CN108011635A - A kind of method of dynamic comparer and its mistuning calibration function - Google Patents
A kind of method of dynamic comparer and its mistuning calibration function Download PDFInfo
- Publication number
- CN108011635A CN108011635A CN201610933177.6A CN201610933177A CN108011635A CN 108011635 A CN108011635 A CN 108011635A CN 201610933177 A CN201610933177 A CN 201610933177A CN 108011635 A CN108011635 A CN 108011635A
- Authority
- CN
- China
- Prior art keywords
- calibration
- control switch
- switch
- input
- comparison
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 230000003321 amplification Effects 0.000 claims abstract description 55
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 55
- 238000003860 storage Methods 0.000 claims abstract description 53
- 239000003990 capacitor Substances 0.000 claims description 49
- 238000010586 diagram Methods 0.000 description 17
- 238000007599 discharging Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
- H03M1/1014—Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error
- H03M1/1023—Offset correction
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Manipulation Of Pulses (AREA)
- Amplifiers (AREA)
Abstract
Description
技术领域technical field
本发明涉及通信领域,尤其涉及一种动态比较器及其失调校准的方法。The invention relates to the communication field, in particular to a dynamic comparator and a method for offset calibration thereof.
背景技术Background technique
随着现代数字系统数据处理速度的不断提升,高性能的A/D转换器成为一种必然的发展趋势。作为A/D转换器的基本模块之一,比较器的电路设计技术和性能优化也非常重要。其中,全动态比较器由于其低功耗、高速、与深亚微米工艺更好兼容的特点,在高性能、低功耗A/D转换器电路中得到越来越多的应用。然而,全动态比较器也具有失调较大的缺点,特别是随着CMOS工艺尺寸的缩小,失调会变得更加严重,逐渐成为制约A/D转换器性能的主要瓶颈之一。为了降低全动态比较器的失调,可以采用大尺寸的集成元件,但这会增加面积和负载,另一种方法是采用失调校准技术,通过对失调的测量和调整抵消,可以以比较小的比较器面积,实现较高的比较精度。全动态比较器失调校准通常需要在校准辅助电路和校准逻辑的支持下工作,并需要一定的校准时间和附加功耗。With the continuous improvement of the data processing speed of modern digital systems, high-performance A/D converters have become an inevitable development trend. As one of the basic modules of the A/D converter, the circuit design technology and performance optimization of the comparator are also very important. Among them, due to its low power consumption, high speed, and better compatibility with deep submicron technology, full dynamic comparators are increasingly used in high-performance, low-power A/D converter circuits. However, the full dynamic comparator also has the disadvantage of large offset, especially as the size of the CMOS process shrinks, the offset will become more serious, and gradually become one of the main bottlenecks restricting the performance of the A/D converter. In order to reduce the offset of the full dynamic comparator, large-sized integrated components can be used, but this will increase the area and load. Another method is to use the offset calibration technology. By measuring and adjusting the offset of the offset, it can be compared with a relatively small device area to achieve high comparison accuracy. Full dynamic comparator offset calibration usually needs to work with the support of calibration auxiliary circuits and calibration logic, and requires a certain calibration time and additional power consumption.
一种校准技术的优劣,主要通过校准后电路的性能、因校准而增加的面积和功耗、以及校准时间来综合衡量。The pros and cons of a calibration technique are mainly measured comprehensively by the performance of the calibrated circuit, the area and power consumption increased due to calibration, and the calibration time.
图1是一种传统的动态比较器失调校准电路,其原理是通过调整预放大差分输出端的负载电容来调整输入管阈值电压以抵消比较器原有的失调电压。负载电容的调节可通过可配置电容阵列CP和CN来实现。可配置电容阵列由m个电容与开关串联的单元构成,如果开关接通,则该单元的电容并入负载电容,否则,该单元的电容不构成负载。通常,开关控制信号来自m-bit存储器的输出,存储器的内容通过一个上电校准控制电路来获得。这里m的值由失调电压校准范围和校准精度来确定。而且,校准范围越大,精度越高,则所需的m就越大。Figure 1 is a traditional dynamic comparator offset calibration circuit. Its principle is to adjust the threshold voltage of the input transistor by adjusting the load capacitance of the pre-amplified differential output to offset the original offset voltage of the comparator. The adjustment of the load capacitance can be realized through the configurable capacitor arrays CP and CN. The configurable capacitor array is composed of m units with capacitors connected in series with switches. If the switch is turned on, the capacitance of the unit is incorporated into the load capacitance; otherwise, the capacitance of the unit does not form the load. Usually, the switch control signal comes from the output of the m-bit memory, and the content of the memory is obtained through a power-on calibration control circuit. The value of m here is determined by the offset voltage calibration range and calibration accuracy. Also, the larger the calibration range and the higher the accuracy, the larger m is required.
图2是另一种传统的动态比较器失调校准电路,其工作原理是通过调整差分支路的电流来校准比较器失调。在电路实现上,该校准技术通过调整辅助输入差分对管M1和M2的栅极电压差来补偿失配。M1管的栅极接固定电压值,M2管的栅极连接电压保持电容CH,其电压由校准电路来控制。当电路处于校准模式时,比较器两输入端短接共模信号,电路的失调电压被放大并比较输出,从而来控制外控电流源从电容CH抽取或者注入电流。如果电流源向CH注入电流,那么会增加M2的栅极电压,增大其放电电流。辅助输入管电流的不匹配被用来补偿比较器本身的失调。通过多个周期的比较与补偿,可以将比较器失调减小到一个比较小的范围。这里电压保持电容CH的容值由比较器失调的校准精度决定,校准精度越高,CH的容值越大。Figure 2 is another traditional dynamic comparator offset calibration circuit, its working principle is to calibrate the comparator offset by adjusting the current of the differential branch. In terms of circuit implementation, the calibration technology compensates the mismatch by adjusting the gate voltage difference of the auxiliary input differential pair transistors M1 and M2. The gate of the M1 tube is connected to a fixed voltage value, and the gate of the M2 tube is connected to a voltage holding capacitor CH, whose voltage is controlled by a calibration circuit. When the circuit is in the calibration mode, the two input terminals of the comparator are short-circuited with the common-mode signal, and the offset voltage of the circuit is amplified and compared with the output, so as to control the external control current source to extract or inject current from the capacitor CH. If the current source injects current into CH, it will increase the gate voltage of M2, increasing its discharge current. The mismatch of the auxiliary input tube current is used to compensate the offset of the comparator itself. Through the comparison and compensation of multiple cycles, the comparator offset can be reduced to a relatively small range. Here, the capacitance of the voltage holding capacitor CH is determined by the calibration accuracy of the comparator offset. The higher the calibration accuracy, the larger the capacitance of CH.
可以明显看出,传统校准方法一的缺点是需要增加可配置电容阵列、存储器和逻辑控制器,其面积与校准范围和校准精度均成正比;增加的预放大电路负载电容会降低比较器的速度。但是此方法单次校准即可永久使用,无需刷新,无额外的功耗。传统校准方法二需要增加电压保持电容CH,其面积和校准精度成正比。另外,辅助输入管栅极电压的调整需要多个周期逐次逼近来完成,增加了校准时间;校准需要整个比较器(包括动态预放大器和后续的锁存器电路)的参与,功耗代价较大。因此,亟需一种动态比较器及其失调校准的技术方案,能够实现面积代价小、校准时间短和功耗代价低的失调校准。It can be clearly seen that the disadvantage of traditional calibration method 1 is that it needs to increase the configurable capacitor array, memory and logic controller, and its area is proportional to the calibration range and calibration accuracy; the added load capacitance of the pre-amplification circuit will reduce the speed of the comparator . However, this method can be used permanently with a single calibration, without refreshing and without additional power consumption. The second traditional calibration method needs to increase the voltage holding capacitor CH, and its area is proportional to the calibration accuracy. In addition, the adjustment of the gate voltage of the auxiliary input tube requires multiple cycles of successive approximation to complete, which increases the calibration time; calibration requires the participation of the entire comparator (including the dynamic pre-amplifier and the subsequent latch circuit), and the power consumption is relatively high. . Therefore, there is an urgent need for a dynamic comparator and a technical solution for offset calibration thereof, which can realize offset calibration with small area cost, short calibration time, and low power consumption cost.
