CN108020808B - 一种高可靠高精度电能表实时时钟设计方法 - Google Patents

一种高可靠高精度电能表实时时钟设计方法 Download PDF

Info

Publication number
CN108020808B
CN108020808B CN201711164295.6A CN201711164295A CN108020808B CN 108020808 B CN108020808 B CN 108020808B CN 201711164295 A CN201711164295 A CN 201711164295A CN 108020808 B CN108020808 B CN 108020808B
Authority
CN
China
Prior art keywords
temperature
electric energy
energy meter
value
fm3318c
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711164295.6A
Other languages
English (en)
Other versions
CN108020808A (zh
Inventor
雷鸣
刘亚平
项超
林明光
陈堂发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Risesun Science and Technology Co Ltd
Original Assignee
Zhejiang Risesun Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Risesun Science and Technology Co Ltd filed Critical Zhejiang Risesun Science and Technology Co Ltd
Priority to CN201711164295.6A priority Critical patent/CN108020808B/zh
Publication of CN108020808A publication Critical patent/CN108020808A/zh
Application granted granted Critical
Publication of CN108020808B publication Critical patent/CN108020808B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/04Testing or calibrating of apparatus covered by the other groups of this subclass of instruments for measuring time integral of power or current

Abstract

本发明公开了一种高可靠高精度电能表实时时钟设计方法,包括以下步骤选择晶振、调校仪及FM3318C模块;对内置RTC的FM3318C芯片进行温度定标;源程序中K值设定为标称K值进行编译,将可执行程序下载入调校仪中;调校仪及FM3318C模块进行温度平衡;使用调校仪对电能表模块进行程序烧录、时钟数据调校;对调校后的电能表进行高低温试验,记录高低温下日计时误差,根据记录的日计时误差计算K值,再进行程序编译;确认这一批次晶体的温度补偿系数K值,在晶体一致性得以保障的情况下,然后进行大批量生产。上述技术方案,结构设计合理、操作方便、成本低、时钟精度高、稳定性好且实用性好。

