CN108011112A - 甲醇氧化的铂基三金属催化剂、电极材料、电极、电池和制备方法 - Google Patents

甲醇氧化的铂基三金属催化剂、电极材料、电极、电池和制备方法 Download PDF

Info

Publication number
CN108011112A
CN108011112A CN201711214218.7A CN201711214218A CN108011112A CN 108011112 A CN108011112 A CN 108011112A CN 201711214218 A CN201711214218 A CN 201711214218A CN 108011112 A CN108011112 A CN 108011112A
Authority
CN
China
Prior art keywords
water
platinum
electrode
preparation
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711214218.7A
Other languages
English (en)
Inventor
朱志军
唐建国
毛遂
王瑶
王彦欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201711214218.7A priority Critical patent/CN108011112A/zh
Publication of CN108011112A publication Critical patent/CN108011112A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了甲醇氧化的铂基三金属催化剂、电极材料、电极、电池和制备方法,制备含镍、钯、铂离子的溶液,将三种溶液混合后加入还原剂,搅拌后于水浴中静置;待金属纳米颗粒沉降后,除去上清液,并加水重复该过程;最后将得到的含有少量水的纳米材料分散液进行干燥处理。本发明制备的合金催化剂成本低廉、催化活性高、长时间工作稳定性好,可以减少甲醇燃料电池阳极催化剂性能与市场预期之间的差距,对甲醇燃料电池的进一步推广有重要意义。