发明内容Contents of the invention
有鉴于此,本发明实施例希望提供一种动态比较器及其失调校准的方法,能够实现面积代价小、校准时间短和功耗代价低的失调校准。In view of this, the embodiments of the present invention hope to provide a dynamic comparator and its offset calibration method, which can realize offset calibration with small area cost, short calibration time and low power consumption cost.
本发明实施例的技术方案是这样实现的:The technical scheme of the embodiment of the present invention is realized like this:
本发明实施例提供一种动态比较器,所述动态比较器包括:锁存器和包括预放大电路和校准辅助电路的预放大器;An embodiment of the present invention provides a dynamic comparator, the dynamic comparator includes: a latch and a pre-amplifier including a pre-amplification circuit and a calibration auxiliary circuit;
所述校准辅助电路包括存储失调电压的电荷存储电容、充放电开关、共模开关、第一校准控制开关和第二校准控制开关;The calibration auxiliary circuit includes a charge storage capacitor for storing an offset voltage, a charge and discharge switch, a common mode switch, a first calibration control switch, and a second calibration control switch;
所述预放大电路的输入差分NMOS管的栅极分别与所述电荷存储电容的第一端和所述充放电开关的第一端连接,所述电荷存储电容的第二端分别与所述共模开关的第一端和所述动态比较器的输入端连接,所述共模开关的第二端与所述预放大电路的输入共模电压电源连接,所述充放电开关的第二端连接至所述预放大器的输出端;The gate of the input differential NMOS transistor of the pre-amplification circuit is respectively connected to the first end of the charge storage capacitor and the first end of the charge and discharge switch, and the second end of the charge storage capacitor is respectively connected to the common The first end of the mode switch is connected to the input end of the dynamic comparator, the second end of the common mode switch is connected to the input common mode voltage power supply of the pre-amplification circuit, and the second end of the charge and discharge switch is connected to to the output of the pre-amplifier;
所述输入差分NMOS管的漏极与所述第一校准控制开关的第一端连接;The drain of the input differential NMOS transistor is connected to the first end of the first calibration control switch;
所述输入差分NMOS管的源极与所述第二校准控制开关的第一端连接;The source of the input differential NMOS transistor is connected to the first end of the second calibration control switch;
所述预放大器的输出端与所述锁存器的输入级连接。The output terminal of the pre-amplifier is connected to the input stage of the latch.
在上述方案中,所述第一校准控制开关的导通和关断通过校准触发时钟信号进行控制,所述第二校准控制开关的导通和关断通过对所述校准触发时钟信号取反进行控制;其中,所述第一校准控制开关为PMOS管,所述第二校准控制开关为NMOS管。In the above solution, the turn-on and turn-off of the first calibration control switch is controlled by a calibration trigger clock signal, and the turn-on and turn-off of the second calibration control switch is controlled by inverting the calibration trigger clock signal Control; wherein, the first calibration control switch is a PMOS transistor, and the second calibration control switch is an NMOS transistor.
在上述方案中,所述电荷存储电容的第二端与所述预放大电路的差分输入开关的第一端连接,所述差分输入开关的第二端与所述动态比较器的输入端连接;其中,所述差分输入开关在失调校准状态为关断状态且在比较状态为导通状态。In the above solution, the second end of the charge storage capacitor is connected to the first end of the differential input switch of the pre-amplification circuit, and the second end of the differential input switch is connected to the input end of the dynamic comparator; Wherein, the differential input switch is turned off in the offset calibration state and turned on in the comparison state.
在上述方案中,所述第一校准控制开关的第二端与所述预放大电路的第一比较控制开关的第一端连接,其中,所述第一比较控制开关的第二端与所述校准电压电源连接;In the above solution, the second end of the first calibration control switch is connected to the first end of the first comparison control switch of the pre-amplification circuit, wherein the second end of the first comparison control switch is connected to the Calibration voltage supply connection;
所述第二校准控制开关的第一端与所述预放大电路的第二比较控制开关的第一端连接,所述第二校准控制开关的第二端分别与所述第二比较控制开关的第二端和所述预放大电路的接地端连接。The first end of the second calibration control switch is connected to the first end of the second comparison control switch of the pre-amplification circuit, and the second end of the second calibration control switch is respectively connected to the second comparison control switch. The second end is connected to the ground end of the pre-amplification circuit.
在上述方案中,所述第一比较控制开关的导通和关断通过比较触发时钟信号进行控制,所述第二比较控制开关的导通和关断通过对所述比较触发时钟信号的取反进行控制;其中,所述第一比较控制开关为PMOS管,所述第二比较控制开关为NMOS管。In the above solution, the turn-on and turn-off of the first comparison control switch is controlled by a comparison trigger clock signal, and the turn-on and turn-off of the second comparison control switch is controlled by inverting the comparison trigger clock signal control; wherein, the first comparison control switch is a PMOS transistor, and the second comparison control switch is an NMOS transistor.
在上述方案中,所述充放电开关的导通和关断通过将所述共模开关的控制信号取反后得到的控制信号和所述输出端的电压信号进行与运算得到的信号进行控制。In the solution above, the turn-on and turn-off of the charge-discharge switch is controlled by the control signal obtained by inverting the control signal of the common-mode switch and the signal obtained by AND operation of the voltage signal at the output terminal.
本发明实施例还提供一种应用于上述动态比较器的失调校准的方法,所述方法包括:An embodiment of the present invention also provides a method for offset calibration applied to the above-mentioned dynamic comparator, the method comprising:
在失调校准状态,置所述第一校准控制开关导通,分别置所述第二校准控制开关、所述共模开关和所述充放电开关关断,所述预放大电路的校准电压电源向所述输入差分NMOS管充电使所述输入差分NMOS管的漏极的电压值达到校准电压;In the offset calibration state, the first calibration control switch is set to be turned on, and the second calibration control switch, the common mode switch and the charging and discharging switch are respectively set to be turned off, and the calibration voltage power supply of the pre-amplification circuit is supplied to The input differential NMOS tube is charged so that the voltage value of the drain of the input differential NMOS tube reaches a calibration voltage;
置所述第一校准控制开关关断,分别置所述第二校准控制开关、所述共模开关和所述充放电开关导通,所述输入差分NMOS管的漏极电压经由所述输入差分NMOS管进行共模放电,向所述电荷存储电容充电,在所述电荷存储电容中进行失调电荷的存储。Set the first calibration control switch to turn off, respectively set the second calibration control switch, the common mode switch and the charge and discharge switch to conduct, and the drain voltage of the input differential NMOS transistor is passed through the input differential The NMOS transistor performs common-mode discharge, charges the charge storage capacitor, and stores the offset charge in the charge storage capacitor.
在上述方案中,所述方法还包括:In the above scheme, the method also includes:
分别置所述第一校准控制开关和充放电开关关断,分别置所述第二校准控制开关和所述共模开关导通,所述输入差分NMOS管的漏极电压经由所述输入差分NMOS管进行共模放电并停止向所述电荷存储电容充电。Set the first calibration control switch and the charging and discharging switch to be turned off respectively, respectively set the second calibration control switch and the common mode switch to be turned on, and the drain voltage of the input differential NMOS transistor is passed through the input differential NMOS The tube undergoes a common-mode discharge and stops charging the charge storage capacitor.
在上述方案中,所述方法还包括:In the above scheme, the method also includes:
在比较状态,置所述第一校准控制开关导通,分别置所述共模开关、所述充放电开关、所述第二校准控制开关关断,将动态比较器的输入端输入的差分放大信号和所述电荷存储电容中存储的失调电荷对应的失调电压进行叠加后得到等效电压,将所述等效电压经过所述预放大电路的放大和所述锁存器的放大判决得到对所述差分放大信号的比较结果。In the comparison state, the first calibration control switch is set to be turned on, and the common mode switch, the charge and discharge switch, and the second calibration control switch are respectively set to be turned off, and the differential input of the input terminal of the dynamic comparator is amplified. The signal and the offset voltage corresponding to the offset charge stored in the charge storage capacitor are superimposed to obtain an equivalent voltage, and the equivalent voltage is amplified by the pre-amplification circuit and the amplified judgment of the latch to obtain the equivalent voltage. The comparison results of the above differential amplified signals.