Description

一种高可靠高精度电能表实时时钟设计方法
技术领域
本发明涉及电能表技术领域,具体涉及一种高可靠高精度电能表实时时钟设计方法。
背景技术
国家电网企业标准Q/GDW 1364-2013单相智能电能表技术规范第4.5.6条和中国南方电网企业标准Q/CSG 1209003-2015单相电子式费控电能表技术规范第4.4.4条时钟准确度要求:1)在参比温度及工作电压范围内,时钟准确度不应超过0.5s/d(0.5秒每天);2)在工作温度范围-25℃~+60℃内,时钟准确度随温度的改变量不应超过0.1s/(d·℃)(0.1秒每天每摄氏度),在该温度范围内时钟准确度不应超过1s/d(1秒每天)。现有的实时时钟采用以下方法:1)软时钟,不稳定;2)硬时钟,时钟芯片RX-8025T内置高稳定度的32768Hz(赫兹)的DTCXO(数字温度补偿晶体振荡器),可设置不同的时段进行温度补偿,虽然时钟精度高,但成本较高。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种结构设计合理、操作方便、成本低、时钟精度高、稳定性好且实用性好的高可靠高精度电能表实时时钟设计方法。
为实现上述目的,本发明提供了如下技术方案:一种高可靠高精度电能表实时时钟设计方法,包括以下步骤:
(1)选择晶振、调校仪及FM3318C模块;
(2)对内置RTC的FM3318C芯片进行温度定标(解决由于芯片的温度传感器存在一定的离散型);
(3)源程序中温度补偿系数K值设定为标称K值进行编译,将可执行程序下载入调校仪中;
(4)调校仪及FM3318C模块进行温度平衡;
(5)使用调校仪对电能表模块进行程序烧录、时钟数据调校;
(6)对调校后的电能表进行高低温试验,记录高低温下日计时误差,根据记录的日计时误差计算温度补偿系数K值,再进行程序编译;
(7)重复步骤(3)到步骤(6),确认这一批次晶体的温度补偿系数K值,在晶体一致性得以保障的情况下,然后可进行大批量生产。
作为优选的,步骤(1),选择高精度的日本精工32768Hz晶振,日本精工的晶体,确保其线性一致,匹配电容12.5pF,20ppm。
作为优选的,步骤(2),调校仪对FM3318C模块进行测试,得到25℃时的温度ADC值和25℃时的秒时标调校值,用以支持FM3318C模块的秒时标校准和温度补偿。
作为优选的,步骤(3),
根据晶振频率的温度特性:
△f/f=K*(T-T0)2
其中,△f为当前温度下的晶振频率与顶点频率的差值;f为晶振顶点频率;K为温度补偿系数K值;T为当前温度;T0为顶点温度。
作为优选的,步骤(4),调校仪及FM3318C模块进行温度平衡,电能表和调校仪在常温环境下静置,让FM3318C模块和调校仪达到温度的平衡。
作为优选的,步骤(5),对电能表进行编程、时钟调校,编程调校时,电表模块不接近发热源。
作为优选的,步骤(6),电表编程调校好后,分别在最低工作温度-25℃、常温25℃、最高工作温度60℃测试日计时误差,记录下高低温下的日计时误差数据,根据记录下来的日计时误差数据,配合系数修正说明文件,计算出调整后的温度补偿系数K值重新对电能表进行编译,用编译好的程序对其高低温测试的电能表或批量的电能表进行编程调校。
作为优选的,步骤(6),温度补偿系数K值计算公式如下:
Figure GDA0002295224390000031
其中,K(DEF)一般缺省值为0.0338;Max是最大日计时误差值;Min是最小日计时误差值;T是当前温度。
作为优选的,步骤(7),大批量生产调校时包括以下子步骤:
(7.1)调校仪下载好该批次FM3318C模块的可执行程序;
(7.2)启动具备恒温条件的专用调校车间,使空间内温度恒定;
(7.3)周转车将待调校的FM3318C模块推入恒温车间,静置1小时,使空间内的调校仪与FM3318C模块充分达到热平衡;
(7.4)开始批量烧录程序,调校数据。
作为优选的,步骤(2)中温度定标包括以下步骤:
(2.1)通过设备接口和特殊时序读当前温度下的温度ADC值CURADC,设置秒输出为1秒;
(2.2)根据调校仪内置准确4M晶振计算出当前时钟调校值CURADJ;
(2.3)通过调校仪内置温度传感器芯片读出当前温度值CURTEM;