Description

甲醇氧化的铂基三金属催化剂、电极材料、电极、电池和制备 方法
技术领域
本发明涉及燃料电池技术领域,尤其涉及的是一种高性能甲醇氧化的铂基三金属催化剂、电极材料、电极、电池和制备方法。
背景技术
燃料电池作为最有潜力的新能源之一,是一种高效、清洁和环保的能源动力装置,它可以将燃料和氧化剂的化学能直接转换成电能,在移动电源、交通运输等领域以及特定地理条件下具有良好的应用前景。由于醇类的易获得性、低毒等优点,直接甲醇类燃料电池(Direct Methanol Fuel Cell,DMFC)作为一种可再生能源开始引起科研工作者的兴趣。另外,DMFC反应过程不受卡诺循环限制,理论能量转化效率高,且电池结构简单、无噪音、无污染,DMFC正在成为理想的能源利用方式。制备低成本、高性能的催化剂是DMFC早日普及的重要前提,也是国际研究的热点领域之一。
DMFC阳极催化剂(催化醇类氧化)低的活性、差的稳定性和高的成本一直是制约DAFC快速发展的重要因素之一。铂(Pt)作为DMFC阳极催化剂的主要有效成分,其在催化剂中的含量直接影响着催化剂的成本。但是由于铂在地壳中的含量非常低,因此开发新型的铂基催化剂,降低铂在催化剂中的含量,提高单位质量铂的催化活性对DMFC的发展有重要的意义。
目前科研工作者已经发展了多种方法制备基于铂的合金纳米材料,并将其用于甲醇的电催化氧化,同时对氧化机理和活性位点等进行了研究。但是绝大多数材料对甲醇的催化活性仍然有限,而且长时间工作后活性下降明显,这严重制约了甲醇燃料电池的发展。现有的制备方法通常需要表面活性剂、较高的反应温度、较长的反应时间、复杂的后处理等等。因此,发展新方法制备低成本、高性能的铂基催化剂对DMFC的商业化有重要意义。
发明内容
本发明所要解决的技术问题是针对现有技术的不足提供一种高性能甲醇氧化的铂基三金属催化剂、电极材料、电极、电池和制备方法。
本发明的技术方案如下:
一种高性能甲醇氧化的铂基三金属催化剂的快速制备方法,制备含镍、钯、铂离子的溶液,将三种溶液混合后加入还原剂,搅拌后于水浴中静置;待金属纳米颗粒沉降后,除去上清液,并加水重复该过程;将得到的含有少量水的纳米材料分散液进行干燥处理得铂基三金属催化剂。
所述的制备方法,最后将得到的含有少量水的纳米材料分散液进行冷冻干燥处理。
所述的制备方法,镍的金属盐溶液采用硫酸镍制备,铂离子溶液采用氯铂酸制备,硫酸镍、氯铂酸溶解于水中配制水溶液;氯化钯溶于稀盐酸中制得H2PdCl4,其最终pH为6-7;所述还原剂为NaBH4水溶液。
所述的制备方法,在搅拌条件下快速加入新鲜的NaBH4水溶液,搅拌后于60摄氏度水浴中静置。
所述的制备方法,将镍的金属盐硫酸镍和氯铂酸溶解于水中配制0.1M的水溶液,氯化钯溶于稀盐酸中制得0.1M的H2PdCl4,最终pH为6-7;配制新鲜的NaBH4水溶液2mg/mL;取Pt、Pd和Ni的上述溶液各50μL加入到10mL水中;在搅拌条件下快速加入2mL新鲜的NaBH4溶液,搅拌两分钟后于60摄氏度水浴中静置;待金属纳米颗粒沉降后,除去上清液,并加水重复该过程,最后将得到的含有少量水的纳米材料分散液进行冷冻干燥处理。
根据任一所述的制备方法获得的铂基三金属催化剂,其组成为铂钯镍。
所述的铂基三金属催化剂,铂钯镍金属元素的摩尔比为1:1:1。
所述的铂基三金属催化剂,其中该催化剂为自支撑结构。
一种电极材料,其包含上述的铂基三金属催化剂。
根据上述电极材料制备的燃料电池电极,其中该电极是阳极。
根据上述的燃料电池电极制备的燃料电池,该燃料电池是直接甲醇碱性燃料电池。
针对当前的甲醇电化学氧化催化剂制备成本高、活性低、稳定性差,制备方法复杂等缺点,本发明的目标是提供一种改进的催化剂,其具有制备成本低、原料成本低、较高的稳定性和催化活性。
附图说明
图1为所制备的PtPdNi纳米材料的透射电镜(TEM)照片。
图2为所制备的PtPdNi纳米材料的元素分布图。
图3为所制备的PtPdNi纳米材料X光衍射(XRD)图像,a为PtNi,b为PtPd,c为PtPdNi。
图4为所制备的PtPdNi纳米材料在甲醇-KOH溶液中的循环伏安曲线,a-e分别为Pt,PtNi,PtPd,PtPdNi和铂黑。
图5为所制备的PtPdNi纳米材料在稳定性测试结果,a为PtPdNi,b为铂黑。
具体实施方式
以下结合具体实施例,对本发明进行详细说明。
本实验中试剂KOH、NaBH4和PB来自Alfa Aesar,甲醇购自Fisher,其它所有试剂均购自Sigma-Aldrich。
本发明所述快速制备铂基三金属催化剂PtPdNi的方法,步骤是:
将镍的金属盐(硫酸镍)和酸(氯铂酸)溶解于水中配制0.1M的水溶液,其中Pd盐(氯化钯)溶于稀盐酸中制得0.1M的H2PdCl4(最终pH为6-7)。
配制新鲜的NaBH4水溶液2mg/mL。
取Pt、Pd和Ni的上述水溶液各50μL加入到10mL水中。在搅拌条件下快速加入2mL新鲜的NaBH4溶液,搅拌两分钟后于60摄氏度水浴中静置。
待金属纳米颗粒沉降后,除去上清液,并加水重复该过程。最后将得到的含有少量水的纳米材料分散液进行冷冻干燥处理。
其它材料的制备同上,只是将相应的金属溶液替换为水即可。
图1是三元合金透射电镜(TEM)和高分辨TEM的成像。A、B、C为不同分辨率下的图像,比例尺分别为100nm、50nm、5nm,从图中可以看出,合金纳米材料呈现出交错连接的结构,这对电子的传递、反应物和产物在催化剂表面的扩散是非常有利的。而且这些三维合金纳米材料并非松散的聚集体,而是熔融的直径在5-12纳米的基本组成单元。高分辨图像显示了其为fcc晶格,且111晶面的条文间距为0.23纳米。
