CN108008367B - 星载单航过InSAR系统电离层误差校正方法 - Google Patents

星载单航过InSAR系统电离层误差校正方法 Download PDF

Info

Publication number
CN108008367B
CN108008367B CN201711251949.9A CN201711251949A CN108008367B CN 108008367 B CN108008367 B CN 108008367B CN 201711251949 A CN201711251949 A CN 201711251949A CN 108008367 B CN108008367 B CN 108008367B
Authority
CN
China
Prior art keywords
ionosphere
error
insar
coordinate system
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711251949.9A
Other languages
English (en)
Other versions
CN108008367A (zh
Inventor
余安喜
郑涵之
董臻
张永胜
张启雷
何峰
孙造宇
黄海风
金光虎
何志华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201711251949.9A priority Critical patent/CN108008367B/zh
Publication of CN108008367A publication Critical patent/CN108008367A/zh
Application granted granted Critical
Publication of CN108008367B publication Critical patent/CN108008367B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提供一种星载单航过InSAR系统电离层误差校正方法。技术方案是:首先,利用星载单航过InSAR系统电离层影响效应模型,根据雷达系统参数和先验电离层TEC值,计算距离‑高度平面内电离层引入的二维测量误差;然后,根据星载SAR成像几何模型,通过投影变换,将二维误差分解到三维地固坐标系下表示;最后,逐点校正被测场景中的电离层误差影响。本发明校正精度高,并可用于直接处理干涉定位结果,操作过程简单高效。