(2.4)根据CURTEM和CURADC计算出25℃的温度ADC值ADC25;
(2.5)根据CURTEM和CURADJ以及晶振的标称温度曲线可以计算出25℃的调校值ADJ25。
本发明的优点是:与现有技术相比,本发明结构设置更加合理,基于温度定标、调校仪温度平衡,进而实现精确补偿提高电能表MCU内置实时时钟准确度,保证时钟的稳定性;结构设计合理、操作方便、成本低、时钟精度高、稳定性好且实用性好。
下面结合说明书附图和具体实施例对本发明作进一步说明。
附图说明
图1为本发明实施例的原理框图;
图2为本发明实施例生产工艺控制的示意图;
图3为本发明实施例晶体温度-精度曲线图。
具体实施方式
参见图1、图2和图3,本发明公开的一种高可靠高精度电能表实时时钟设计方法,包括以下步骤:
(1)选择晶振、调校仪及FM3318C模块;
(2)对内置RTC的FM3318C芯片进行温度定标(解决由于芯片的温度传感器存在一定的离散型);
(3)源程序中温度补偿系数K值设定为标称K值进行编译,将可执行程序下载入调校仪中;
(4)调校仪及FM3318C模块进行温度平衡;
(5)使用调校仪对电能表模块进行程序烧录、时钟数据调校;
(6)对调校后的电能表进行高低温试验,记录高低温下日计时误差,根据记录的日计时误差计算温度补偿系数K值,再进行程序编译;
(7)重复步骤(3)到步骤(6),确认这一批次晶体的温度补偿系数K值,在晶体一致性得以保障的情况下,然后可进行大批量生产。
作为优选的,步骤(1),选择高精度的日本精工32768Hz晶振,日本精工的晶体,确保其线性一致,匹配电容12.5pF,20ppm。
作为优选的,步骤(2),调校仪对FM3318C模块进行测试,得到25℃时的温度ADC值和25℃时的秒时标调校值,用以支持FM3318C模块的秒时标校准和温度补偿。
作为优选的,步骤(3),
根据晶振频率的温度特性:
△f/f=K*(T-T0)2
其中,△f为当前温度下的晶振频率与顶点频率的差值;f为晶振顶点频率;K为温度补偿系数K值(标称–0.035(±0.01)ppm);T为当前温度;T0为顶点温度。典型的晶体温度-精度曲线如图3所示。
1)测量在不同温度下的实际日计时误差;
2)当T=-25℃时,根据测量的多个日计时误差样本进行数据统计计算晶体二次项系数KL
Figure GDA0002295224390000051
3)当T=60℃时,根据测量的多个日计时误差样本进行数据统计计算晶体二次项系数KH
Figure GDA0002295224390000052
其中,K(DEF)(一般缺省为0.0338,即KL(DEF)=KH(DEF)=0.0338)。
作为优选的,步骤(4),调校仪及FM3318C模块进行温度平衡,电能表和调校仪在常温环境下静置,让FM3318C模块和调校仪达到温度的平衡。
作为优选的,步骤(5),对电能表进行编程、时钟调校,编程调校时,电表模块不接近发热源,如电源、变压器等。
作为优选的,步骤(6),电表编程调校好后,分别在最低工作温度-25℃、常温25℃、最高工作温度60℃测试日计时误差,记录下高低温下的日计时误差数据,根据记录下来的日计时误差数据,配合系数修正说明文件,计算出调整后的温度补偿系数K值重新对电能表进行编译,用编译好的程序对其高低温测试的电能表或批量的电能表进行编程调校。
作为优选的,步骤(6),温度补偿系数K值计算公式如下:
Figure GDA0002295224390000061
其中,K(DEF)一般缺省值为0.0338;Max是最大日计时误差值;Min是最小日计时误差值;T是当前温度。
作为优选的,步骤(7),大批量生产调校时包括以下子步骤:
(7.1)调校仪下载好该批次FM3318C模块的可执行程序;
(7.2)启动具备恒温条件的专用调校车间,使空间内温度恒定;
(7.3)周转车将待调校的FM3318C模块推入恒温车间,静置1小时,使空间内的调校仪与FM3318C模块充分达到热平衡;
(7.4)开始批量烧录程序,调校数据。
作为优选的,步骤(2)中温度定标包括以下步骤:
输入:带32768Hz的FM3318C模块,调校仪与带FM3318C单片机的电能表接口信号,分别为:电源VCC,时标信号输出TM,地信号GND,编程时钟信号PCLK,编程数据信号PSDA,编程使能引脚PROG;
