据权利要求20所述的PTU,所述电压比参数包括整流器输出电压参数与最大操作整流器输出电压参数之间的比率。
22.根据权利要求20所述的PTU,所述电压比参数包括整流器输出电压参数与最小操作整流器输出电压参数之间的比率。
23.一种装置,包括:
根据权利要求16至22中任一项所述的PTU;和
至少一个耦合到所述无线电装置的射频(RF)天线。
CN201680053183.0A 2015-10-14 2016-07-01 用于无线功率发送单元的谐振器控制技术 Active CN108028552B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562241591P 2015-10-14 2015-10-14
US62/241,591 2015-10-14
PCT/US2016/040811 WO2017065851A1 (en) 2015-10-14 2016-07-01 Resonator control techniques for wireless power transmitting units

Publications (2)

Publication Number Publication Date
CN108028552A CN108028552A (zh) 2018-05-11
CN108028552B true CN108028552B (zh) 2023-01-13

Family

ID=58518484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680053183.0A Active CN108028552B (zh) 2015-10-14 2016-07-01 用于无线功率发送单元的谐振器控制技术

Country Status (4)

Country Link
US (1) US11996702B2 (zh)
CN (1) CN108028552B (zh)
DE (1) DE112016004735T5 (zh)
WO (1) WO2017065851A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952713A (zh) * 2020-07-03 2020-11-17 深圳捷豹电波科技有限公司 无线充电与通讯组件及应用其的无线充电与通讯装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944283A (zh) * 2014-04-23 2014-07-23 北京智谷睿拓技术服务有限公司 无线能量传输方法和无线能量发送设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8947041B2 (en) * 2008-09-02 2015-02-03 Qualcomm Incorporated Bidirectional wireless power transmission
US8497658B2 (en) * 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
CN102439820B (zh) 2010-05-03 2016-08-03 松下知识产权经营株式会社 发电装置、发电系统及无线电力传输装置
US9391476B2 (en) * 2010-09-09 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Power feeding device, wireless power feeding system using the same and wireless power feeding method
US10326309B2 (en) * 2011-05-13 2019-06-18 Samsung Electronics Co., Ltd Wireless power system comprising power transmitter and power receiver and method for receiving and transmitting power of the apparatuses
US9306401B2 (en) * 2011-06-29 2016-04-05 Lg Electronics Inc. Wireless power transmitter and wireless power transfer method thereof in many-to-one communication
KR20130003965A (ko) * 2011-07-01 2013-01-09 엘지전자 주식회사 복수의 전력 수신기에 대한 무선 전력 전송
KR101317360B1 (ko) 2011-10-04 2013-10-11 주식회사 한림포스텍 무선 전력전송장치 및 방법
KR101848303B1 (ko) * 2012-07-10 2018-04-13 삼성전자주식회사 전력 전송을 제어하기 위한 방법 및 이를 위한 전력 송신기
KR101782878B1 (ko) * 2013-02-20 2017-10-23 주식회사 한림포스텍 무선 전력전송장치 및 방법
KR102076859B1 (ko) * 2013-04-17 2020-05-18 인텔렉추얼디스커버리 주식회사 무선 전력 전송 장치 및 무선 전력 전송 방법
KR102039350B1 (ko) 2013-05-03 2019-11-27 삼성전자주식회사 무선 전력 수신기에서 비정상 상태를 제어하기 위한 방법
KR20160144190A (ko) * 2015-06-08 2016-12-16 엘지이노텍 주식회사 무선 충전 시스템을 이용한 전력 관리 방법 및 그를 위한 장치 및 시스템
US11038374B2 (en) * 2017-04-18 2021-06-15 Infineon Technologies Austria Ag Flexible bridge amplifier for wireless power

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944283A (zh) * 2014-04-23 2014-07-23 北京智谷睿拓技术服务有限公司 无线能量传输方法和无线能量发送设备

Also Published As

Publication number Publication date
CN108028552A (zh) 2018-05-11
US20180248407A1 (en) 2018-08-30
WO2017065851A1 (en) 2017-04-20
DE112016004735T5 (de) 2018-07-05
US11996702B2 (en) 2024-05-28

Similar Documents

Publication Publication Date Title
US10827301B2 (en) Techniques for adjacent channel interference mitigation
CN105684499B (zh) 用于双重连接性架构中的不连续接收(drx)操作的协调技术
US10231182B2 (en) Techniques for implicit indication of trigger frame start times
US9893786B2 (en) Multi-link beamforming training techniques for 60 GHz wireless networks
US10658883B2 (en) Wireless link management techniques for wireless charging systems
CN105379147A (zh) 用于非理想回程场景的上行链路通信技术
US9923619B2 (en) Techniques for passive beamforming training
US11696229B2 (en) Power saving mechanism for MU-MIMO transmissions
US10966182B2 (en) Parameter encoding techniques for wireless communication networks
US9668216B2 (en) Techniques for device power management in a local wireless network
US20170265221A1 (en) Directional channel access techniques for wireless communication networks
CN108028552B (zh) 用于无线功率发送单元的谐振器控制技术
CN109219981B (zh) 用于无线网络的信道绑定的方法及装置
US20180006753A1 (en) Group addressed transmission techniques for directional wireless networks
US20200287997A1 (en) Parameter encoding techniques for wireless communication networks
US20160174139A1 (en) Ranging profiling for neighbor awareness networking
HK1224488B (zh) 用於双重连接性架构中的不连续接收(drx)操作的协调技术
HK1219182B (zh) 用於改进的信道质量信息反馈的用户设备和无线通信方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TG01 Patent term adjustment
TG01 Patent term adjustment