在上述方案中,所述方法还包括:In the above scheme, the method also includes:
通过校准触发时钟信号置所述第一校准控制开关导通和导通,通过对所述校准触发时钟信号取反置所述第二校准控制开关关断和导通;其中,所述第一校准控制开关为PMOS管,所述第二校准控制开关为NMOS管。The first calibration control switch is turned on and on by the calibration trigger clock signal, and the second calibration control switch is turned off and on by inverting the calibration trigger clock signal; wherein, the first calibration The control switch is a PMOS transistor, and the second calibration control switch is an NMOS transistor.
在上述方案中,所述方法还包括:In the above scheme, the method also includes:
当在失调校准状态,置差分输入开关关断;其中,所述差分输入开关的第一端与所述电荷存储电容的第二端连接,所述差分输入开关的第二端与所述动态比较器的输入端连接。When in the offset calibration state, the differential input switch is turned off; wherein, the first end of the differential input switch is connected to the second end of the charge storage capacitor, and the second end of the differential input switch is connected to the dynamic comparison connected to the input of the device.
在上述方案中,所述方法还包括:In the above scheme, the method also includes:
当置所述预放大电路的第一比较控制开关导通,并置所述预放大电路的第二比较控制开关关断时,所述动态比较器处于失调校准状态;其中,When the first comparison control switch of the pre-amplification circuit is turned on and the second comparison control switch of the pre-amplification circuit is turned off, the dynamic comparator is in an offset calibration state; wherein,
所述第一校准控制开关的第二端与所述第一比较控制开关的第一端连接,所述第一比较控制开关的第二端与所述校准电压电源连接;The second end of the first calibration control switch is connected to the first end of the first comparison control switch, and the second end of the first comparison control switch is connected to the calibration voltage power supply;
所述第二校准控制开关的第一端与所述第二比较控制开关的第一端连接,所述第二校准控制开关的第二端分别与所述第二比较控制开关的第二端和所述预放大电路的接地端连接。The first terminal of the second calibration control switch is connected to the first terminal of the second comparison control switch, and the second terminal of the second calibration control switch is respectively connected to the second terminal of the second comparison control switch and The ground terminal of the pre-amplification circuit is connected.
在上述方案中,所述方法还包括:In the above scheme, the method also includes:
通过将所述共模开关的控制信号取反后得到的控制信号和所述输出端的电压信号进行与运算后得到的信号控制所述充放电开关的导通和关断。Turning on and off of the charging and discharging switch is controlled by an AND operation of the control signal obtained by inverting the control signal of the common mode switch and the voltage signal at the output terminal.
本发明实施例的所述动态比较器及其失调校准方法,通过把动态比较器的失调电压存储在动态比较器的输入端的串联电容上来消除失调,不需要大量的存储器与控制线,仅需花费预放大器的功耗,无需等待校准收敛时间,不仅有效降低了动态预放大器的失调,提高了比较器的转换精度,而且具有面积代价小、功耗代价小和校准速度快的优势。The dynamic comparator and its offset calibration method in the embodiment of the present invention eliminate the offset by storing the offset voltage of the dynamic comparator on the series capacitor at the input end of the dynamic comparator, without requiring a large amount of memory and control lines, and only needing to spend The power consumption of the pre-amplifier does not need to wait for the calibration convergence time, which not only effectively reduces the offset of the dynamic pre-amplifier, improves the conversion accuracy of the comparator, but also has the advantages of small area cost, low power consumption cost and fast calibration speed.
附图说明Description of drawings
图1传统的动态比较器失调校准电路一的结构示意图;Fig. 1 is a schematic structural diagram of a traditional dynamic comparator offset calibration circuit 1;
图2传统的动态比较器失调校准电路二的结构示意图;The structural schematic diagram of the traditional dynamic comparator offset calibration circuit 2 of Fig. 2;
图3为本发明实施例一提供的一种动态比较器的结构示意图;FIG. 3 is a schematic structural diagram of a dynamic comparator provided in Embodiment 1 of the present invention;
图4为本发明实施例一提供动态比较器的工作原理图;FIG. 4 is a working principle diagram of a dynamic comparator provided by Embodiment 1 of the present invention;
图5为本发明实施例一提供的动态比较器的预放大器和锁存器的电路结构示意图;FIG. 5 is a schematic diagram of a circuit structure of a preamplifier and a latch of a dynamic comparator provided in Embodiment 1 of the present invention;
图6为本发明实施例一供的充放电开关的控制电路的结构示意图;6 is a schematic structural diagram of a control circuit of a charging and discharging switch provided in Embodiment 1 of the present invention;
图7为本发明实施例二提供的动态比较器失调校准的方法的流程示意图;FIG. 7 is a schematic flowchart of a method for calibrating a dynamic comparator offset provided by Embodiment 2 of the present invention;
图8为本发明实施例三提供的动态比较器的失调电荷存储过程的电路示意图;8 is a schematic circuit diagram of the offset charge storage process of the dynamic comparator provided by Embodiment 3 of the present invention;
图9为本发明实施例三提供的动态比较器的比较过程的电路示意图;9 is a schematic circuit diagram of the comparison process of the dynamic comparator provided in Embodiment 3 of the present invention;
图10为本发明实施例三提供的动态比较器的时序图;FIG. 10 is a timing diagram of a dynamic comparator provided in Embodiment 3 of the present invention;
附图标记说明:电荷存储电容,Ch;充放电开关,K2;共模开关,F2;第一校准控制开关,K11;第二校准控制开关,K12;第一输入差分NMOS管,M1;第二输入差分NMOS管,M2;差分输入开关,F1;第一比较控制开关F1K1;第二比较控制开关F1K2。Description of reference signs: charge storage capacitor, Ch; charge and discharge switch, K2; common mode switch, F2; first calibration control switch, K11; second calibration control switch, K12; first input differential NMOS transistor, M1; second Input differential NMOS transistor, M2; differential input switch, F1; first comparison control switch F1K1; second comparison control switch F1K2.
具体实施方式Detailed ways
下面结合附图对技术方案的实施作进一步的详细描述。The implementation of the technical solution will be further described in detail below in conjunction with the accompanying drawings.
实施例一Embodiment one
本发明实施例一提供一种动态比较器,如图3所示,所述动态比较器包括:锁存器和包括预放大电路和校准辅助电路的预放大器;所述校准辅助电路包括存储失调电压的电荷存储电容Ch、充放电开关K2、共模开关F2、第一校准控制开关K11和第二校准控制开关K12;所述预放大电路的输入差分NMOS管的栅极分别与电荷存储电容Ch的第一端和充放电开关K2的第一端连接,电荷存储电容Ch的第二端分别与共模开关F2的第一端和所述动态比较器的输入端连接,共模开关F2的第二端与所述预放大电路的输入共模电压电源VCM连接,充放电开关K2的第二端连接至所述预放大器的输出端;所述输入差分NMOS管的漏极与所述第一校准控制开关的第一端连接;所述输入差分NMOS管的源极与所述第二校准控制开关的第一端连接;所述预放大器的输出端与所述锁存器的输入级连接。其中,在预放大电路中,包括由第一输入差分NMOS管M1和第二输入差分NMOS管M2构成的完全对称的电路,第一输入差分NMOS管的漏极和第二输入差分NMOS管的漏极为预放大器的输出端,输出端的电压与锁存器的输入级连接。如图3所示,分别在第一输入差分NMOS管M1和第二输入差分NMOS管M2的栅极、漏极、源极上连接有包括电荷存储电容Ch、充放电开关K2、共模开关F2、第一校准控制开关K11和第二校准控制开关K12的校准辅助电路。通过在预放大器中增加校准辅助电路,在每一个周期内,动态比较器均进行失调存储和正常比较。Embodiment 1 of the present invention provides a dynamic comparator. As shown in FIG. 3, the dynamic comparator includes: a latch and a pre-amplifier including a pre-amplification circuit and a calibration auxiliary circuit; the calibration auxiliary circuit includes a storage offset voltage Charge storage capacitor Ch, charge and discharge switch K2, common mode switch F2, first calibration control switch K11 and second calibration control switch K12; the gate of the input differential NMOS transistor of the pre-amplification circuit is connected to the gate of the charge storage capacitor Ch The first terminal is connected to the first terminal of the charging and discharging switch K2, the second terminal of the charge storage capacitor Ch is respectively connected to the first terminal of the common mode switch F2 and the input terminal of the dynamic comparator, and the second terminal of the common mode switch F2 It is connected with the input common-mode voltage power supply V CM of the pre-amplification circuit, and the second end of the charge-discharge switch K2 is connected to the output end of the pre-amplifier; the drain of the input differential NMOS transistor is connected to the first calibration control The first end of the switch is connected; the source of the input differential NMOS transistor is connected to the first end of the second calibration control switch; the output end of the pre-amplifier is connected to the input stage of the latch. Among them, in the pre-amplification circuit, it includes a completely symmetrical circuit composed of the first input differential NMOS transistor M1 and the second input differential NMOS transistor M2, the drain of the first input differential NMOS transistor and the drain of the second input differential NMOS transistor It is the output terminal of the preamplifier, and the voltage at the output terminal is connected to the input stage of the latch. As shown in FIG. 3 , the gate, drain, and source of the first input differential NMOS transistor M1 and the second input differential NMOS transistor M2 are respectively connected with charge storage capacitor Ch, charge and discharge switch K2, and common mode switch F2. 1. A calibration auxiliary circuit for the first calibration control switch K11 and the second calibration control switch K12. By adding a calibration auxiliary circuit in the pre-amplifier, the dynamic comparator performs offset storage and normal comparison in each cycle.
如图3所示,所述第一校准控制开关的导通和关断通过校准触发时钟信号进行控制,所述第二校准控制开关的导通和关断通过对所述校准触发时钟信号取反进行控制;其中,所述第一校准控制开关为PMOS管,所述第二校准控制开关为NMOS管。这里,当校准触发时钟信号为CLKK1时,通过CLKK1同时控制第一校准控制开关K11和第二校准控制开关K12,并且第一校准控制开关K11和第二校准控制开关K12的状态相反,具体的,CLKK1的低电平控制第一校准控制开关K11导通,第二校准控制开关K12关断;CLKK1的高电平控制第一校准控制开关K11为关断,第二校准控制开关K12导通。As shown in Figure 3, the turn-on and turn-off of the first calibration control switch is controlled by a calibration trigger clock signal, and the turn-on and turn-off of the second calibration control switch is controlled by inverting the calibration trigger clock signal performing control; wherein, the first calibration control switch is a PMOS transistor, and the second calibration control switch is an NMOS transistor. Here, when the calibration trigger clock signal is CLK K1 , the first calibration control switch K11 and the second calibration control switch K12 are simultaneously controlled by CLK K1 , and the states of the first calibration control switch K11 and the second calibration control switch K12 are opposite, specifically The low level of CLK K1 controls the first calibration control switch K11 to be turned on, and the second calibration control switch K12 is turned off; the high level of CLK K1 controls the first calibration control switch K11 to be turned off, and the second calibration control switch K12 conduction.
其中,当第一校准控制开关为PMOS管,第二校准控制开关为NMOS管时,第一校准控制开关的第一端为源极,第一校准开关的第二端为漏极,第二校准控制开关的第一端为源极,第二校准控制开关的第二端为漏极。Wherein, when the first calibration control switch is a PMOS tube, and the second calibration control switch is an NMOS tube, the first end of the first calibration control switch is a source, the second end of the first calibration switch is a drain, and the second calibration switch is a drain. The first end of the control switch is the source, and the second end of the second calibration control switch is the drain.
这里,校准触发时钟信号CLKK1低电平控制第一校准控制开关K11为导通,第二校准控制开关K12为关断,在失调存储阶段,如图4所示,校准触发时钟信号CLKK1的低电平相控制节点P、节点N充电到校准电压电源的电压VDD;校准触发时钟信号CLKK1的高电平相控制节点P、节点N经由输入差分对管(M1,M2)进行共模放电此时。在输入差分对管进行共模放电过程中,电路的失配影响节点P和N的放电速度。节点P和节点N对应的电荷存储电容Ch跟踪并存储节点P和节点N的电压(Vp和Vn)。其中,节点P、节点N为预防大器的输出端,与锁存器的输入级连接,。Here, the low level of the calibration trigger clock signal CLK K1 controls the first calibration control switch K11 to be turned on, and the second calibration control switch K12 is to be turned off. In the offset storage stage, as shown in FIG. 4 , the calibration trigger clock signal CLK K1 The low-level phase control nodes P and N are charged to the voltage V DD of the calibration voltage power supply; the high-level phase control nodes P and N of the calibration trigger clock signal CLK K1 perform common mode via the input differential pair (M1, M2) discharge at this time. During the common-mode discharge process of the input differential pair tubes, the mismatch of the circuit affects the discharge speed of nodes P and N. The charge storage capacitors Ch corresponding to the nodes P and N track and store the voltages (Vp and Vn) of the nodes P and N. Wherein, node P and node N are the output terminals of the amplifier, which are connected to the input stage of the latch.
本发明实施例提供的动态比较器的预放大电路的电路结构如图5所示,锁存器的电路结构如图6所示,其中,预放大电路的输出端节点P(VP)、节点N(VN)分别与锁存器的输入级VIP、VIN连接,从而,将预放大电路的输出信号作为锁存器的输入信号,锁存器根据预放大电路放大后的电压信号进行放大判决,对动态比较器从预放大电路的差分输入端VIP、VIN输入的差分信号进行比较。The circuit structure of the pre-amplification circuit of the dynamic comparator provided by the embodiment of the present invention is shown in Figure 5, and the circuit structure of the latch is shown in Figure 6, wherein the output node P (V P ) and node N (V N ) is respectively connected to the input stages V IP and V IN of the latch, so that the output signal of the pre-amplification circuit is used as the input signal of the latch, and the latch performs the operation according to the voltage signal amplified by the pre-amplification circuit. The amplification decision is to compare the differential signals input by the dynamic comparator from the differential input terminals V IP and V IN of the pre-amplification circuit.
这里,预放大电路还包括差分输入开关F1和第一比较控制开关F1K1和第二比较控制开关F1K2。Here, the pre-amplification circuit further includes a differential input switch F1 and a first comparison control switch F1K1 and a second comparison control switch F1K2.
如图5所示,电荷存储电容Ch的第二端与所述预放大电路的差分输入开关F1的第一端连接,差分输入开关F1的第二端与所述动态比较器的输入端连接;其中,所述差分输入开关在失调校准状态为关断状态且在比较状态为导通状态。其中,预放大电路的输入端包括VIP和VIN。As shown in Figure 5, the second end of the charge storage capacitor Ch is connected to the first end of the differential input switch F1 of the pre-amplification circuit, and the second end of the differential input switch F1 is connected to the input end of the dynamic comparator; Wherein, the differential input switch is turned off in the offset calibration state and turned on in the comparison state. Wherein, the input terminals of the pre-amplification circuit include V IP and V IN .
如图5所示,第一校准控制开关K11的第二端与所述预放大电路的第一比较控制开关F1K1的第一端连接,其中,第一比较控制开关F1K1的第二端与所述校准电压电源连接;第二校准控制开关K12的第一端与所述预放大电路的第二比较控制开关F1K2的第一端连接,第二校准控制开关K12的第二端分别与第二比较控制开关F1K2的第二端和所述预放大电路的接地端连接。其中,校准电压电源VDD的电压为VDD。As shown in Figure 5, the second end of the first calibration control switch K11 is connected to the first end of the first comparison control switch F1K1 of the pre-amplification circuit, wherein the second end of the first comparison control switch F1K1 is connected to the first end of the first comparison control switch F1K1. Calibration voltage power supply connection; the first end of the second calibration control switch K12 is connected to the first end of the second comparison control switch F1K2 of the pre-amplification circuit, and the second end of the second calibration control switch K12 is connected to the second comparison control switch F1K2 respectively. The second end of the switch F1K2 is connected to the ground end of the pre-amplification circuit. Wherein, the voltage of the calibration voltage supply VDD is V DD .