Description

星载单航过InSAR系统电离层误差校正方法
技术领域
本发明属于航天遥感和大气效应的交叉技术领域,针对星载单航过InSAR(Interferometric Synthetic Aperture Radar,干涉合成孔径雷达)的电离层误差校正方法。
背景技术
星载单航过InSAR系统利用主、辅雷达不同观测视角下获取的同一区域的一对单视复图像之间的干涉相位差反演得到地表的三维信息,完成对全球地形的测绘任务并生成高精度的DEM(Digital Elevation Model,数字高程模型)。
大气效应是制约星载单航过InSAR系统干涉测量精度的一个重要因素。其中,大气中的电离层分布于地表上空60公里至磁顶层之间的空间,由受太阳辐射而电离产生的各种自由电子、离子和中性气体组成。电离层对雷达信号幅度和相位的影响与雷达信号频率有关,频率越低影响越明显。研究表明,在常规的背景电离层TEC(Total Electron Content,电子总量)水平下,电离层对星载单航过InSAR系统的干涉测量精度产生较大的影响。当雷达信号频率为L波段(信号中心频率为1.25GHz)时,电离层会引入10米以上的DEM测量误差;当雷达信号频率为C波段(信号中心频率为5.3GHz)时,电离层会引入1米以上的DEM测量误差。因此有必要应用电离层电波传播机理,提出针对星载单航过InSAR系统的高精度电离层误差校正方法。目前,尚未发现有关校正方法的相关资料。
发明内容
本发明为了有效解决星载单航过InSAR系统电离层误差影响问题,提出了一种基于先验电离层TEC的星载单航过InSAR系统电离层误差校正方法。该方法校正精度高,处理过程相对简单,适用于已知先验电离层空间TEC分布情况下的星载单航过InSAR系统的电离层误差校正。
本发明的基本思路是:首先,利用星载单航过InSAR系统电离层影响效应模型,根据雷达系统参数和先验电离层TEC值,计算距离-高度平面内电离层引入的二维测量误差;然后,根据星载SAR成像几何模型,通过投影变换,将二维误差分解到三维地固坐标系下表示;最后,逐点校正被测场景中的电离层误差影响。
本发明的技术方案是:
已知星载单航过InSAR系统基本参数:主、辅雷达信号中心频率均为f0
已知在任意时刻下,被测场景对应的电离层基本参数:电离层垂直天顶方向TEC值T,电离层沿距离向垂直天顶TEC变化梯度dv,电离层质心高度hiono;星载单航过InSAR系统辅星在地固坐标系下的轨道坐标A(xA,yA,zA),辅雷达入射角θ,辅雷达距地面高度hsat,垂直基线长度B,辅雷达距被测场景的斜距rslant;被测场景中任一点在地固坐标系下的坐标B(xB,yB,zB),该坐标是通过直接读取InSAR定位结果得到的;
对于被测场景中坐标为B(xB,yB,zB)的任意点,采用以下步骤完成场景的三维坐标电离层误差影响校正:
第一步:根据星载单航过InSAR系统电离层影响效应模型,计算距离-高度
平面内的水平测量误差和垂直测量误差。
首先,根据辅雷达入射角θ与辅雷达电离层入射角β之间的几何关系,根据下式计算辅雷达电离层入射角β:
上式中,R表示地球半径。
然后,计算主、辅雷达入射角之差Δθ及主、辅雷达电离层入射角之差Δβ,并根据电离层电波传播机理计算垂直天顶方向的群延迟τgroup
Δβ=b·Δθ
上式中,c为光速,K为常数取值为40.28,
最后,计算电离层对星载单航过InSAR系统引入的水平测量误差和垂直测量误差
上面的两个公式中第一项均表示两雷达入射角差异对InSAR系统引入的测量误差,第二项均表示由电离层垂直天顶TEC变化梯度dv引入的测量误差。
第二步:将二维测量误差投影变换到三维地固坐标系下表示。
首先,利用下式计算垂直测量误差在地固坐标系下的误差向量其中xBC、yBC和zBC分别表示为:
然后,计算水平测量误差在地固坐标系下的误差向量
上式中,O为地心在地固坐标系下的坐标为(0,0,0),因A、B坐标已知,矢量可求。
最后,按照下式计算电离层引入的地固坐标系三维坐标偏移向量
第三步:获得校正电离层误差影响后被测场景的三维地固坐标系坐标。
根据电离层引入的地固坐标系三维坐标偏移向量对坐标为B(xB,yB,zB)的任意点校正电离层误差影响,得到校正后的三维地固坐标B'(xB',yB',zB'),其中xB'、yB'和zB'分别表示为:
xB'=xB+xBE
yB'=yB+yBE
zB'=zB+zBE
采用本发明可取得以下技术效果:
本发明提供了一种星载单航过InSAR系统电离层误差校正方法,该方法基于先验的背景电离层TEC空间分布,利用电离层电波传播机理建立的星载单航过InSAR系统电离层影响效应模型,通过将理论二维测量误差转换到三维地固坐标系下表示,可实现星载单航过InSAR系统被测场景的电离层误差逐点精确校正。该校正方法充分考虑了星载单航过InSAR的基本原理及电离层传播效应的空变性,校正精度高,并可用于直接处理干涉定位结果,操作过程简单高效。
附图说明
图1为本发明的原理流程示意图;
图2为仿真中设定的雷达系统及电离层基本参数;
图3为仿真实验中被测场景内电离层TEC空间分布图;
图4为仿真实验中电离层对InSAR定位结果引入的三维误差影响空间分布图;
图5为本发明实施例中星载单航过InSAR系统电离层误差校正残差实验结果图。
具体实施方式
下面结合附图和具体实施例对本发明作详细说明。其中,实施例中的星载单航过InSAR系统和被测场景均采用仿真的方法生成。具体仿真原理及流程参考Min Wang,Diannong Liang等于2007年发表在IEEE International Geoscience and RemoteSensing Symposium上的文章SBRAS—An Advanced Simulator of Spaceborne。
图1为本发明的原理流程示意图,整个流程分为三大步。第一步,计算距离-高度平面内的电离层水平测量误差和垂直测量误差;第二步,利用星载SAR几何关系,将二维测量误差投影变换到三维地固坐标系下表示,得到电离层对被测场景引入的三维地固坐标偏移;第三步,逐点精确校正被测场景中被测点受背景电离层TEC传播引入的测量误差,得到校正电离层误差影响后被测场景中被测点的三维地固坐标系坐标。
图2为仿真中设定的雷达系统和电离层基本参数,其中星载单航过InSAR系统工作在L波段,在某一时刻电离层垂直天顶方向TEC值T为50TECU,线性TEC变化梯度为0.05TECU/km,上述设定的两个电离层基本参数可反映电离层对星载单航过InSAR系统的测量误差影响较大。
图3为仿真实验中被测场景内电离层TEC空间分布图,被测场景内电离层TEC空间分布坐标网格与被测场景坐标网格相同,图中横轴代表距离向,像元数为2204,纵轴代表方位向,像元数为2574,距离向和方位向大小均为5km。图中灰度值表示被测场景内的电离层TEC值,图中灰度越浅表示TEC值越大。从图3中可以看出,被测场景内的电离层分布接近真实的空间电离层分布。
图4为仿真实验中电离层对InSAR定位结果引入的三维误差影响空间分布图,图中横轴代表距离向,像元数为2204,纵轴代表方位向,像元数为2574,距离向和方位向大小均为5km。图(a)代表地固坐标系下X轴方向电离层影响误差,整场景均值约为-13.81米;图(b)代表地固坐标系下Y轴方向电离层影响误差,整场景均值约为-14.01米;图(c)代表地固坐标系下Z轴方向电离层影响误差,整场景均值约为5.22米。图中灰度值表示电离层影响误差的大小,图(a)和图(b)中灰度越浅表示误差影响越小,图(c)中灰度越深表示误差影响越小。由图可知,电离层对L波段雷达造成的误差影响十分显著。
图5为本发明实施例中星载单航过InSAR系统电离层误差校正残差实验结果图,图中横轴代表距离向,像元数为2204,纵轴代表方位向,像元数为2574,距离向和方位向大小均为5km。图(a)为地固坐标系下X轴方向电离层校正残差,整场景均值约为0.15米,校正精度约为1.1%;图(b)为地固坐标系下Y轴方向电离层校正残差,整场景均值约为0.18米,校正精度约为1.3%;图(c)为地固坐标系下Z轴方向电离层校正残差,整场景均值约为-0.02米,校正精度约为0.4%。图中灰度值表示利用本发明进行校正后电离层校正残差的大小,校正精度的计算公式为校正残差除以原始误差影响大小。图(a)和图(b)中灰度越深表示校正残差越小,图(c)中灰度越浅表示校正残差越小。实验结果表明,采用本发明可有效校正电离层传播对星载单航过InSAR系统定位结果引入的三维位置偏移,校正精度可满足高精度地形测绘的应用需求。

