CN108019880A - 新风量控制方法及系统 - Google Patents

新风量控制方法及系统 Download PDF

Info

Publication number
CN108019880A
CN108019880A CN201710989891.1A CN201710989891A CN108019880A CN 108019880 A CN108019880 A CN 108019880A CN 201710989891 A CN201710989891 A CN 201710989891A CN 108019880 A CN108019880 A CN 108019880A
Authority
CN
China
Prior art keywords
fresh air
heat exchange
control
air volume
gradual change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710989891.1A
Other languages
English (en)
Other versions
CN108019880B (zh
Inventor
范斯远
马冰
侯俊宇
易爵锋
胡静
梁芬玲
梁贵良
欧文艳
莫世峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhong Dake Intelligent Engineering Co.,Ltd.
Original Assignee
Guangxi Han Fang Han Intelligent Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Han Fang Han Intelligent Engineering Co Ltd filed Critical Guangxi Han Fang Han Intelligent Engineering Co Ltd
Priority to CN201710989891.1A priority Critical patent/CN108019880B/zh
Publication of CN108019880A publication Critical patent/CN108019880A/zh
Application granted granted Critical
Publication of CN108019880B publication Critical patent/CN108019880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

本发明属于空调技术领域,尤其涉及一种新风量控制方法及系统,其中,该方法包括:控制空调新风系统在负荷需求前提供无热交换的最大新风量;控制空调新风系统在负荷需求阶段提供有热交换的渐变新风量。本发明采用无热交换最大新风量加有热交换渐变新风量的控制方式对新风进行处理和控制,减少了新风热交换能耗,达到了系统节能的目的。