在本发明实施例中,第一比较控制开关F1K1的导通和关断通过比较触发时钟信号进行控制,第二比较控制开关F1K2的导通和关断通过对所述比较触发时钟信号的取反进行控制;其中,第一比较控制开关F1K1为PMOS管,第二比较控制开关F1K2为NMOS管。其中,当第一比较控制开关为PMOS管,第二比较控制开关为NMOS管时,第一比较控制开关的第一端为源极,第一比较开关的第二端为漏极,第二比较准控制开关的第一端为源极,第二比较控制开关的第二端为漏极。In the embodiment of the present invention, the turn-on and turn-off of the first comparison control switch F1K1 is controlled by a comparison trigger clock signal, and the turn-on and turn-off of the second comparison control switch F1K2 is controlled by inverting the comparison trigger clock signal control; wherein, the first comparison control switch F1K1 is a PMOS transistor, and the second comparison control switch F1K2 is an NMOS transistor. Wherein, when the first comparison control switch is a PMOS transistor and the second comparison control switch is an NMOS transistor, the first terminal of the first comparison control switch is a source, the second terminal of the first comparison switch is a drain, and the second comparison control switch is a drain. The first end of the quasi-control switch is the source, and the second end of the second comparison control switch is the drain.
这里,当比较触发时钟信号为CLKF1K时,通过CLKF1K同时控制第一比较控制开关F1K1和第二比较控制开关F1K2,并且第一比较控制开关F1K1和第二比较控制开关F1K2的状态相反,具体的,CLKF1K的低电平控制第一比较控制开关F1K1导通,第二比较控制开关F1K2关断;CLKF1K的高电平控制第一比较控制开关F1K1为关断,第二比较控制开关F1K2导通。Here, when the comparison trigger clock signal is CLK F1K , the first comparison control switch F1K1 and the second comparison control switch F1K2 are simultaneously controlled by CLK F1K , and the states of the first comparison control switch F1K1 and the second comparison control switch F1K2 are opposite, specifically The low level of CLK F1K controls the first comparison control switch F1K1 to turn on, and the second comparison control switch F1K2 turns off; the high level of CLK F1K controls the first comparison control switch F1K1 to turn off, and the second comparison control switch F1K2 conduction.
在本发明实施例中,如图7所示,充放电开关K2的导通和关断通过将共模开关F2的控制信号取反后得到的控制信号和所述输出端的电压信号进行与运算得到的信号进行控制。从而,由节点P的电压Vp/节点N的电压Vn与充放电开关F2的控制信号的与门控制共模开关K2为高电平或低电平,其中,F2的控制信号CLKF1为K2的控制信号CLKK2的一小段延时。In the embodiment of the present invention, as shown in FIG. 7, the turn-on and turn-off of the charge-discharge switch K2 is obtained by ANDing the control signal obtained by inverting the control signal of the common-mode switch F2 and the voltage signal at the output terminal. signal to control. Therefore, the AND gate of the voltage Vp of the node P/the voltage Vn of the node N and the control signal of the charging and discharging switch F2 controls the common mode switch K2 to be at a high level or a low level, wherein the control signal CLK F1 of F2 is K2’s A small delay of the control signal CLK K2 .
在实际应用中,为确保预放大电路的输入差分NMOS管在接下来的比较时间内正常工作在饱和区,需要控制节点P和节点N对应的电荷存储电容Ch中存储的Vp和Vn。当节点P、节点N的电压下降到某一个电压范围时,充放电开关K2需要及时关断。该校准技术在比较器复位阶段,通过校准时钟K1的从低电平到高电平的变化,对预放大电路的输出节点增加了一次放电和充电的操作,并在节点P、节点N两点放电过程中来完成失调电荷的存储。In practical applications, in order to ensure that the input differential NMOS transistor of the pre-amplification circuit works normally in the saturation region during the next comparison time, it is necessary to control the Vp and Vn stored in the charge storage capacitor Ch corresponding to the node P and node N. When the voltages of the nodes P and N drop to a certain voltage range, the charging and discharging switch K2 needs to be turned off in time. In the comparator reset stage, this calibration technology adds a discharge and charge operation to the output node of the pre-amplification circuit by calibrating the change of the clock K1 from low level to high level, and at two points of node P and node N The storage of the offset charge is completed during the discharge process.
本发明实施例提供的动态比较器,在预放大电路中增加第一校准控制开关F11和第二校准控制开关F12,通过第一校准控制开关F11和第二校准控制开关F12的导通与关断,在其控制信号校准触发时钟信号CLKK1从低电平到高电平的变化对,对预放大电路的输出节点增加了一次放电和充电的操作,并在节点P、节点N两点放电过程中来完成在电荷存储电容中的失调电荷的存储。In the dynamic comparator provided by the embodiment of the present invention, the first calibration control switch F11 and the second calibration control switch F12 are added in the pre-amplification circuit, and the first calibration control switch F11 and the second calibration control switch F12 are turned on and off. , when the control signal is calibrated to trigger the change of the clock signal CLK K1 from low level to high level, a discharge and charge operation is added to the output node of the pre-amplification circuit, and the discharge process at the two points of node P and node N to complete the storage of the offset charge in the charge storage capacitor.
在本发明实施例中,通过在预放大电路上增加包括存储失调电压的电荷存储电容Ch、充放电开关K2、共模开关F2、第一校准控制开关K11和第二校准控制开关K12,把动态比较器的失调电压存储在输入端的串联电容Ch上来消除失调,不需要大量的存储器与控制线,仅需花费预放大器的功耗,无需等待校准收敛时间,不仅有效降低了动态预放大器的失调,提高了比较器的转换精度,而且具有面积代价小、功耗代价小和校准速度快的优势。In the embodiment of the present invention, the dynamic The offset voltage of the comparator is stored on the series capacitor Ch at the input end to eliminate the offset, which does not require a large amount of memory and control lines, only consumes the power consumption of the pre-amplifier, and does not need to wait for the calibration convergence time, which not only effectively reduces the offset of the dynamic pre-amplifier, The conversion accuracy of the comparator is improved, and it has the advantages of small area cost, low power consumption cost and fast calibration speed.
相比于传统的动态比较器失调校准技术,本发明实施例提供的动态比较器不需要大量的存储器与控制线,并且失调电荷存储电容Ch的大小与输入MOS管的寄生电容有关,由于电路的输入MOS管尺寸小,电荷存储电容Ch比较小,面积代价小;动态比较器在每次正常比较前先进行失调电压的存储,而该过程仅需花费预放大器的功耗,不需要后续锁存器电路参与,功耗代价低;原理简单易实现,且校准在瞬间完成,无需逐渐收敛所花费的时间,系统无需专门校准过程即可上电工作,校准时间短。本发明所提出的动态比较器失调校准技术与传统失调校准技术相比,在面积、功耗和校准时间三个方面具有综合优势。Compared with the traditional dynamic comparator offset calibration technology, the dynamic comparator provided by the embodiment of the present invention does not require a large number of memory and control lines, and the size of the offset charge storage capacitor Ch is related to the parasitic capacitance of the input MOS transistor, due to the circuit The size of the input MOS tube is small, the charge storage capacitor Ch is relatively small, and the area cost is small; the dynamic comparator stores the offset voltage before each normal comparison, and this process only costs the power consumption of the pre-amplifier and does not require subsequent latching The device circuit is involved, and the power consumption cost is low; the principle is simple and easy to implement, and the calibration is completed in an instant, without the time spent on gradual convergence, the system can be powered on and working without a special calibration process, and the calibration time is short. Compared with the traditional offset calibration technology, the dynamic comparator offset calibration technology proposed by the present invention has comprehensive advantages in terms of area, power consumption and calibration time.