图2是对所制备三元合金的元素分布表征,四幅图片依次对应Pt、Pd、Ni以及叠加图。图中显示了不同金属元素分布均匀,表明了合金结构的形成。
图3是对三元合金的XRD谱图。其主要峰位置(111,200,220,311)与Pt和Pd单质的位置符合,而且三元合金的峰位置位于PtPd和PtNi合金中间。
催化剂材料的活性和稳定性测试:
本发明催化剂的电化学性能表征是在下述条件下测试的。循环伏安测试是在N2饱和的1M KOH溶液中进行的,使用三电极体系,以玻碳电极为工作电极、Ag/AgCl为参比电极、铂丝为对电极。以与氢的吸附有关的电荷,使用210μC/cm2Pt的修正因子换算得到m2/gPt
活性采用下述方法测得:在N2饱和的1M甲醇-1M KOH混合溶液中,在-0.8V和0.4V之间进行循环伏安测试。待电流稳定后,得到活性曲线。
稳定性测试采用如下方法:在N2饱和的1M甲醇-1M KOH混合溶液中,在-0.25V(vs.Ag/AgCl)电位下,对催化剂进行i-t测试,得到稳定性曲线。
与目前商业化的铂基催化剂(铂黑,PB)相比(表1和图4),除了所制备的纯Pt催化剂在起始点位和电化学活性面积(ESCA)方面略低外,其它的合金催化剂无论从起始点位,峰电流还是电化学活性面积均有明显的提高。
表1.不同催化剂的起始催化电位、峰电流和ESCA。
活性测试。如表1所示,Pt与其它金属形成合金后,由于合金化作用,使更多的Pt分布在纳米材料的表面,从而暴露了更多的活性位点,因此峰电流和电化学活性面积均有所增加。
稳定性结果。图5表明,与商业催化剂PB相比,PtPdNi催化剂的稳定性有了极大的提高,即使在50000秒测试以后还保持大于0.5A/mgPt的电流密度,证实了三元合金纳米材料表现出高催化活性的同时,在稳定性方面也比商业的铂黑催化剂有明显的提高。这是由于合金中各组分的协同作用,对于铂基催化剂,其它金属的存在可以减少活性中间体在铂表面的吸附,从而提高其稳定性。
表2近年来甲醇催化纳米材料的相关参数和本发明的比较
参考文献
1.Chen,C.-S.,F.-M.Pan,and H.-J.Yu,Electrocatalytic activity of Ptnanoparticles on a karst-like Ni thin film toward methanol oxidation inalkaline solutions.Applied Catalysis B:Environmental,2011.104(3–4):p.382-389.
2.Qi,Y.,et al.,Kinetically controlled synthesis of Pt-Cu alloyconcave nanocubes with high-index facets for methanol electro-oxidation.Chemical Communications,2014.50(5):p.560-562.
3.Wang,X.,C.Li,and G.Shi,A high-performance platinum electrocatalystloaded on a graphene hydrogel for high-rate methanol oxidation.PhysicalChemistry Chemical Physics,2014.16(21):p.10142-10148.
4.Yang,G.,et al.,Ultrasonic-assisted synthesis of Pd–Pt/carbonnanotubes nanocomposites for enhanced electro-oxidation of ethanol andmethanol in alkaline medium.Ultrasonics Sonochemistry,2016.28:p.192-198.
5.Huang,W.,et al.,Highly active and durable methanol oxidationelectrocatalyst based on the synergy of platinum–nickel hydroxide–graphene.Nature Communications,2015.6:p.10035.
6.Zhang,Y.,et al.,Synthesis of Pt–Pd bimetallic nanoparticlesanchored on graphene for highly active methanol electro-oxidation.Journal ofPower Sources,2014.262:p.279-285.
7.Zheng,J.-N.,et al.,Popcorn-like PtAu nanoparticles supported onreduced graphene oxide:Facile synthesis and catalytic applications.Journal ofMaterials Chemistry A,2014.2(22):p.8386-8395.
8.Ren,F.,et al.,One-pot synthesis of a RGO-supported ultrafineternary PtAuRu catalyst with high electrocatalytic activity towards methanoloxidation in alkaline medium.Journal of Materials Chemistry A,2013.1(24):p.7255-7261.