处理:
(2.1)通过设备接口和特殊时序读当前温度下的温度ADC值CURADC(调校仪通过数据信号读取的当前电能表温度值),设置秒输出为1秒;
(2.2)根据调校仪内置准确4M晶振计算出当前时钟调校值CURADJ(调校仪根据自身精度计算出的当前电能表需要进行时钟信号校准的值);
(2.3)通过调校仪内置温度传感器芯片读出当前温度值CURTEM(调校仪自身内置温度传感器获取的当前温度值);此温度值认为是FM3318C模块的温度值,所以对FM3318C模块和调校仪应该进行热平衡。
(2.4)根据CURTEM和CURADC计算出25℃的温度ADC值ADC25;
(2.5)根据CURTEM和CURADJ以及晶振的标称温度曲线可以计算出25℃的调校值ADJ25。
输出:ADC25(25℃时调校仪器对电能表温度准确度调校值),
ADJ25(25℃时调校仪器对电能表时钟准确度调校值)。
所述调校仪是一种带通讯、编数据、编程序、调校功能的编程器。
所述FM3318C模块是含FM3318C芯片及外围构成的电能表线路板。
实际应用时:基于温度定标、调校仪温度平衡,进而实现精确补偿提高电能表MCU内置实时时钟准确度,保证时钟的稳定性;结构设计合理、操作方便、成本低、时钟精度高、稳定性好且实用性好。
按照本发明技术方案试制的电能表经国网计量中心检测表明,日计时误差极小,环境温度对日计时误差影响极小,大大提高了电能表时钟精度。
具体实验结果如下:
1.日计时误差试验
1)技术条件:Q/DGW 1364-2013第4.5.6.a)条。
2)技术方法:Q/DGW 1364-2013第5.1.6.1条。
3)试验设备:ST9020型单相电能表检定装置。
4)试验结果:
样品编号 07
允许误差 试验结果
±0.5s/d -0.06
5)试验结论:符合。
2.环境温度对日计时误差的影响试验
1)技术条件:Q/DGW 1364-2013第4.5.6.a)条。
2)技术方法:Q/DGW 1364-2013第5.1.6.1条。
3)试验设备:ST9020型单相电能表检定装置。
SDJ/W440步入式高低温湿热试验箱。
4)试验结果:
Figure GDA0002295224390000081
试验结论:符合。
另外,在本发明技术方案的基础上还可进一步改进:
上述时钟设计方法会受到的以下几个方面影响
1、晶振工艺影响:主要为不同批次晶振的频率温度特性的一致性,即K和T0的一致性。需选择一致性较好的晶振品牌。
2、电能表模块工艺影响:主要为不同模块造成晶振匹配电容变化对晶振温度特性影响,主要影响T0
3、调校工艺影响:主要为FM3318C模块及调校仪未达到热平衡所造成的影响,三者不平衡可造成结果为:25℃顶点时钟调校值偏差(影响相对较小,温度曲线在顶点附近比较平坦,且在计算时为固定偏差);25℃ADC值偏差(影响较大,根据现有的温度曲线计算公式,此值为平方项)。
对影响较大的25℃ADC值偏差的举例:若未热平衡造成25℃ADC偏差,计算的温度曲线将对标准的温度曲线平移。例如未热平衡造成25℃ADC偏差为+3度,即在70℃时,用标准值计算偏差值;
△f/f-△f0/f0
=K*((70+3-T0)2-(70-T0)2)
=-0.035*((70+3-25)2-(70-25)2)
=-0.035*279
=-9.765ppm
计算后偏差近0.844秒/天
4、现场影响:主要为由于电能表内温度急剧变化对晶振和芯片温度影响不同造成模块计算温度和晶振实际温度偏差造成的影响,随时间加长自动进行热平衡得以改善。
PCB硬件设计:晶体PCB走线设计应最大接近MCU引脚,距离不得超过5mm;晶体两只引脚之间进行开槽,宽约0.6mm;这样可以避免生产焊接时,松香及潮气的残留在两只引脚之间,极大的提高可靠性;
生产工艺控制:
1、线路板焊接好,进行超声波清洗后,再焊接晶体;
2、采用防静电刷蘸清洗剂进行晶体引脚间残留物清洗;
3、采用三防漆涂敷晶体焊接点及其引脚,红外光固化,提高防潮性能。
上述实施例对本发明的具体描述,只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限定,本领域的技术工程师根据上述发明的内容对本发明作出一些非本质的改进和调整均落入本发明的保护范围之内。