实施例二Embodiment two
在发明实施例中,结合图3至图6所示的动态比较器对本发明实施例提供的动态比较器失调校准的方法进行描述,如图7所示,所述方法包括:In the embodiment of the invention, the method for offset calibration of the dynamic comparator provided by the embodiment of the invention is described in conjunction with the dynamic comparator shown in FIG. 3 to FIG. 6 , as shown in FIG. 7 , the method includes:
S701、在失调校准状态,置所述第一校准控制开关导通,分别置所述第二校准控制开关、所述共模开关和所述充放电开关关断,所述预放大电路的校准电压电源向所述输入差分NMOS管充电使所述输入差分NMOS管的漏极的电压值达到校准电压;S701. In the offset calibration state, set the first calibration control switch to be turned on, respectively set the second calibration control switch, the common mode switch, and the charge and discharge switch to be off, and the calibration voltage of the pre-amplification circuit The power supply charges the input differential NMOS transistor so that the voltage value of the drain of the input differential NMOS transistor reaches the calibration voltage;
S702、置所述第一校准控制开关关断,分别置所述第二校准控制开关、所述共模开关和所述充放电开关导通,所述输入差分NMOS管的漏极电压经由所述输入差分NMOS管进行共模放电,向所述电荷存储电容充电,在所述电荷存储电容中进行失调电荷的存储。S702. Turn off the first calibration control switch, respectively turn on the second calibration control switch, the common mode switch, and the charging and discharging switch, and the drain voltage of the input differential NMOS transistor is passed through the The input differential NMOS transistor performs common-mode discharge, charges the charge storage capacitor, and stores the offset charge in the charge storage capacitor.
其中,在S701中,完成了一次预放大电路的输出节点的放电操作;在S702中,完成了一次预放大电路的输出节点的充电操作,从而由预放大电路的输出节点向电荷存储电容充电,在所述电荷存储电容中进行失调电荷的存储。Wherein, in S701, a discharge operation of the output node of the pre-amplification circuit is completed; in S702, a charging operation of the output node of the pre-amplification circuit is completed, thereby charging the charge storage capacitor from the output node of the pre-amplification circuit, Storage of offset charges takes place in the charge storage capacitor.
在本发明实施例中,分别置所述第一校准控制开关和充放电开关关断,分别置所述第二校准控制开关和所述共模开关导通,所述输入差分NMOS管的漏极电压经由所述输入差分NMOS管进行共模放电并停止向所述电荷存储电容充电。In the embodiment of the present invention, the first calibration control switch and the charging and discharging switch are respectively turned off, the second calibration control switch and the common mode switch are respectively turned on, and the drain of the input differential NMOS transistor The voltage is discharged in a common mode through the input differential NMOS transistor and stops charging to the charge storage capacitor.
在比较状态,置所述第一校准控制开关导通,分别置所述共模开关、所述充放电开关、所述第二校准控制开关关断,将所述输入端输入的差分放大信号和所述电荷存储电容中存储的失调电荷对应的失调电压进行叠加后得到等效电压,将所述等效电压经过所述预放大电路的放大和所述锁存器的放大判决得到对所述差分放大信号的比较结果。In the comparison state, the first calibration control switch is set to be turned on, and the common mode switch, the charge and discharge switch, and the second calibration control switch are respectively set to be turned off, and the differential amplified signal input at the input terminal and The offset voltage corresponding to the offset charge stored in the charge storage capacitor is superimposed to obtain an equivalent voltage, and the equivalent voltage is amplified by the pre-amplification circuit and amplified by the latch to obtain the differential voltage. The comparison result of the amplified signal.
其中,通过校准触发时钟信号置所述第一校准控制开关导通和导通,通过对所述校准触发时钟信号取反置所述第二校准控制开关关断和导通;其中,所述第一校准控制开关为PMOS管,所述第二校准控制开关为NMOS管。Wherein, the first calibration control switch is turned on and on by the calibration trigger clock signal, and the second calibration control switch is turned off and on by inverting the calibration trigger clock signal; wherein, the first A calibration control switch is a PMOS transistor, and the second calibration control switch is an NMOS transistor.
当在失调校准状态,置差分输入开关关断;其中,所述差分输入开关的第一端与所述电荷存储电容的第二端连接,所述差分输入开关的第二端与所述预放大电路的输入端连接。When in the offset calibration state, the differential input switch is turned off; wherein, the first end of the differential input switch is connected to the second end of the charge storage capacitor, and the second end of the differential input switch is connected to the pre-amplifier The input terminal of the circuit is connected.
当置所述预放大电路的第一比较控制开关导通,并置所述预放大电路的第二比较控制开关关断时,所述动态比较器处于失调校准状态;其中,所述第一校准控制开关的第二端与所述第一比较控制开关的第一端连接,所述第一比较控制开关的第二端与所述校准电压电源连接;所述第二校准控制开关的第一端与所述第二比较控制开关的第一端连接,所述第二校准控制开关的第二端分别与所述第二比较控制开关的第二端和所述预放大电路的接地端连接。其中,通过将所述共模开关的控制信号取反后得到的控制信号和所述输出端的电压信号进行与运算后得到的信号控制所述充放电开关的导通和关断。When the first comparison control switch of the pre-amplification circuit is turned on and the second comparison control switch of the pre-amplification circuit is turned off, the dynamic comparator is in an offset calibration state; wherein, the first calibration The second end of the control switch is connected to the first end of the first comparison control switch, and the second end of the first comparison control switch is connected to the calibration voltage power supply; the first end of the second calibration control switch connected to the first terminal of the second comparison control switch, and the second terminal of the second calibration control switch is respectively connected to the second terminal of the second comparison control switch and the ground terminal of the pre-amplification circuit. Wherein, the turn-on and turn-off of the charge-discharge switch is controlled by the control signal obtained by inverting the control signal of the common-mode switch and the signal obtained by AND operation of the voltage signal at the output terminal.
实施例三Embodiment three
在本实施例中,结合图8(a)、图8(b)、图9(a)、图9(b)对本发明实施例提供的图3-图6所示的动态比较器的失调校准方法进行说明。In this embodiment, the offset calibration of the dynamic comparator shown in Fig. 3-Fig. 6 provided by the embodiment of the present invention is combined with Fig. The method is explained.
需要说明的是,在预放大器部分,输入差分对管M1和M2、第一比较控制开关F1K1、第二比较控制开关F1K2和差分输入开关F1构成比较器的正常预放大电路,预放大电路的输入端串联的电荷存储电容Ch、第一校准控制开关K11、第二校准控制开关K12、充放电开关K2和共模开关F2构成比较器的校准辅助电路。比较器分为失调存储(失调校准状态)和正常比较(比较状态)两个阶段,具体的,失调存储阶段的电荷存储过程如图8(a)、图8(b)所示,正常比较阶段的差分电压比较过程如图9(a)、图9(b)所示。It should be noted that in the pre-amplifier part, the input differential pair transistors M1 and M2, the first comparison control switch F1K1, the second comparison control switch F1K2 and the differential input switch F1 constitute the normal pre-amplification circuit of the comparator, and the input of the pre-amplification circuit The charge storage capacitor Ch, the first calibration control switch K11 , the second calibration control switch K12 , the charging and discharging switch K2 and the common mode switch F2 connected in series with each other form a calibration auxiliary circuit of the comparator. The comparator is divided into two stages: offset storage (offset calibration state) and normal comparison (comparison state). Specifically, the charge storage process in the offset storage stage is shown in Figure 8(a) and Figure 8(b). The normal comparison stage The comparison process of the differential voltage is shown in Figure 9(a) and Figure 9(b).