9.Zhai,C.,et al.,Visible-Light-Assisted Electrocatalytic Oxidation ofMethanol Using Reduced Graphene Oxide Modified Pt Nanoflowers-TiO2NanotubeArrays.ACS Applied Materials&Interfaces,2014.6(20):p.17753-17761.
10.Zhu,C.,S.Guo,and S.Dong,PdM(M=Pt,Au)Bimetallic Alloy Nanowireswith Enhanced Electrocatalytic Activity for Electro-oxidation of SmallMolecules.Advanced Materials,2012.24(17):p.2326-2331.
11.Yao,Z.,et al.,Electrochemical layer-by-layer fabrication of anovel three-dimensional Pt/graphene/carbon fiber electrode and its improvedcatalytic performance for methanol electrooxidation in alkalinemedium.International Journal of Hydrogen Energy,2013.38(15):p.6368-6376.
12.Ayán-Varela,M.,et al.,Efficient Pt electrocatalysts supported ontoflavin mononucleotide–exfoliated pristine graphene for the methanol oxidationreaction.Electrochimica Acta,2017.231(Supplement C):p.386-395.
13.Preda,L.,et al.,Enhanced Activity for Methanol Oxidation ofPlatinum Particles Supported on Iridium Oxide Modified Boron-Doped DiamondPowder.ChemElectroChem,2017.4(8):p.1908-1915.
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种高性能甲醇氧化的铂基三金属催化剂的快速制备方法,其特征在于,制备含镍、钯、铂离子的溶液,将三种溶液混合后加入还原剂,搅拌后于水浴中静置;待金属纳米颗粒沉降后,除去上清液,并加水重复该过程;将得到的含有少量水的纳米材料分散液进行干燥处理得到铂基三金属催化剂。
2.根据权利要求1所述的制备方法,其特征在于,镍的金属盐溶液采用硫酸镍制备,铂离子溶液采用氯铂酸制备,硫酸镍、氯铂酸溶解于水中配制水溶液;氯化钯溶于稀盐酸中制得H2PdCl4,其最终pH为6-7;所述还原剂为NaBH4水溶液。
3.根据权利要求2所述的制备方法,其特征在于,在搅拌条件下快速加入新鲜的NaBH4水溶液,搅拌后于60摄氏度水浴中静置。
4.权利要求3所述的制备方法,其特征在于,将镍的金属盐硫酸镍和氯铂酸溶解于水中配制0.1M的水溶液,氯化钯溶于稀盐酸中制得0.1M的H2PdCl4,最终pH为6-7;配制新鲜的NaBH4水溶液2mg/mL;取Pt、Pd和Ni的上述溶液各50μL加入到10mL水中;在搅拌条件下快速加入2mL新鲜的NaBH4溶液,搅拌两分钟后于60摄氏度水浴中静置;待金属纳米颗粒沉降后,除去上清液,并加水重复该过程;最后将得到的含有少量水的纳米材料分散液进行冷冻干燥处理。
5.根据权利要求1-4任一所述的制备方法获得的铂基三金属催化剂,其特征在于,其组成为铂钯镍。
6.根据权利要求5所述的铂基三金属催化剂,其特征在于,金属元素的摩尔比为1:1:1。
7.根据权利要求5所述的铂基三金属催化剂,其中该催化剂为自支撑结构。
8.一种电极材料,其包含权利要求6或7的铂基三金属催化剂。
9.根据权利要求8所述电极材料制备的燃料电池电极,其中该电极是阳极。
10.根据权利要求9所述的燃料电池电极制备的燃料电池,该燃料电池是直接甲醇碱性燃料电池。
CN201711214218.7A 2017-11-28 2017-11-28 甲醇氧化的铂基三金属催化剂、电极材料、电极、电池和制备方法 Pending CN108011112A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711214218.7A CN108011112A (zh) 2017-11-28 2017-11-28 甲醇氧化的铂基三金属催化剂、电极材料、电极、电池和制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711214218.7A CN108011112A (zh) 2017-11-28 2017-11-28 甲醇氧化的铂基三金属催化剂、电极材料、电极、电池和制备方法

Publications (1)

Publication Number Publication Date
CN108011112A true CN108011112A (zh) 2018-05-08

Family

ID=62054136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711214218.7A Pending CN108011112A (zh) 2017-11-28 2017-11-28 甲醇氧化的铂基三金属催化剂、电极材料、电极、电池和制备方法

Country Status (1)

Country Link
CN (1) CN108011112A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101140993A (zh) * 2006-09-04 2008-03-12 三星Sdi株式会社 含两种或多种金属组分的电极催化剂及其制备方法以及包含它的燃料电池
CN105762378A (zh) * 2016-03-14 2016-07-13 北京工业大学 一种负载型三元铂合金催化剂的合成方法
CN105895931A (zh) * 2016-06-29 2016-08-24 王尧尧 一种Pt/PdNi/CNT-MnO2甲醇燃料电池催化剂及应用
CN106207202A (zh) * 2016-07-22 2016-12-07 南京大学(苏州)高新技术研究院 掺氮石墨烯担载的铂钯镍三元纳米合金催化剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101140993A (zh) * 2006-09-04 2008-03-12 三星Sdi株式会社 含两种或多种金属组分的电极催化剂及其制备方法以及包含它的燃料电池
CN105762378A (zh) * 2016-03-14 2016-07-13 北京工业大学 一种负载型三元铂合金催化剂的合成方法
CN105895931A (zh) * 2016-06-29 2016-08-24 王尧尧 一种Pt/PdNi/CNT-MnO2甲醇燃料电池催化剂及应用
CN106207202A (zh) * 2016-07-22 2016-12-07 南京大学(苏州)高新技术研究院 掺氮石墨烯担载的铂钯镍三元纳米合金催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAOFANG FU,CHENGZHOU ZHU等: "Enhanced Electrocatalytic Activities of Three-dimensional PtCuCoNi Nanoporous Quaternary Alloys for Oxygen Reduction and Methanol Oxidation Reactions", 《ACS APPLIED MATERIALS & INTERFACES》 *

Similar Documents

Publication Publication Date Title
Liu et al. Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation
Wang et al. Holey platinum nanotubes for ethanol electrochemical reforming in aqueous solution
Long et al. The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells
CN102989450B (zh) 一种担载型纳米电催化剂的制备方法、结构特征及应用
Behmenyar et al. Investigation of carbon supported Pd–Cu nanoparticles as anode catalysts for direct borohydride fuel cell
Li et al. Palladium nanoparticles grown on β-Mo2C nanotubes as dual functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction
Du et al. Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts
Sun et al. Ternary PdNi-based nanocrystals supported on nitrogen-doped reduced graphene oxide as highly active electrocatalysts for the oxygen reduction reaction
Yi et al. Enhanced activity of Au–Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell
Félix-Navarro et al. Bimetallic Pt–Au nanoparticles supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction
Adam et al. Facile one-step room temperature synthesis of PdAg nanocatalysts supported on multi-walled carbon nanotubes towards electro-oxidation of methanol and ethanol
Miao et al. Rhodium nanodendrites catalyzed alkaline methanol oxidation reaction in direct methanol fuel cells
Yi et al. Carbon supported palladium hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells
Pavlets et al. A novel strategy for the synthesis of Pt–Cu uneven nanoparticles as an efficient electrocatalyst toward oxygen reduction
CN102847534B (zh) 一种纳米材料的光驱动调控制备方法及其电催化活性
Yang et al. Bimetallic PdZn nanoparticles for oxygen reduction reaction in alkaline medium: The effects of surface structure
Wei et al. Highly efficient Pt-Co alloy hollow spheres with ultra-thin shells synthesized via Co-BO complex as intermediates for hydrogen evolution reaction
Zhang et al. PtPd nanoparticles supported on sulfonated nitrogen sulfur co-doped graphene for methanol electro-oxidation
He et al. Enhanced electrocatalytic activity of palladium nanochains by modifying transition metal core-shell nanoparticles (TMcore-shell= Ni@ NiO, Co@ CoO) on reduced graphene oxide for methanol electro-oxidation
Tang et al. A facile synthesis of Pd/C cathode electrocatalyst for proton exchange membrane fuel cells
Feng et al. Highly stable cathodes for proton exchange membrane fuel cells: Novel carbon supported Au@ PtNiAu concave octahedral core-shell nanocatalyst
Jiang et al. Pt-Ni alloy catalyst supported on carbon aerogel via one-step method for oxygen reduction reaction
Zhao et al. Pt nanowires on monolayered graphene oxide for electrocatalytic oxidation of methanol
Huang et al. Single atom iron carbons supported Pd–Ni–P nanoalloy as a multifunctional electrocatalyst for alcohol oxidation
CN110380069A (zh) 一种活性炭限域的贵金属催化剂及其制备方法以及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180508

RJ01 Rejection of invention patent application after publication