Claims (1)

1.一种星载单航过InSAR系统电离层误差校正方法,InSAR是指干涉合成孔径雷达,
已知星载单航过InSAR系统基本参数:主雷达和辅雷达的信号中心频率均为f0
已知在任意时刻下,被测场景对应的电离层基本参数:电离层垂直天顶方向电子总量值T,电离层沿距离向垂直天顶电子总量变化梯度dv,电离层质心高度hiono;星载单航过InSAR系统辅星在地固坐标系下的轨道坐标A(xA,yA,zA),辅雷达入射角θ,距地面高度hsat,垂直基线长度B;辅雷达距被测场景的斜距rslant;被测场景中任一点在地固坐标系下的坐标B(xB,yB,zB);其特征在于,
对于被测场景中坐标为B(xB,yB,zB)的任意点,采用以下步骤完成场景的三维坐标电离层误差影响校正:
第一步:计算距离-高度平面内的水平测量误差和垂直测量误差:
首先,利用下式计算辅雷达电离层入射角β:
上式中,R表示地球半径;
然后,计算主、辅雷达入射角之差Δθ及主、辅雷达电离层入射角之差Δβ,并根据电离层电波传播机理计算垂直天顶方向的群延迟τgroup
Δβ=b·Δθ
上式中,c为光速,K为常数取值为40.28,
最后,计算电离层对星载单航过InSAR系统引入的水平测量误差和垂直测量误差
第二步:将二维测量误差投影变换到三维地固坐标系下表示:
首先,利用下式计算垂直测量误差在地固坐标系下的误差向量
然后,计算误差向量
上式中,O为地心在地固坐标系下的坐标为(0,0,0);
最后,按照下式计算电离层引入的地固坐标系三维坐标偏移向量
第三步:校正电离层误差影响后被测场景的三维地固坐标系坐标;
利用下式计算校正后的三维地固坐标B'(xB',yB',zB'):
xB'=xB+xBE
yB'=yB+yBE
zB'=zB+zBE
即获得校正后的结果。
CN201711251949.9A 2017-12-01 2017-12-01 星载单航过InSAR系统电离层误差校正方法 Active CN108008367B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711251949.9A CN108008367B (zh) 2017-12-01 2017-12-01 星载单航过InSAR系统电离层误差校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711251949.9A CN108008367B (zh) 2017-12-01 2017-12-01 星载单航过InSAR系统电离层误差校正方法

Publications (2)

Publication Number Publication Date
CN108008367A CN108008367A (zh) 2018-05-08
CN108008367B true CN108008367B (zh) 2019-09-13

Family

ID=62056352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711251949.9A Active CN108008367B (zh) 2017-12-01 2017-12-01 星载单航过InSAR系统电离层误差校正方法

Country Status (1)