Description

新风量控制方法及系统
技术领域
本发明属于空调技术领域,尤其涉及一种新风量控制方法及系统。
背景技术
空调系统中,新风的能耗约占空调总能耗的30%~40%,包括风机动力能耗和处理新风过程的热交换能耗,其中热交换能耗占比较大,风机动力能耗占比较小,两者占比约为95%和5%,即新风能耗主要是热交换能耗。风机盘管加新风系统的空调系统或全空气CAV空调系统采用传统控制方式时,新风总是以最大新风量的方式运行,节能效果差。
发明内容
为解决上述技术问题,本发明的目的是提供一种新风量控制方法及系统,利用“无热交换最大新风量+有热交换渐变新风量”的控制方法,对空调末端系统的新风部分进行控制,通过减少新风热交换能耗以达到系统的节能目的。
本发明提供了一种新风量控制方法,包括:
控制空调新风系统在负荷需求前提供无热交换的最大新风量;
控制空调新风系统在负荷需求阶段提供有热交换的渐变新风量。
进一步地,控制空调新风系统在负荷需求前提供无热交换的最大新风量包括:控制风机在工作频率下运行,控制风门达到最大开度位置,控制冷水阀或热水阀至关闭。
进一步地,控制空调新风系统在负荷需求阶段提供有热交换的渐变新风量包括:控制风门开度不变,通过控制风机转速提供有热交换的渐变新风量。
进一步地,控制空调新风系统在负荷需求阶段提供有热交换的渐变新风量具体包括:控制风机转速不变,通过控制风门的开度提供有热交换的渐变新风量。
进一步地,控制风门开度不变,通过控制风机转速提供有热交换的渐变新风量具体包括:控制变频器根据风机转速与通风时间的线性关系调节风机转速,并通过比例积分微分调节器,根据设定的送风温度,调节冷水阀或热水阀的开度。
进一步地,控制风机转速不变,通过控制风门的开度提供有热交换的渐变新风量具体包括:控制风机在工作频率运行,根据送风量与风门开度的非线性关系控制风门的开度,并采用比例积分微分调节器,根据设定的送风温度,调节冷水阀或热水阀的开度。
本发明还提供了一种新风量控制系统,包括控制器、变频器、风机、风门、比例积分微分调节器、冷水阀、热水阀;
该控制器用于在负荷需求前控制风机在工作频率下运行,控制风门达到最大开度位置,控制冷水阀或热水阀至关闭,以提供无热交换的最大新风量。
进一步地,该系统还包括变频器及比例积分微分调节器;
该控制器还用于:在负荷需求阶段控制变频器根据风机转速与通风时间的线性关系调节风机的转速,并通过比例积分微分调节器,根据设定的送风温度,调节冷水阀或热水阀的开度,以提供有热交换的渐变新风量。
进一步地,该系统还包括变频器及比例积分微分调节器;
该控制器还用于:在负荷需求阶段控制风机在工作频率运行,根据送风量与风门开度的非线性关系控制风门的开度,并通过比例积分微分调节器,根据设定的送风温度,调节冷水阀或热水阀的开度,以提供有热交换的渐变新风量。
进一步地,该控制器还用于:在负荷需求阶段控制风机在工作频率运行,控制风门达到最大开度位置,并通过比例积分微分调节器,根据设定的送风温度,调节冷水阀或热水阀的开度,以提供有热交换的最大新风量。
借由上述方案,通过新风量控制方法及系统,采用“无热交换最大新风量+有热交换渐变新风量”的控制方式对新风进行处理和控制,减少了新风热交换能耗,达到了系统节能的目的。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是现有技术新风控制方法新风量和时间关系图;
图2是本发明新风量控制方法新风量和时间关系图;
图3是现有技术新风量控制方法的能耗图;
图4是本发明新风量控制方法的能耗图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本实施例采用“无热交换最大新风量+有热交换渐变新风量”的控制方式对新风进行处理和控制,具体包括:
在热(冷)负荷需求前,提供无热交换的最大新风,以最快速度去除或稀释室内污浊的空气,净化室内空气环境,提供无热交换最大新风的时间视换气速度确定。比如上班前,提前为办公场所提供最大无热交换的新风,办公场所经过整夜/天的室内外(围护结构)热交换,室内、外温差不大,此时向室内提供无热交换的新风,对室内温度影响不大,能耗主要是风机的动力能耗。
在采暖或供冷季节的上班时间点,新风转入有热交换模式,但新风量采用渐变式。由于经过前阶段的新风处理,室内空气较新鲜,此时提供渐变量新风可以确保室内空气新鲜度,同时减少热交换的能耗。热交换渐变新风量控制,可以通过保持风机转速不变,通过控制新风总阀开度调节风量来实现,亦可保持新风总阀开度不变,通过控制风机转速来实现。由于新风系统经过风平衡调节,改变新风量不影响各区域的新风比例,可以满足各区域对新风的需求。渐变时间根据实际换气频率需求进行设定,在风量渐变时间段(由最小到最大),热交换能耗远比传统的新风控制模式低,从而达到节能的效果。
参图1所示,图1是现有技术新风控制系统中新风量和时间关系图,其中,
1)t1至t3为上班工作时间段,t1为上班时间点,t3为下班时间点,t3-t1=风机工作时间;
2)新风量(最大)=使用场所建筑容积x单位时间换气次数(设计值)。
参图2所示,图2是本发明“无热交换最大新风量+有热交换渐变新风量”中新风量和时间关系图,其中:
1)t1至t3为上班工作时间段,即t3-t1=每班次工作时间(t1上班时间点,t3下班时间点);
2)0至t1时间段,系统在“无热交换最大新风量”状态下运行,此时风机为工频运行,风门处于最大位置,冷/热水阀为关闭状态(即无热交换状态)。新风量(最大)=使用场所建筑容积x单位时间换气次数(设计值),无热交换全风量(最大)通风时间=t1-0=使用场所建筑容积/新风量(最大);
3)t1至t2时间段,系统在“有热交换渐变新风量”状态下运行,有热交换渐变风量通风时间=t2-t1=2(t1-0)=2t1,新风量控制具体有以下有2种控制方式:
(1)当采用风机调速调节风量时,由于风量与风机转速关系为Q2/Q1=N2/N1,即流量与风机转速成正比例关系,Q=kN(式中Q为风量,N为风机转速,k为常数),由图2可知,风量Q在t1至t2时间段与时间成正比例关系,即Q=k1(t-t1),同理求得风机转速N=k2(t-t1)(式中k1为常数,k2=k1/k,t1≤t≤t2)。在“有热交换渐变新风量”控制方式下,风门开度最大,通过变频器按N=k2(t-t1)关系式调节风机转速,并采用PID(比例积分微分)调节器,选择送风温度为被控参数,调节冷/热水阀的开度。
(2)当采用风门调节风量时,风机为恒速,由于风门开度与风量为非线性关系,因此风门开度与风量关系只能通过实测值来求得,风机恒速时风门开度与风量关系如表(一)。
表(一):
需要说明的是:测量间隔在风量为0至100%之间等分设置,测量间隔越小,精度越高。
由图2可知,风量Q在t1至t2时间段与时间成正比例关系,根据表(一),可推理出时间与风阀开度关系如表(二)
表(二):
由于表中数据的非连续性,可以采用相邻两点间近似线性关系的方式求取时间与开度的关系。当时间百分比在0至Q1之间时,开度与时间关系近似为当时间百分比在Q1至Q2之间时,开度与时间关系近似为当时间百分比在Q2至Q3之间时,开度与时间关系近似为据此类推。在“有热交换渐变新风量”控制方式下,风机工频运行,风门开度按上述推理方式进行控制,并采用PID(比例积分微分)调节器,选择送风温度为被控参数,调节冷/热水阀的开度。
4)t2至t3时间段,系统在“有热交换最大新风量”状态下运行,上述2种方式中,风机均为工频运行,风阀开度均为最大,并采用PID(比例积分微分)调节器,选择送风温度为被控参数,调节冷/热水阀的开度。
参图3及图4所示,图3和图4分别为现有新风控制系统能耗图和“无热交换最大新风量+有热交换渐变新风量”新风控制系统能耗图。由于风机能耗在新风系统中占比较低,这里忽略变频方式下的风机节能效果。
由图3和图4对比来看,其通风总量是相同的。从图3和图4对比来看,图3的能耗更大(面积对比)。也就是说,在总通风量相同的前提下,“无热交换最大新风量+有热交换渐变新风量”新风控制系统的能耗比现有新风控制模式低。
本实施例提供的“无热交换最大新风量+有热交换渐变新风量”控制系统,适用于空调末端系统为风机盘管+新风或全空气CAV空调系统,节能效果好,投资成本低,简单实用,适用于大多数办公类建筑的空调系统,在冬季寒冷及夏热冬冷地区,应采取防冻保护措施,具体包括如下技术效果:
1)能够提前提供无热交换的新风,提前净化室内空气,比传统新风系统控制的空气环境质量更佳。
2)采用有热交换渐变新风量控制,减少了新风热交换能耗,达到了节能目的。
3)控制策略易于实现,系统只需增加风阀调节驱动器和控制器,结构简单,成本低,对新建系统或已有系统改造均适用。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

1.一种新风量控制方法,其特征在于,包括:
控制空调新风系统在负荷需求前提供无热交换的最大新风量;
控制空调新风系统在负荷需求阶段提供有热交换的渐变新风量。
2.根据权利要求1所述的新风量控制方法,其特征在于,所述控制空调新风系统在负荷需求前提供无热交换的最大新风量包括:
控制风机在工作频率下运行,控制风门达到最大开度位置,控制冷水阀或热水阀至关闭。
3.根据权利要求1或2所述的新风量控制方法,其特征在于,所述控制空调新风系统在负荷需求阶段提供有热交换的渐变新风量包括:
控制风门开度不变,通过控制风机转速提供有热交换的渐变新风量。
4.根据权利要求1或2所述的新风量控制方法,其特征在于,所述控制空调新风系统在负荷需求阶段提供有热交换的渐变新风量具体包括:
控制风机转速不变,通过控制风门的开度提供有热交换的渐变新风量。
5.根据权利要求3所述的新风量控制方法,其特征在于,所述控制风门开度不变,通过控制风机转速提供有热交换的渐变新风量具体包括:
控制变频器根据风机转速与通风时间的线性关系调节风机转速,并通过比例积分微分调节器,根据设定的送风温度,调节冷水阀或热水阀的开度。
6.根据权利要求4所述的新风量控制方法,其特征在于,所述控制风机转速不变,通过控制风门的开度提供有热交换的渐变新风量具体包括:
控制风机在工作频率运行,根据送风量与风门开度的非线性关系控制风门的开度,并采用比例积分微分调节器,根据设定的送风温度,调节冷水阀或热水阀的开度。
7.一种新风量控制系统,其特征在于,包括控制器、变频器、风机、风门、比例积分微分调节器、冷水阀、热水阀;
所述控制器用于在负荷需求前控制所述风机在工作频率下运行,控制所述风门达到最大开度位置,控制所述冷水阀或热水阀至关闭,以提供无热交换的最大新风量。
8.根据权利要求7所述的新风量控制系统,其特征在于,还包括变频器及比例积分微分调节器;
所述控制器还用于:在负荷需求阶段控制变频器根据风机转速与通风时间的线性关系调节所述风机的转速,并通过所述比例积分微分调节器,根据设定的送风温度,调节所述冷水阀或热水阀的开度,以提供有热交换的渐变新风量。
9.根据权利要求7所述的新风量控制系统,其特征在于,还包括变频器及比例积分微分调节器;
所述控制器还用于:在负荷需求阶段控制风机在工作频率运行,根据送风量与风门开度的非线性关系控制所述风门的开度,并通过所述比例积分微分调节器,根据设定的送风温度,调节所述冷水阀或热水阀的开度,以提供有热交换的渐变新风量。
10.根据权利要求8或9所述的新风量控制系统,其特征在于,所述控制器还用于:在负荷需求阶段控制所述风机在工作频率运行,控制所述风门达到最大开度位置,并通过所述比例积分微分调节器,根据设定的送风温度,调节所述冷水阀或热水阀的开度,以提供有热交换的最大新风量。
CN201710989891.1A 2017-10-20 2017-10-20 新风量控制方法及系统 Active CN108019880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710989891.1A CN108019880B (zh) 2017-10-20 2017-10-20 新风量控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710989891.1A CN108019880B (zh) 2017-10-20 2017-10-20 新风量控制方法及系统

Publications (2)

Publication Number Publication Date
CN108019880A true CN108019880A (zh) 2018-05-11
CN108019880B CN108019880B (zh) 2021-05-18

Family

ID=62080249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710989891.1A Active CN108019880B (zh) 2017-10-20 2017-10-20 新风量控制方法及系统

Country Status (1)

Country Link
CN (1) CN108019880B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282449A (zh) * 2018-09-19 2019-01-29 广州市华南畜牧设备有限公司 畜禽养殖室内动态通风调整方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304645A (ja) * 2000-04-19 2001-10-31 Daikin Ind Ltd 空気調和装置
CN103256686A (zh) * 2013-03-22 2013-08-21 上海仪华仪器有限公司 新风风量自动控制装置及其使用方法
CN103574829A (zh) * 2012-07-18 2014-02-12 同方泰德国际科技(北京)有限公司 一种空调机组的节能控制方法
CN103697569A (zh) * 2013-11-28 2014-04-02 重庆大学 一种动态新风系统及其多参数调节控制方法
CN104101050A (zh) * 2013-11-30 2014-10-15 深圳市作夏科技有限公司 一种中央空调节能管理系统
CN104776558A (zh) * 2015-03-25 2015-07-15 珠海格力电器股份有限公司 新风系统及其风阀开度控制方法
CN104791963A (zh) * 2015-05-08 2015-07-22 天津汇西尔制冷设备有限公司 中央空调vav变风量节能控制系统
CN106440262A (zh) * 2016-11-28 2017-02-22 珠海格力电器股份有限公司 一种空调机组的控制方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304645A (ja) * 2000-04-19 2001-10-31 Daikin Ind Ltd 空気調和装置
CN103574829A (zh) * 2012-07-18 2014-02-12 同方泰德国际科技(北京)有限公司 一种空调机组的节能控制方法
CN103256686A (zh) * 2013-03-22 2013-08-21 上海仪华仪器有限公司 新风风量自动控制装置及其使用方法
CN103697569A (zh) * 2013-11-28 2014-04-02 重庆大学 一种动态新风系统及其多参数调节控制方法
CN104101050A (zh) * 2013-11-30 2014-10-15 深圳市作夏科技有限公司 一种中央空调节能管理系统
CN104776558A (zh) * 2015-03-25 2015-07-15 珠海格力电器股份有限公司 新风系统及其风阀开度控制方法
CN104791963A (zh) * 2015-05-08 2015-07-22 天津汇西尔制冷设备有限公司 中央空调vav变风量节能控制系统
CN106440262A (zh) * 2016-11-28 2017-02-22 珠海格力电器股份有限公司 一种空调机组的控制方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱春雁等: "《公共机构主要用能系统节能运行调试技术》", 30 August 2016, 中国质检出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282449A (zh) * 2018-09-19 2019-01-29 广州市华南畜牧设备有限公司 畜禽养殖室内动态通风调整方法及装置

Also Published As

Publication number Publication date
CN108019880B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN107202386B (zh) 组合式恒温恒湿控制风柜及无露点控制方法
CN108662735B (zh) 一种中央空调系统末端设备节能优化控制系统及方法
CN108317632B (zh) 一种空调系统
CN109556219B (zh) 变风量空调机组及其控制方法
CN104214911B (zh) 纺织厂复合式plc空调自动控制系统的控制方法
CN204730410U (zh) 一种组合式空调箱的全工况自适应控制装置
CN109855265B (zh) 一种低能耗多区域精细化的变风量空调系统及其控制方法
CN202310410U (zh) 机房设备的送风控制系统
CN107588510A (zh) 地铁公共区域过渡季节能环境控制系统及其控制方法
CN109612047A (zh) 变风量空调系统的送风温度控制方法
CN103471205A (zh) 一种室内温度调节方法及双温度控制阀
CN110081578B (zh) 一种智能控制的带旁通管道的热交换器及控制方法
CN108019880A (zh) 新风量控制方法及系统
CN111912058B (zh) 一种建筑环境与壁面温湿度控制系统
CN204943790U (zh) 一种变风量节能控制系统
CN107525235A (zh) 中庭及周边区域空调末端智能控制方法
CN112229094B (zh) 一种恒温空气循环系统
CN111023500B (zh) 空气处理机组各风阀在过渡季工况中的阶段式温度控制法
CN103968481A (zh) 一种地铁站厅站台温度独立控制节能装置及方法
CN115127202A (zh) 一种基于露点温度调节室内温湿度的控制方法
CN202149567U (zh) 一种基于阻抗法的空调冷冻水节能控制系统及空调设备
CN207555821U (zh) 一种中央空调组合风柜
CN206018862U (zh) 一种基于冷却水总线的冷热兼用变负荷调节一体化系统
CN207849675U (zh) 一种节能温度控制的空调装置
CN218864331U (zh) 一种单冷源变双水温的空调温湿系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 530031 5th floor, complex building, No.6 Pengyun Road, Nanning City, Guangxi Zhuang Autonomous Region

Patentee after: Suzhong Dake Intelligent Engineering Co.,Ltd.

Address before: 530012 No.1, beiyili, Renmin Road, Xingning District, Nanning City, Guangxi Zhuang Autonomous Region

Patentee before: GUANGXI SUZHONG DAKE INTELLIGENT ENGINEERING CO.,LTD.