Claims (8)

1.一种高可靠高精度电能表实时时钟设计方法,包括以下步骤:
(1)选择晶振、调校仪及FM3318C模块;
(2)对内置RTC的FM3318C芯片进行温度定标;
(3)源程序中温度补偿系数K值设定为标称K值进行编译,将可执行程序下载入调校仪中;
(4)调校仪及FM3318C模块进行温度平衡;
(5)使用调校仪对电能表模块进行程序烧录、时钟数据调校;
(6)对调校后的电能表进行高低温试验,记录高低温下日计时误差,根据记录的日计时误差计算温度补偿系数K值,再进行程序编译;
(7)重复步骤(3)到步骤(6),确认这一批次晶体的温度补偿系数K值,在晶体一致性得以保障的情况下,然后进行大批量生产;
步骤(6),电表编程调校好后,分别在最低工作温度-25℃、常温25℃、最高工作温度60℃测试日计时误差,记录下高低温下的日计时误差数据,根据记录下来的日计时误差数据,配合系数修正说明文件,计算出调整后的温度补偿系数K值重新对电能表进行编译,用编译好的程序对其高低温测试的电能表或批量的电能表进行编程调校;
温度补偿系数K值计算公式如下:
Figure FDA0002295224380000011
其中,K(DEF)一般缺省值为0.0338;Max是最大日计时误差值;Min是最小日计时误差值;T是当前温度。
2.根据权利要求1所述的一种高可靠高精度电能表实时时钟设计方法,其特征在于:步骤(1),选择高精度的日本精工32768Hz晶振,日本精工的晶体,确保其线性一致,匹配电容12.5pF,20ppm。
3.根据权利要求2所述的一种高可靠高精度电能表实时时钟设计方法,其特征在于:步骤(2),调校仪对FM3318C模块进行测试,得到25℃时的温度ADC值和25℃时的秒时标调校值,用以支持FM3318C模块的秒时标校准和温度补偿。
4.根据权利要求3所述的一种高可靠高精度电能表实时时钟设计方法,其特征在于:步骤(3),
根据晶振频率的温度特性:
△f/f=K*(T-T0)2
其中,△f为当前温度下的晶振频率与顶点频率的差值;f为晶振顶点频率;K为温度补偿系数;T为当前温度;T0为顶点温度。
5.根据权利要求4所述的一种高可靠高精度电能表实时时钟设计方法,其特征在于:步骤(4),调校仪及FM3318C模块进行温度平衡,电能表和调校仪在常温环境下静置,让FM3318C模块和调校仪达到温度的平衡。
6.根据权利要求5所述的一种高可靠高精度电能表实时时钟设计方法,其特征在于:步骤(5),对电能表进行编程、时钟调校,编程调校时,电表模块不接近发热源。
7.根据权利要求1所述的一种高可靠高精度电能表实时时钟设计方法,其特征在于:步骤(7),大批量生产调校时包括以下子步骤:
(7.1)调校仪下载好该批次FM3318C模块的可执行程序;
(7.2)启动具备恒温条件的专用调校车间,使空间内温度恒定;
(7.3)周转车将待调校的FM3318C模块推入恒温车间,静置1小时,使空间内的调校仪与FM3318C模块充分达到热平衡;
(7.4)开始批量烧录程序,调校数据。
8.根据权利要求1或7所述的一种高可靠高精度电能表实时时钟设计方法,其特征在于:步骤(2)中温度定标包括以下步骤:
(2.1)通过设备接口和特殊时序读当前温度下的温度ADC值CURADC,设置秒输出为1秒;
(2.2)根据调校仪内置准确4M晶振计算出当前时钟调校值CURADJ;
(2.3)通过调校仪内置温度传感器芯片读出当前温度值CURTEM;
(2.4)根据CURTEM和CURADC计算出25℃的温度ADC值ADC25;
(2.5)根据CURTEM和CURADJ以及晶振的标称温度曲线可以计算出25℃的调校值ADJ25。
CN201711164295.6A 2017-11-21 2017-11-21 一种高可靠高精度电能表实时时钟设计方法 Active CN108020808B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711164295.6A CN108020808B (zh) 2017-11-21 2017-11-21 一种高可靠高精度电能表实时时钟设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711164295.6A CN108020808B (zh) 2017-11-21 2017-11-21 一种高可靠高精度电能表实时时钟设计方法

Publications (2)

Publication Number Publication Date
CN108020808A CN108020808A (zh) 2018-05-11
CN108020808B true CN108020808B (zh) 2020-02-04

Family

ID=62079891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711164295.6A Active CN108020808B (zh) 2017-11-21 2017-11-21 一种高可靠高精度电能表实时时钟设计方法

Country Status (1)