在失调存储阶段,如图8(a)所示,比较触发时钟信号CLKF1K和校准触发时钟信号CLKK1为低,第一比较控制开关F1K1和第一校准控制开关F11(PMOS管)把预放大器的输出节点(节点P、节点N)两点预充电至校准电压VDD,同时锁存器输出节点out复位到地,预放大器和锁存器的尾电流管都关断。如图8(b)所示当节点P、节点N的共模电压的上升触发CLKK1变为高电平后,预放大器的尾电流管导通,预放大器输出节点节点P、节点N两点开始共模放电,电路的失配效应导致放电速度不同。当节点P、节点N节点共模电压的下降触发K2的下降沿,失调电压被储存到对应的输入串联电容Ch上,当CLKK1变为低电平后,比较器的失调存储阶段结束。另外,为确保预放大电路的输入差分对管(M1、M2)在接下来的比较时间内正常工作在饱和区,需要控制Ch存储的Vp和Vn。在电路实现上,由Vp/Vn与开关F2的与门控制K2为高电平或低电平,K1为K2的一小段延时,如图6所示。In the offset storage stage, as shown in Figure 8(a), the comparison trigger clock signal CLK F1K and the calibration trigger clock signal CLK K1 are low, and the first comparison control switch F1K1 and the first calibration control switch F11 (PMOS tube) turn the pre-amplifier The output nodes (node P, node N) of the two points are pre-charged to the calibration voltage V DD , and at the same time the output node out of the latch is reset to ground, and the tail current transistors of the pre-amplifier and the latch are turned off. As shown in Figure 8(b), when the rise of the common-mode voltage of nodes P and N triggers CLK K1 to change to a high level, the tail current tube of the pre-amplifier is turned on, and the pre-amplifier outputs nodes P and N The common mode discharge starts, and the mismatch effect of the circuit causes the discharge speed to be different. When the common-mode voltage of node P and node N drops, the falling edge of K2 is triggered, and the offset voltage is stored in the corresponding input series capacitor Ch. When CLK K1 becomes low level, the offset storage phase of the comparator ends. In addition, in order to ensure that the input differential pair tubes (M1, M2) of the pre-amplification circuit work normally in the saturation region during the next comparison time, it is necessary to control the Vp and Vn stored in Ch. In terms of circuit implementation, Vp/Vn and the AND gate of switch F2 control K2 to be high or low, and K1 is a small delay of K2, as shown in Figure 6.
接着,比较器由比较触发时钟CLKF1K控制进入正常比较阶段,所示。比较器等效输入是输入信号和失调电压叠加后的电压值。如图9(a)所示,当CLKF1K为低电平的时候,比较器复位。如图9(a)所示,当CLKF1K为高电平的时候,预放大器放大输入差分信号,并触发锁存器通过正反馈进行放大判决后输出比较结果。Then, the comparator is controlled by the comparison trigger clock CLK F1K to enter the normal comparison stage, as shown. The equivalent input of the comparator is the voltage value obtained by superimposing the input signal and the offset voltage. As shown in Figure 9(a), when CLK F1K is low, the comparator is reset. As shown in Figure 9(a), when CLK F1K is at a high level, the pre-amplifier amplifies the input differential signal, triggers the latch to amplify and judge through positive feedback, and then outputs the comparison result.
根据图10的时序图所示,本发明实施例的动态比较器失调校准技术的电路分为5个工作状态:According to the timing diagram shown in Figure 10, the circuit of the dynamic comparator offset calibration technology in the embodiment of the present invention is divided into 5 working states:
(1)校准触发时钟CLKK1和比较触发时钟CLKF1K为低、K2断开、F2断开和F12关断、F11导通的输入电容预充电状态;(1) Calibration trigger clock CLK K1 and comparison trigger clock CLK F1K are low, K2 is off, F2 is off, F12 is off, F11 is on, the input capacitor precharge state;
(2)校准触发时钟CLKK1为高和比较触发时钟CLKF1K为低、K2导通、F2导通和F11导通,F12关断的校准电荷存储状态;(2) Calibration trigger clock CLK K1 is high and comparison trigger clock CLK F1K is low, K2 is on, F2 is on and F11 is on, and F12 is off to calibrate the charge storage state;
(3)校准触发时钟CLKK1为高、比较触发时钟CLKF1K为低、K2关断、F2导通和F11导通、F12断开的校准电荷停止存储状态;(3) Calibration trigger clock CLK K1 is high, comparison trigger clock CLK F1K is low, K2 is off, F2 is on, F11 is on, F12 is off, and the calibration charge stops storing;
(4)校准触发时钟CLKK1和比较触发时钟CLKF1K为低、K2断开、F2断开和F11导通、F12断开的比较器正常比较工作前的复位状态;以及 and _
(5)校准触发时钟CLKK1为低和比较触发时钟CLKF1K为高、K2断开、F2断开和F11断开、F12闭合的比较器正常比较工作状态。(5) The calibration trigger clock CLK K1 is low and the comparison trigger clock CLK F1K is high, K2 is disconnected, F2 is disconnected, F11 is disconnected, and F12 is closed. The comparator is in normal comparison working state.
上述状态中,其中校准电荷停止存储状态和比较器正常工作前的复位状态几乎是同时的,时序图上F2的控制信号比K2的控制信号有一小段的延时。In the above states, the state where the calibration charge stops storing and the reset state before the comparator works normally are almost at the same time, and the control signal of F2 in the timing diagram has a small delay than the control signal of K2.
在本发明实施例中,第一校准控制开关F11和第二校准控制开关F12可由MOS管实现,共模开关F2和充放电开关K2的具体开关的形式在本发明实施例中不进行任何限制。In the embodiment of the present invention, the first calibration control switch F11 and the second calibration control switch F12 can be implemented by MOS transistors, and the specific switch forms of the common mode switch F2 and the charging and discharging switch K2 are not limited in this embodiment of the present invention.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention.
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610933177.6A CN108011635B (en) | 2016-10-31 | 2016-10-31 | A kind of dynamic comparator and its offset calibration method |
PCT/CN2017/077576 WO2018076599A1 (en) | 2016-10-31 | 2017-03-21 | Dynamic comparator, method for calibrating offset thereof, and computer storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610933177.6A CN108011635B (en) | 2016-10-31 | 2016-10-31 | A kind of dynamic comparator and its offset calibration method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108011635A true CN108011635A (en) | 2018-05-08 |
CN108011635B CN108011635B (en) | 2020-12-08 |
Family
ID=62024250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610933177.6A Active CN108011635B (en) | 2016-10-31 | 2016-10-31 | A kind of dynamic comparator and its offset calibration method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108011635B (en) |
WO (1) | WO2018076599A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109407999A (en) * | 2018-11-16 | 2019-03-01 | 郑州云海信息技术有限公司 | A kind of signal antidote, system and device |
CN110149117A (en) * | 2019-07-05 | 2019-08-20 | 成都博思微科技有限公司 | A kind of self calibration comparator imbalance voltage cancellation circuit |
CN110474623A (en) * | 2019-07-08 | 2019-11-19 | 浙江大学 | A kind of imbalance self-correcting dynamic comparer for gradual approaching A/D converter |
CN111147056A (en) * | 2020-01-03 | 2020-05-12 | 清华大学 | Dynamic comparator, analog-to-digital converter and control method |
CN112491377A (en) * | 2020-11-30 | 2021-03-12 | 同济大学 | Amplifier circuit with dynamic common mode feedback |
CN113489491A (en) * | 2021-07-12 | 2021-10-08 | 西安电子科技大学芜湖研究院 | Self-adaptive calibration circuit for dynamic comparator |
WO2022048276A1 (en) * | 2020-09-02 | 2022-03-10 | 长鑫存储技术有限公司 | Offset voltage correction circuit and offset voltage correction method |
CN118074718A (en) * | 2024-04-25 | 2024-05-24 | 成都铭科思微电子技术有限责任公司 | Offset correction circuit and method for switched capacitor comparator |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110190835B (en) * | 2019-06-21 | 2024-02-27 | 苏州锴威特半导体股份有限公司 | Zero offset comparator circuit |
CN110995267A (en) * | 2019-11-08 | 2020-04-10 | 芯创智(北京)微电子有限公司 | Dynamic comparator, electronic equipment and implementation method thereof |
CN111416623B (en) * | 2020-03-24 | 2022-09-20 | 大连理工大学 | Low-Offset Wide-Range Comparator Circuit Based on Fish Swarm Algorithm |
CN111884598B (en) * | 2020-07-22 | 2022-08-05 | 湖北大学 | A latch-type amplifier offset elimination method and offset elimination circuit |
CN114678911B (en) * | 2020-12-24 | 2025-05-30 | 圣邦微电子(北京)股份有限公司 | A bidirectional detection circuit for charge and discharge current |
CN113037284A (en) * | 2021-03-04 | 2021-06-25 | 湘潭大学 | Calibration device and method for offset of comparator in high-speed ADC (analog to digital converter) |
CN113422594B (en) * | 2021-07-06 | 2022-11-25 | 西安电子科技大学 | Dynamic comparator |
CN114637354A (en) * | 2022-03-28 | 2022-06-17 | 杭州红芯微电子信息科技有限公司 | Trimming circuit for operational amplifier circuit |
CN116449901B (en) * | 2023-03-08 | 2025-05-30 | 中国电子科技集团公司第五十八研究所 | High-speed voltage offset compensation system |
CN117978167B (en) * | 2024-03-29 | 2024-06-25 | 杰华特微电子股份有限公司 | Multi-operational amplifier rotation calibration method, calibration circuit and multi-channel driving system |
CN118508878B (en) * | 2024-06-13 | 2024-11-01 | 北京士模微电子有限责任公司 | Offset voltage calibration circuit for rail-to-rail operational amplifier |
CN118783933B (en) * | 2024-09-10 | 2025-02-18 | 西安电子科技大学杭州研究院 | High-precision comparator based on folding latch |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6396430B1 (en) * | 2001-08-14 | 2002-05-28 | Texas Instruments Incorporated | Pre-amplifier design for high-speed analog-to-digital converters |
CN101217279A (en) * | 2008-01-11 | 2008-07-09 | 清华大学 | A Low Power Comparator with Offset Calibration |
US20110109348A1 (en) * | 2009-11-09 | 2011-05-12 | Industrial Technology Research Institute | Dynamic comparator with background offset calibration |
CN103036508A (en) * | 2012-12-20 | 2013-04-10 | 清华大学深圳研究生院 | High-speed low-crosstalk pre-amplifier, dynamic comparator and circuit |
CN104242879A (en) * | 2013-06-20 | 2014-12-24 | 西安电子科技大学 | High-speed low-imbalance dynamic comparator for high-speed analog-digital converter |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103023437B (en) * | 2012-12-17 | 2015-11-18 | 清华大学深圳研究生院 | A kind of dynamic comparer correcting offset voltage |
CN103036512B (en) * | 2012-12-17 | 2016-01-06 | 清华大学深圳研究生院 | A kind of dynamic comparer with large offset voltage correcting range |
JP6299437B2 (en) * | 2014-05-30 | 2018-03-28 | 富士通株式会社 | Comparator, electronic circuit, and control method for double tail comparator |
CN106059587B (en) * | 2016-05-23 | 2019-04-23 | 西安电子科技大学 | A high-speed low-offset voltage comparator circuit |
-
2016
- 2016-10-31 CN CN201610933177.6A patent/CN108011635B/en active Active
-
2017
- 2017-03-21 WO PCT/CN2017/077576 patent/WO2018076599A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6396430B1 (en) * | 2001-08-14 | 2002-05-28 | Texas Instruments Incorporated | Pre-amplifier design for high-speed analog-to-digital converters |
CN101217279A (en) * | 2008-01-11 | 2008-07-09 | 清华大学 | A Low Power Comparator with Offset Calibration |
US20110109348A1 (en) * | 2009-11-09 | 2011-05-12 | Industrial Technology Research Institute | Dynamic comparator with background offset calibration |
CN103036508A (en) * | 2012-12-20 | 2013-04-10 | 清华大学深圳研究生院 | High-speed low-crosstalk pre-amplifier, dynamic comparator and circuit |
CN104242879A (en) * | 2013-06-20 | 2014-12-24 | 西安电子科技大学 | High-speed low-imbalance dynamic comparator for high-speed analog-digital converter |
Non-Patent Citations (1)
Title |
---|
汪肖阳: "高速低功耗 SAR ADC 的研究与设计", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109407999B (en) * | 2018-11-16 | 2022-03-08 | 郑州云海信息技术有限公司 | A signal correction method, system and device |
CN109407999A (en) * | 2018-11-16 | 2019-03-01 | 郑州云海信息技术有限公司 | A kind of signal antidote, system and device |
CN110149117A (en) * | 2019-07-05 | 2019-08-20 | 成都博思微科技有限公司 | A kind of self calibration comparator imbalance voltage cancellation circuit |
CN110474623A (en) * | 2019-07-08 | 2019-11-19 | 浙江大学 | A kind of imbalance self-correcting dynamic comparer for gradual approaching A/D converter |
CN110474623B (en) * | 2019-07-08 | 2021-01-12 | 浙江大学 | Maladjustment self-correcting dynamic comparator for successive approximation type analog-to-digital converter |
CN111147056A (en) * | 2020-01-03 | 2020-05-12 | 清华大学 | Dynamic comparator, analog-to-digital converter and control method |
CN114204939A (en) * | 2020-09-02 | 2022-03-18 | 长鑫存储技术有限公司 | Offset voltage correction circuit and offset voltage correction method |
WO2022048276A1 (en) * | 2020-09-02 | 2022-03-10 | 长鑫存储技术有限公司 | Offset voltage correction circuit and offset voltage correction method |
US11349467B2 (en) | 2020-09-02 | 2022-05-31 | Changxin Memory Technologies, Inc. | Offset voltage correction circuit and offset voltage correction method |
CN114204939B (en) * | 2020-09-02 | 2025-01-10 | 长鑫存储技术有限公司 | Offset voltage correction circuit and offset voltage correction method |
CN112491377A (en) * | 2020-11-30 | 2021-03-12 | 同济大学 | Amplifier circuit with dynamic common mode feedback |
CN113489491A (en) * | 2021-07-12 | 2021-10-08 | 西安电子科技大学芜湖研究院 | Self-adaptive calibration circuit for dynamic comparator |
CN113489491B (en) * | 2021-07-12 | 2024-06-04 | 西安电子科技大学芜湖研究院 | Self-adaptive calibration circuit for dynamic comparator |
CN118074718A (en) * | 2024-04-25 | 2024-05-24 | 成都铭科思微电子技术有限责任公司 | Offset correction circuit and method for switched capacitor comparator |
Also Published As
Publication number | Publication date |
---|---|
WO2018076599A1 (en) | 2018-05-03 |
CN108011635B (en) | 2020-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108011635B (en) | A kind of dynamic comparator and its offset calibration method | |
US10079611B1 (en) | Comparator and successive approximation analog-to-digital converter thereof | |
US7403064B2 (en) | Dynamically accelerated operational amplifier and method thereof | |
CN103178813B (en) | Low-offset full-motion comparator | |
KR101283998B1 (en) | A time difference amplifier and amplification method using slew rate control | |
TWI506958B (en) | Dynamic comparator with equalization function | |
US8319526B2 (en) | Latched comparator circuit | |
CN102955492B (en) | Reference current generating circuit | |
CN104113338B (en) | Asynchronous gradual approaching A/D converter | |
US7560991B2 (en) | Dynamically compensated operational amplifier | |
US9294051B2 (en) | Method and apparatus for implementing wide data range and wide common-mode receivers | |
TWI430565B (en) | Adaptive amplification circuit | |
US9178499B2 (en) | Low-power offset-stored latch | |
CN103279162A (en) | Low-power-consumption reference voltage buffer based on assembly line ADC | |
CN111147056B (en) | A dynamic comparator, analog-to-digital converter and control method | |
CN112003594A (en) | Low-power-consumption dynamic comparator circuit | |
US12301248B2 (en) | Methods and systems of utilizing analog to digital converter (ADC) for multiply-accumulator (MAC) | |
CN109974863B (en) | Integration circuit applied to ultraviolet focal plane detector | |
CN107483033A (en) | A low-power comparator structure with detuning function | |
CN108199700B (en) | A high precision comparator circuit | |
CN106292817B (en) | The voltage buffer circuit and system of fast lifting output current | |
US12107592B2 (en) | Comparator offset correction | |
CN111162791B (en) | Zero-static-power-consumption switched capacitor sampling circuit and sampling method thereof | |
TWI237274B (en) | Sense amplifier and the operating method thereof | |
CN119834803A (en) | Offset voltage quick calibration device of dynamic comparator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Pei Ruihan Inventor before: Li Fule Inventor before: Pei Ruihan |