Country Link
CN (1) CN108008367B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143188B (zh) * 2018-10-10 2020-07-31 中国科学院遥感与数字地球研究所 Tops哨兵-1数据电离层校正方法
CN109471103B (zh) * 2018-10-23 2021-05-04 湖北航天技术研究院总体设计所 一种弹载双基sar数据融合定位误差修正方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217669A (zh) * 2013-03-26 2013-07-24 中国科学院电子学研究所 一种基于子距离像偏移差的星载sar电离层定标方法
CN106019277A (zh) * 2016-05-09 2016-10-12 中国人民解放军国防科学技术大学 星载sar方位成像中的电离层传播效应影响判决方法
CN106154268A (zh) * 2016-09-06 2016-11-23 合肥工业大学 一种基于子带分割的低波段isar电离层校正方法
CN106405582A (zh) * 2016-08-31 2017-02-15 和芯星通科技(北京)有限公司 一种电离层误差的处理方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101605450B1 (ko) * 2014-08-04 2016-03-22 서울시립대학교산학협력단 다중시기 mai 간섭도의 적층 방법 및 그 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217669A (zh) * 2013-03-26 2013-07-24 中国科学院电子学研究所 一种基于子距离像偏移差的星载sar电离层定标方法
CN106019277A (zh) * 2016-05-09 2016-10-12 中国人民解放军国防科学技术大学 星载sar方位成像中的电离层传播效应影响判决方法
CN106405582A (zh) * 2016-08-31 2017-02-15 和芯星通科技(北京)有限公司 一种电离层误差的处理方法及装置
CN106154268A (zh) * 2016-09-06 2016-11-23 合肥工业大学 一种基于子带分割的低波段isar电离层校正方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Analysis of tropospheric effects on spaceborne single-pass SAR interferometry;Hanzhi Zheng et al.;《2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference》;20171002;492-497 *
Gerhard Krieger et al..Tropospheric and Ionospheric Effects in Spaceborne.《 EUSAR 2014;10th European Conference on Synthetic Aperture Radar》.2014,1097-1100. *
Impact of TEC gradients and higher-order ionospheric disturbances on spaceborne single-pass SAR interferometry;G. Krieger et al.;《2015 IEEE International Geoscience and Remote Sensing Symposium》;20151112;4061-4064 *

Also Published As

Publication number Publication date
CN108008367A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
CN107367716B (zh) 一种高精度星载sar几何定标方法
Joughin et al. A complete map of Greenland ice velocity derived from satellite data collected over 20 years
CN107272039B (zh) 一种基于双天线gps的定位测姿方法
Catalão et al. Merging GPS and atmospherically corrected InSAR data to map 3-D terrain displacement velocity
CN107991676B (zh) 星载单航过InSAR系统对流层误差校正方法
CN102998690B (zh) 一种基于gps载波双差方程的姿态角直接求解方法
CN107202582A (zh) 静止卫星在轨实时成像导航与配准方法
CN106871932A (zh) 基于金字塔搜索地形匹配的星载激光在轨指向检校方法
CN110646782B (zh) 一种基于波形匹配的星载激光在轨指向检校方法
Wang et al. Comparison between plane and stereo block adjustment for ZY-3 satellite images
Zhang et al. Orientation of spaceborne SAR stereo pairs employing the RPC adjustment model
CN113671505B (zh) 一种基于系统几何误差补偿的合成孔径雷达立体定位方法
CN105044741A (zh) 一种伪距相位综合广域差分改正值的求解方法
Liu et al. Accurate mapping method for UAV photogrammetry without ground control points in the map projection frame
CN108008367B (zh) 星载单航过InSAR系统电离层误差校正方法
CN111505608B (zh) 一种基于星载激光单片足印影像的激光指向在轨检校方法
Skaloud et al. Theory and reality of direct georeferencing in national coordinates
CN103760582B (zh) 一种遮挡环境下卫星双差观测结构的优化方法
Frolich et al. Synthetic aperture radar interferometry over Rutford Ice Stream and Carlson Inlet, Antarctica
Li et al. Pointing angle calibration of ZY3-02 satellite laser altimeter using terrain matching
CN106767934A (zh) 天文定位系统水平测量的倾角传感器安装参数标定方法
Choi et al. Geolocation error analysis of KOMPSAT-5 SAR imagery using Monte-Carlo simulation method
Zhao et al. Error analysis for the baseline estimation and calibration of distributed InSAR satellites
Han et al. Comparison of sar image geometric correction based on multi-resolution dems
Zhu et al. Research on the Geo-Metrical and Radio-Metrical Topography Correction of the RADARSAT-2 Image

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant