CN108008257A - 不同波前时间冲击放电电压修正方法、修正装置及计算方法 - Google Patents

不同波前时间冲击放电电压修正方法、修正装置及计算方法 Download PDF

Info

Publication number
CN108008257A
CN108008257A CN201711092039.0A CN201711092039A CN108008257A CN 108008257 A CN108008257 A CN 108008257A CN 201711092039 A CN201711092039 A CN 201711092039A CN 108008257 A CN108008257 A CN 108008257A
Authority
CN
China
Prior art keywords
wave front
voltage
front time
relational expression
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711092039.0A
Other languages
English (en)
Inventor
南敬
霍锋
谢梁
叶奇明
胡伟
马业明
李学林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Ningxia Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Ningxia Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, State Grid Ningxia Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201711092039.0A priority Critical patent/CN108008257A/zh
Publication of CN108008257A publication Critical patent/CN108008257A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明提供了一种不同波前时间冲击放电电压修正方法、修正装置及计算方法。其中,该修正方法包括如下步骤:对预先建立的特高压边相I串全尺寸塔头间隙试品进行放电特性试验,以获得50%放电电压特性曲线;根据50%放电电压特性曲线确定放电电压与波前时间的关系式。本发明中,先对试品进行放电特性试验,从而获得50%放电电压特性曲线;再根据50%放电电压特性曲线确定放电电压与波前时间的关系式,进而得出了边相I串典型间隙不同波前时间冲击放电电压与波前时间修正关系式,后续对放电电压进行计算时直接利用关系式即可,保证了计算结果的准确性,进而保证了空气间隙绝缘配置的设计方法的准确性。

Description

不同波前时间冲击放电电压修正方法、修正装置及计算方法
技术领域
本发明涉及输变电技术领域,具体而言,涉及一种不同波前时间冲击放电电压修正方法、修正装置及计算方法。
背景技术
输电线路外绝缘强度是保证线路、设备正常运行的基本条件,外绝缘设计的优劣是考核设计质量的重要指标。不同电压等级的输电线路根据其最高运行电压,都有不同的空气间隙和绝缘子片数及类型的选择。
超、特高压交流线路杆塔导线-塔身和导线-横梁的绝缘配置均受到操作过电压下的绝缘特性影响,影响因素包括操作过电压波前时间、杆塔间隙放电电压与间隙距离的关系等。而特高压交流输电系统在站内开关动作或发生线路接地故障时,产生的高幅值操作过电压波前时间分布范围可达到数千微秒。例如,特高压变电站隔离开关安装合闸电阻后,操作过电压波前时间可以达到2000μs以上,而较短距离的特高压线路,如变电站内隔离开关未安装合闸电阻,操作过电压波前时间则可能小于1000μs。
试验研究表明,当试验冲击放电电压波前时间变化时,长空气间隙放电电压和放电路径的分散性均会发生明显变化。因此,特高压输电线路绝缘配合,应根据实际工程系统条件计算过电压幅值和波前时间分布范围,确定高幅值过电压的代表性波前时间,再根据不同波前时间长空气间隙放电电压修正方法修正试验电压,计算出合理的杆塔间隙距离,这样才能使计算结构更为精确。上述绝缘配合中所采用的不同波前时间修正方法,需要根据大量试验数据总结提出。而目前空气间隙绝缘配置的设计方法主要依靠真型试验以及运行经验,这就势必会造成设计结果的精确性较差。
发明内容
鉴于此,本发明提出了一种不同波前时间冲击放电电压修正方法、修正装置及计算方法,旨在解决目前空气间隙绝缘配置的设计方法主要依靠真型试验以及运行经验导致的设计结果的精确性较差的问题
一个方面,本发明提出了一种不同波前时间冲击放电电压修正方法,该方法包括如下步骤:对预先建立的特高压边相I串全尺寸塔头间隙试品进行放电特性试验,以获得50%放电电压特性曲线;根据50%放电电压特性曲线确定放电电压与波前时间的关系式。
进一步地,上述不同波前时间冲击放电电压修正方法中,当波前时间t的范围为1.2μs≤t≤100μs时,关系式为U0=k1(13.8t+3382);上式中,U0为放电电压,k1为气象修正系数。
进一步地,上述不同波前时间冲击放电电压修正方法中,当波前时间t的范围为100μs<t≤2500μs时,关系式为U0=k2(1487t0.053);上式中,U0为放电电压,k2为气象修正系数。
进一步地,上述不同波前时间冲击放电电压修正方法中,放电特性试验包括:雷电冲击放电特性试验、短波前操作冲击放电特性试验和长波前操作冲击放电特性试验。
本发明中,先对试品进行放电特性试验,从而获得50%放电电压特性曲线;再根据50%放电电压特性曲线确定放电电压与波前时间的关系式,进而得出了边相I串典型间隙不同波前时间冲击放电电压与波前时间修正关系式,后续对放电电压进行计算时直接利用关系式即可,保证了计算结果的准确性,进而保证了空气间隙绝缘配置的设计方法的准确性;同时,直接利用关系式进行计算,可省去大量试验,也可节省大量人力物力。
另一方面,本发明还提出了一种不同波前时间冲击放电电压修正装置,该装置包括:获得模块,用于对预先建立的特高压边相I串全尺寸塔头间隙试品进行放电特性试验,以获得50%放电电压特性曲线;确定模块,用于根据50%放电电压特性曲线确定放电电压与波前时间的关系式。
进一步地,上述不同波前时间冲击放电电压修正装置中,确定模块中,当波前时间t的范围为1.2μs≤t≤100μs时,关系式为U0=k1(13.8t+3382);上式中,U0为放电电压,k1为气象修正系数。
进一步地,上述不同波前时间冲击放电电压修正装置中,确定模块中,当波前时间t的范围为100μs<t≤2500μs时,关系式为U0=k2(1487t0.053);上式中,U0为放电电压,k2为气象修正系数。
进一步地,上述不同波前时间冲击放电电压修正装置中,获得模块中,放电特性试验包括:雷电冲击放电特性试验、短波前操作冲击放电特性试验和长波前操作冲击放电特性试验。
本发明中,先对试品进行放电特性试验,从而获得50%放电电压特性曲线;再根据50%放电电压特性曲线确定放电电压与波前时间的关系式,进而得出了边相I串典型间隙不同波前时间冲击放电电压与波前时间修正关系式,后续对放电电压进行计算时直接利用关系式即可,保证了计算结果的准确性,进而保证了空气间隙绝缘配置的设计方法的准确性;同时,直接利用关系式进行计算,可省去大量试验,也可节省大量人力物力。
另一方面,本发明还提出了一种不同波前时间冲击放电电压计算方法,该方法包括如下步骤:选择放电电压类型;根据放电电压类型和关系式计算放电电压。
进一步地,上述不同波前时间冲击放电电压计算方法中,放电电压类型为工频放电、操作波放电或雷电波放电。
进一步地,上述不同波前时间冲击放电电压计算方法中,计算放电电压时,根据下述关系确定:当波前时间t的范围为1.2μs≤t≤100μs时,关系式为U0=k1(13.8t+3382);当波前时间t的范围为100μs<t≤2500μs时,关系式为U0=k2(1487t0.053);上式中,U0为放电电压,k1和k2均为气象修正系数。
进一步地,上述不同波前时间冲击放电电压计算方法中,计算放电电压的过程包括:根据选择的放电电压类型的波前时间选择关系式;根据选择的关系式计算放电电压。
本发明中,在放电电压时,首先选择放电电压类型,然后通过放电电压类型和放电电压与波前时间的关系式来计算放电电压,保证了计算结果的准确性,进而保证了空气间隙绝缘配置的设计方法的准确性;同时,直接利用关系式进行计算,可省去大量试验,也可节省大量人力物力。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的不同波前时间冲击放电电压修正方法的流程图;
图2为本实施例提供的不同波前时间冲击放电电压修正装置的结构框图;
图3为本实施例提供的不同波前时间冲击放电电压计算方法的流程图;
图4为本实施例提供的不同波前时间冲击放电电压计算方法中,计算放电电压的过程的流程图;
图5为本实施例提供的模拟酒杯塔边相I串典型间隙试验布置图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
修正方法实施例:
参见图1,图1为本实施例提供的不同波前时间冲击放电电压修正方法的流程图。如图所示,该修正方法包括如下步骤:
步骤S110,对预先建立的特高压边相I串全尺寸塔头间隙试品进行放电特性试验,以获得50%放电电压特性曲线。
具体而言,针对超、特高压杆塔的结构、导线金具和绝缘子结构特点,建立特高压边相I串全尺寸塔头间隙试品,并对试品进行放电特性试验,进而获得50%放电电压特性曲线。具体实施时,放电特性试验可包括:雷电冲击放电特性试验、短波前操作冲击放电特性试验和长波前操作冲击放电特性试验。
步骤S120,根据50%放电电压特性曲线确定放电电压与波前时间的关系式。
具体而言,根据获得的50%放电电压特性曲线确定放电电压与波前时间的关系式。当波前时间t的范围为1.2μs≤t≤100μs时,关系式为U0=k1(13.8t+3382);当波前时间t的范围为100μs<t≤2500μs时,关系式为U0=k2(1487t0.053);上式中,U0为放电电压,k1和k2均为气象修正系数。
本实施例中,先对试品进行放电特性试验,从而获得50%放电电压特性曲线;再根据50%放电电压特性曲线确定放电电压与波前时间的关系式,进而得出了边相I串典型间隙不同波前时间冲击放电电压与波前时间修正关系式,后续对放电电压进行计算时直接利用关系式即可,保证了计算结果的准确性,进而保证了空气间隙绝缘配置的设计方法的准确性;同时,直接利用关系式进行计算,可省去大量试验,也可节省大量人力物力。
修正装置实施例:
参见图2,图2为本实施例提供的不同波前时间冲击放电电压修正装置的结构框图。如图所示,该装置包括:获得模块100和确定模块200。其中,获得模块100用于对预先建立的特高压边相I串全尺寸塔头间隙试品进行放电特性试验,以获得50%放电电压特性曲线。确定模块200用于根据50%放电电压特性曲线确定放电电压与波前时间的关系式。其中,该装置的具体实施过程参见上述修正方法实施例中的说明即可,本实施例在此不再赘述。
本实施例中,先对试品进行放电特性试验,从而获得50%放电电压特性曲线;再根据50%放电电压特性曲线确定放电电压与波前时间的关系式,进而得出了边相I串典型间隙不同波前时间冲击放电电压与波前时间修正关系式,后续对放电电压进行计算时直接利用关系式即可,保证了计算结果的准确性,进而保证了空气间隙绝缘配置的设计方法的准确性;同时,直接利用关系式进行计算,可省去大量试验,也可节省大量人力物力。
计算方法实施例:
参见图3,图3为本实施例提供的不同波前时间冲击放电电压计算方法的流程图。如图所示,该方法包括如下步骤:
步骤S310,选择放电电压类型。
具体而言,分析修正对象所针对试验的电极类型,明确本方法适用于导线对构架之间的放电,即针对边相I串线路导线对杆塔。选择所需要的放电电压类型。放电电压类型可以包括:工频放电、操作波放电或雷电波放电,可以选择一种或多种放电类型。
步骤S320,根据放电电压类型和关系式计算放电电压。
具体而言,当波前时间t的范围为1.2μs≤t≤100μs时,放电电压与波前时间的关系式为U0=k1(13.8t+3382);当波前时间t的范围为100μs<t≤2500μs时,放电电压与波前时间的关系式为U0=k2(1487t0.053);上式中,U0为放电电压,k1和k2均为气象修正系数。根据选择的放电电压类型和放电电压与波前时间的关系式计算放电电压。
本实施例中,在放电电压时,首先选择放电电压类型,然后通过放电电压类型和放电电压与波前时间的关系式来计算放电电压,保证了计算结果的准确性,进而保证了空气间隙绝缘配置的设计方法的准确性;同时,直接利用关系式进行计算,可省去大量试验,也可节省大量人力物力。
参见图4,图4为本实施例提供的计算冲击放电电压的过程的流程图。如图所示,该过程包括如下步骤:
步骤S410,根据选择的放电电压类型的波前时间选择关系式。
具体而言,不同的放电电压类型的波前时间是不同的,选择好放电电压类型后,确定选择的放电电压类型的波前时间适用的关系式。
步骤S420,根据选择的关系式计算放电电压。
具体而言,将气象修正系数和波前时间代入适用的关系式中,以计算放电电压。
本实施例中,先确定选择的放电电压类型的波前时间适用的关系式,再将气象修正系数和波前时间代入适用的关系式中,即可计算放电电压,简单方便。
下面将以特高压酒杯塔为例,具体说明不同波前时间放电电压计算方法的实施过程:
参见图5,图中示出了模拟酒杯塔边相I串典型间隙试验布置图。塔身1与横担2相连接,导线3的一端与横担相连接,导线3的另一端与环4相连接。为分析特高压酒杯塔边相间隙在不同波前时间冲击放电电压下的放电特性,边相间隙冲击放电电压试验采用宽波前冲击放电电压发生装置产生几微秒到两千多微秒波前的冲击放电电压进行放电特性研究。
试验中针对导线1对塔身2的6.0m间隙进行了标准雷电冲击(1.2μs)、100μs、标准操作冲击(250μs)、1000μs和2500μs长波前操作冲击放电电压放电特性试验,获得了不同波形冲击放电电压的试验结果,结果可以参见表1。
表1酒杯塔边相I串间隙不同波前冲击放电电压试验结果
综上,本实施例中,先对试品进行放电特性试验,从而获得50%放电电压特性曲线;再根据50%放电电压特性曲线确定放电电压与波前时间的关系式,进而得出了边相I串典型间隙不同波前时间冲击放电电压与波前时间修正关系式,后续对放电电压进行计算时直接利用关系式即可,保证了计算结果的准确性,进而保证了空气间隙绝缘配置的设计方法的准确性;同时,直接利用关系式进行计算,可省去大量试验,也可节省大量人力物力。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (12)

1.一种不同波前时间冲击放电电压修正方法,其特征在于,包括如下步骤:
对预先建立的特高压边相I串全尺寸塔头间隙试品进行放电特性试验,以获得50%放电电压特性曲线;
根据所述50%放电电压特性曲线确定放电电压与波前时间的关系式。
2.根据权利要求1所述的不同波前时间冲击放电电压修正方法,其特征在于,当波前时间t的范围为1.2μs≤t≤100μs时,
所述关系式为U0=k1(13.8t+3382);
上式中,U0为放电电压,k1为气象修正系数。
3.根据权利要求1所述的不同波前时间冲击放电电压修正方法,其特征在于,当波前时间t的范围为100μs<t≤2500μs时,
所述关系式为U0=k2(1487t0.053);
上式中,U0为放电电压,k2为气象修正系数。
4.根据权利要求1所述的不同波前时间冲击放电电压修正方法,其特征在于,所述放电特性试验包括:雷电冲击放电特性试验、短波前操作冲击放电特性试验和长波前操作冲击放电特性试验。
5.一种利用权利要求1-4中任一项所述修正方法的不同波前时间冲击放电电压修正装置,其特征在于,包括:
获得模块,用于对预先建立的特高压边相I串全尺寸塔头间隙试品进行放电特性试验,以获得50%放电电压特性曲线;
确定模块,用于根据所述50%放电电压特性曲线确定放电电压与波前时间的关系式。
6.根据权利要求5所述的不同波前时间冲击放电电压修正装置,其特征在于,所述确定模块中,当波前时间t的范围为1.2μs≤t≤100μs时,
所述关系式为U0=k1(13.8t+3382);
上式中,U0为放电电压,k1为气象修正系数。
7.根据权利要求5所述的不同波前时间冲击放电电压修正装置,其特征在于,所述确定模块中,当波前时间t的范围为100μs<t≤2500μs时,
所述关系式为U0=k2(1487t0.053);
上式中,U0为放电电压,k2为气象修正系数。
8.根据权利要求5所述的不同波前时间冲击放电电压修正装置,其特征在于,所述获得模块中,
所述放电特性试验包括:雷电冲击放电特性试验、短波前操作冲击放电特性试验和长波前操作冲击放电特性试验。
9.一种利用权利要求1-4中任一项所述修正方法的不同波前时间冲击放电电压计算方法,其特征在于,包括如下步骤:
选择放电电压类型;
根据所述放电电压类型和所述关系式计算放电电压。
10.根据权利要求9所述的不同波前时间冲击放电电压计算方法,其特征在于,所述放电电压类型为工频放电、操作波放电或雷电波放电。
11.根据权利要求9或10所述的不同波前时间冲击放电电压计算方法,其特征在于,所述计算放电电压时,根据下述关系确定:
当波前时间t的范围为1.2μs≤t≤100μs时,所述关系式为U0=k1(13.8t+3382);
当波前时间t的范围为100μs<t≤2500μs时,所述关系式为U0=k2(1487t0.053);
上式中,U0为放电电压,k1和k2均为气象修正系数。
12.根据权利要求11所述的不同波前时间冲击放电电压计算正方法,其特征在于,所述计算放电电压的过程包括:
根据选择的所述放电电压类型的波前时间选择所述关系式;
根据选择的所述关系式计算所述放电电压。
CN201711092039.0A 2017-11-08 2017-11-08 不同波前时间冲击放电电压修正方法、修正装置及计算方法 Pending CN108008257A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711092039.0A CN108008257A (zh) 2017-11-08 2017-11-08 不同波前时间冲击放电电压修正方法、修正装置及计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711092039.0A CN108008257A (zh) 2017-11-08 2017-11-08 不同波前时间冲击放电电压修正方法、修正装置及计算方法

Publications (1)

Publication Number Publication Date
CN108008257A true CN108008257A (zh) 2018-05-08

Family

ID=62052324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711092039.0A Pending CN108008257A (zh) 2017-11-08 2017-11-08 不同波前时间冲击放电电压修正方法、修正装置及计算方法

Country Status (1)

Country Link
CN (1) CN108008257A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914674A (zh) * 2012-10-09 2013-02-06 中国电力科学研究院 一种冲击电压发生器所需绝缘净空距离选择方法
CN103592579A (zh) * 2013-07-30 2014-02-19 中国电力科学研究院 一种冲击放电电压计算模型构建方法
CN106199354A (zh) * 2016-06-24 2016-12-07 国网浙江省电力公司金华供电公司 绝缘子串并联间隙雷电冲击有效性及放电特性测试方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914674A (zh) * 2012-10-09 2013-02-06 中国电力科学研究院 一种冲击电压发生器所需绝缘净空距离选择方法
CN103592579A (zh) * 2013-07-30 2014-02-19 中国电力科学研究院 一种冲击放电电压计算模型构建方法
CN106199354A (zh) * 2016-06-24 2016-12-07 国网浙江省电力公司金华供电公司 绝缘子串并联间隙雷电冲击有效性及放电特性测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENG HUO等: ""Discharge characteristics of UHV impulse voltage with different wavefront times in air medium"", 《2018 12TH INTERNATIONAL CONFERENCE ON THE PROPERTIES AND APPLICATIONS OF DIELECTRIC MATERIALS (ICPADM)》 *

Similar Documents

Publication Publication Date Title
CN101799488B (zh) 一种标定电压的产生装置和方法
Grcev Time-and frequency-dependent lightning surge characteristics of grounding electrodes
CN103336206B (zh) 用于雷电反击的基于先导发展模型的绝缘子闪络仿真方法
CN104155626B (zh) 一种检测电压互感器抵御地电位升高能力的系统
CN103558527A (zh) 超高压gis标准雷电冲击电压耐压试验仿真模拟方法
CN104155526A (zh) 一种测量带避雷线的输电线路杆塔接地装置冲击接地阻抗的方法
CN106646163B (zh) 用于电容式复合绝缘母线系统雷电冲击试验回路及方法
Tavares et al. Voltage harmonic content of long artificially generated electrical arc in out-door experiment at 500 kV towers
CN105606979A (zh) Gis设备局部放电模拟检测装置
CN101477159A (zh) 特高压及超高压线路导线起晕电压高海拔修正方法
CN105186491A (zh) 一种开关操作导致电力系统一次侧过电压的评估方法
CN108761184B (zh) 一种基于雷电冲击的铁塔电位分布及阻抗特性测试方法
CN107167698B (zh) 一种避雷器泄漏电流带电测试装置及方法
Sharath et al. Prediction of impulse voltage-time characteristics of air and oil insulation for different wavefronts
Brignone et al. Evaluation of lightning-induced overvoltages on a distribution system: Validation of a dedicated code using experimental results on a reduced-scale model
CN109031062B (zh) 杆塔间隙操作冲击电压下50%放电电压计算方法和系统
CN107153135A (zh) 柱上配变接地网接地阻抗的测试方法
CN108008257A (zh) 不同波前时间冲击放电电压修正方法、修正装置及计算方法
CN103559358B (zh) 超高压gis振荡型雷电冲击电压耐压试验仿真模拟方法
CN204028345U (zh) 一种检测电压互感器抵御地电位升高能力的系统
CN106249072B (zh) 高压交流输电设备的瞬态冲击性能检测系统
Kong et al. A novel disturbance identification method based on empirical mode decomposition for HVDC transmission line protection
CN108710072B (zh) 电器实际冲击电压波形下sf6气体击穿特性试验系统
Moraes et al. Insulator models of a hybrid overhead line
Zhiwei et al. The lightning protection performance of back striking for double-circuit transmission line based on the distributed transmission line tower model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180508

RJ01 Rejection of invention patent application after publication