Country Link
CN (1) CN108020808B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110308644B (zh) * 2019-08-02 2021-04-02 南方电网科学研究院有限责任公司 一种智能电表时钟计时精度补偿方法、装置及设备
CN111638750A (zh) * 2020-06-01 2020-09-08 杭州万高科技股份有限公司 一种烧写器以及一种rtc的校正方法
CN113325685B (zh) * 2021-06-01 2022-03-29 安徽南瑞中天电力电子有限公司 一种智能电能表的多表并行日计时自动调校装置
CN116148754B (zh) * 2023-04-18 2023-06-27 石家庄科林电气股份有限公司 一种电能表的调校方法、装置及电子设备
CN116886080B (zh) * 2023-09-08 2023-12-29 宝捷时计电子(深圳)有限公司 一种计时装置用控制装置及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909375A (zh) * 2005-08-03 2007-02-07 乐金电子(中国)研究开发中心有限公司 实时时钟装置及其当前时刻补偿方法
JP2007327871A (ja) * 2006-06-08 2007-12-20 Ricoh Printing Systems Ltd 電子機器、時刻修正方法、及び記憶媒体
EP1884842A1 (en) * 2006-07-31 2008-02-06 Seiko Epson Corporation Time correction device, timepiece having a time correction device, and time correction method
CN201212907Y (zh) * 2008-07-01 2009-03-25 长沙威胜电子有限公司 电能表的rtc调校装置
CN103207848A (zh) * 2013-03-07 2013-07-17 中国兵器工业集团第二一四研究所苏州研发中心 一种适用于mems陀螺系数加载的通信方法
CN203299557U (zh) * 2013-05-30 2013-11-20 上海贝岭股份有限公司 实时时钟补偿装置
CN104714404A (zh) * 2014-12-30 2015-06-17 华立仪表集团股份有限公司 一种提高电能表内时钟精度的方法
CN106556724A (zh) * 2015-09-28 2017-04-05 华立科技股份有限公司 电表及其时钟校准方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909375A (zh) * 2005-08-03 2007-02-07 乐金电子(中国)研究开发中心有限公司 实时时钟装置及其当前时刻补偿方法
JP2007327871A (ja) * 2006-06-08 2007-12-20 Ricoh Printing Systems Ltd 電子機器、時刻修正方法、及び記憶媒体
EP1884842A1 (en) * 2006-07-31 2008-02-06 Seiko Epson Corporation Time correction device, timepiece having a time correction device, and time correction method
CN201212907Y (zh) * 2008-07-01 2009-03-25 长沙威胜电子有限公司 电能表的rtc调校装置
CN103207848A (zh) * 2013-03-07 2013-07-17 中国兵器工业集团第二一四研究所苏州研发中心 一种适用于mems陀螺系数加载的通信方法
CN203299557U (zh) * 2013-05-30 2013-11-20 上海贝岭股份有限公司 实时时钟补偿装置
CN104714404A (zh) * 2014-12-30 2015-06-17 华立仪表集团股份有限公司 一种提高电能表内时钟精度的方法
CN106556724A (zh) * 2015-09-28 2017-04-05 华立科技股份有限公司 电表及其时钟校准方法

Also Published As

Publication number Publication date
CN108020808A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
CN108020808B (zh) 一种高可靠高精度电能表实时时钟设计方法
US7466209B2 (en) System and method for providing temperature correction in a crystal oscillator
JP4950922B2 (ja) 時刻装置および可搬型電子機器
US11012032B2 (en) Systems and methods for frequency compensation of real-time-clock systems
US20030184399A1 (en) Indirect temperature compensation process in an oscillator
CN101604970B (zh) 自拟合数字温度补偿晶体振荡器及其系统与实现方法
CN103684256B (zh) 内置晶振的高精度数字温度补偿振荡器电路结构
CN110380724A (zh) Rtc时钟频率温度补偿芯片
US8729976B2 (en) Methods and apparatus for calibration and temperature compensation of oscillators having mechanical resonators
CN103684255A (zh) 内置晶体的温度补偿晶体振荡器的补偿校准判断控制方法
CN116106605A (zh) 一种考虑温度变化的电能表参数补偿方法、介质及系统
CN110488092B (zh) 一种对电能质量装置进行测量补偿的方法
FI118449B (fi) Lämpötilakompensoitu kideoskillaattori
CN102830294A (zh) 用于微机补偿晶振的自动调试系统
CN102662107A (zh) 基于soc芯片电表的mcu内置基准温度补偿方法
CN203299557U (zh) 实时时钟补偿装置
US5831485A (en) Method and apparatus for producing a temperature stable frequency using two oscillators
CN109029791A (zh) 一种抗反向厄利效应的温度传感器校准方法
CN108508385A (zh) 一种低成本高精度自动校正方法
CN114035024B (zh) 一种实时时钟芯片的测试系统及其方法
CN112737507B (zh) 一种基于温度传感器实现rtc高精度的方法
JP6978437B2 (ja) システムの較正及びトリミングのための周波数情報を記憶するシステム及び方法
CN202918242U (zh) 内置晶振的高精度数字温度补偿振荡器电路结构
Yurish Advanced automated calibration technique for Universal Sensors and Transducers Interface IC
CN110198155A (zh) 一种数字式温度补偿晶体振荡器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant