CN108004274B - Method for producing acrylic acid by fermentation of saccharomyces cerevisiae - Google Patents

Method for producing acrylic acid by fermentation of saccharomyces cerevisiae Download PDF

Info

Publication number
CN108004274B
CN108004274B CN201810051564.6A CN201810051564A CN108004274B CN 108004274 B CN108004274 B CN 108004274B CN 201810051564 A CN201810051564 A CN 201810051564A CN 108004274 B CN108004274 B CN 108004274B
Authority
CN
China
Prior art keywords
saccharomyces cerevisiae
gene
delta
genes
acrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810051564.6A
Other languages
Chinese (zh)
Other versions
CN108004274A (en
Inventor
卓炳照
胡欣
李棋
林炜锋
江会锋
王文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Small Molecule New Drug Innovation Center Co ltd
Original Assignee
Jiaxing Synbiolab Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Synbiolab Biotechnology Co ltd filed Critical Jiaxing Synbiolab Biotechnology Co ltd
Priority to CN201810051564.6A priority Critical patent/CN108004274B/en
Publication of CN108004274A publication Critical patent/CN108004274A/en
Application granted granted Critical
Publication of CN108004274B publication Critical patent/CN108004274B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Mycology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention relates to a method for producing acrylic acid by saccharomyces cerevisiae fermentation, which takes glycerol as a raw material and saccharomyces cerevisiae as host bacteria and is completed by catalysis of a plurality of enzymes in the host bacteria. The invention has the beneficial effects that: 1) the compound with low cost is used as the raw material, and the cost of the raw material of the process is low. 2) The method is based on the technical foundation of modifying the microorganism, carries out the catalytic synthesis of the biological enzyme in the microorganism body, avoids the large-scale extraction, separation and purification processes, and is easy to control from the aspects of production cost and environmental friendliness. 3) The process has the advantages of smaller scale and quantity of production equipment than other methods, simple operation and easy industrial transformation. 4) The process only has a separation and purification process in the last step of production, the product purification process is simple, and the product quality is higher than that of the general method in purity and content. 5) No waste liquid is discharged in the synthesis process, the method is environment-friendly, pollution-free and sustainable in production.

Description

Method for producing acrylic acid by fermentation of saccharomyces cerevisiae
Technical Field
The invention relates to a biosynthesis method of acrylic acid, in particular to a method for producing acrylic acid by fermentation of saccharomyces cerevisiae.
Background
The acrylic acid molecular formula: c3H4O2(ii) a English name: acrylic acid; CAS: 79-10-7; molecular weight: 72.06, respectively; physical properties: mixing with water, and dissolving in ethanol and diethyl ether to obtain colorless liquid with pungent odor; melting point of 13 deg.C, boiling point of 141 deg.C, flash point of 54 deg.C, and densityIt was 1.05 g/cm.
Acrylic acid is an important organic synthetic raw material and synthetic resin monomer, and is a vinyl monomer having a very high polymerization rate. Is the simplest unsaturated carboxylic acid, consisting of one vinyl group and one carboxyl group. Pure acrylic acid is a colorless clear liquid with a characteristic pungent odor. It is miscible with water, alcohol, ether and chloroform. Most of them are used for producing acrylic esters such as methyl acrylate, ethyl acrylate, butyl acrylate, hydroxyethyl acrylate, etc. Acrylic acid and acrylic ester can be homopolymerized and copolymerized, and the polymer is used in the industrial departments of synthetic resin, synthetic fiber, super absorbent resin, building material, paint and the like. Acrylic acid is used as a bulk chemical with market demand ranking of nearly 20, and acrylic acid and polymers thereof are widely applied to the aspects of industrial production, aerospace, sewage treatment, medical materials, nano materials and the like. With the development of science and technology, people increasingly demand green and environment-friendly materials, so that functional materials using acrylic acid as organic synthetic raw materials and synthetic resin monomers are more and more favored by people.
The industrial production of acrylic acid mainly adopts the propylene oxidation method. Propylene reacts with oxygen to generate acrolein, and the acrolein is deoxidized to generate acrylic acid, so that the conversion rate is high. Despite the many advantages of this process, the raw materials rely on traditional fossil energy, which is highly polluting, energy intensive and non-sustainable. The synthesis of acrylic acid by the semi-biosynthesis or the total biosynthesis is also currently advantageous. The semi-biosynthesis method of acrylic acid is a method of converting petrochemical raw materials such as acrylonitrile and acrylamide into acrylic acid by using microorganisms.
Although the yield of acrylic acid is high, the raw materials of acrylonitrile and acrylamide are higher than that of acrylic acid in cost, and the industrial production of the acrylic acid is limited. The acrylic acid whole biological method is a method for producing acrylic acid by directly utilizing biomass such as saccharides and the like by microorganisms through fermentation. The existing acrylic acid biological total synthesis method has the defects of complex synthesis route, unclear synthesis mechanism and extremely low synthesis efficiency. The invention aims to solve the technical problems and provides a method for biologically synthesizing acrylic acid, which has mild reaction and high synthesis efficiency.
Disclosure of Invention
The invention aims to solve the defects of the prior art and provides the method for producing the acrylic acid by fermenting the saccharomyces cerevisiae, which has the advantages of mild reaction, high synthesis efficiency, high yield, no pollution and short production period.
The technical scheme adopted by the invention for solving the technical problems is as follows:
a method for producing acrylic acid by saccharomyces cerevisiae fermentation is characterized in that glycerol is used as a raw material, saccharomyces cerevisiae is used as host bacteria, and the synthesis is completed through catalysis of a plurality of enzymes in the host bacteria;
the host bacterium is constructed and obtained according to the following method:
1) optimizing codons of genes GlyDH and DAK according to the codon preference of saccharomyces cerevisiae, and then constructing the two genes in a saccharomyces cerevisiae expression vector YCplac33 by using a bidirectional promoter to obtain a vector 1, wherein the expression vector YCplac33 has ampicillin resistance of escherichia coli and a selection marker URA gene of the saccharomyces cerevisiae; constructing a heterologous glycerol metabolic pathway in saccharomyces cerevisiae, wherein glycerol can be converted into dihydroxyacetone by an enzyme expressed by a GlyDH gene, and the dihydroxyacetone is converted into dihydroxyacetone phosphate by an enzyme expressed by a DAK gene;
2) optimizing the ceaS2 gene and the NOX gene according to the codon preference of the saccharomyces cerevisiae, and then simultaneously constructing the two genes in a saccharomyces cerevisiae expression vector YCplac33 to obtain a vector 2, wherein the expression vector YCplac33 has an ampicillin resistance gene of escherichia coli and a screening marker Leu gene of the saccharomyces cerevisiae;
the enzyme expressed by the ceaS2 gene has the function of converting dihydroxyacetone phosphate or glyceraldehyde 3-phosphate into acrylic acid, and since GlyDH enzyme needs NADH to catalyze the conversion of glycerol into dihydroxyacetone, NADH is converted into NAD +. In order to increase the supply of NADH and thus the efficiency of the heterologous glycerol metabolic pathway constructed in 1), a heterologous NADH circulation module is constructed in Saccharomyces cerevisiae, i.e. by introducing a NOX gene, the enzyme expressed by the NOX gene is capable of reducing NAD + to NADH;
3) knocking out a PDC1 gene, a DLD1 gene, a GPD1 gene and a GPD2 gene in the Saccharomyces cerevisiae BY4741 to obtain a modified Saccharomyces cerevisiae BY 4741-delta PDC 1-delta DLD 1-delta GPD 1-delta GPD2 strain; the aim is to reduce consumption of core intermediate products, namely dihydroxyacetone phosphate and glyceraldehyde 3-phosphate by other metabolic pathways;
4) and (3) simultaneously transferring the vectors 1 and 2 into the modified saccharomyces cerevisiae BY 4741-delta PDC 1-delta DLD 1-delta GPD 1-delta GPD2 described in the step 3), screening positive clones according to screening markers ura and Leu genes of the saccharomyces cerevisiae, then extracting a saccharomyces cerevisiae genome, and further carrying out PCR verification.
Preferably, the GlyDH and DAK genes of step 1) are synthesized according to the amino acid sequences of the corresponding genes in Geobacillus stearothermophilus and Pichia pastoris, respectively.
Preferably, the ceaS2 and NOx genes in step 2) are synthesized based on the amino acid sequences of the corresponding genes of Streptomyces clavuligerus and Geobacillus stearothermophilus, respectively.
A method for producing acrylic acid by saccharomyces cerevisiae fermentation comprises the following steps:
1) optimizing codons of genes GlyDH and DAK according to the codon preference of saccharomyces cerevisiae, and then constructing the two genes in a saccharomyces cerevisiae expression vector YCplac33 by using a bidirectional promoter to obtain a vector 1, wherein the expression vector YCplac33 has ampicillin resistance of escherichia coli and a selection marker URA gene of the saccharomyces cerevisiae;
2) optimizing the ceaS2 gene and the NOX gene according to the codon preference of the saccharomyces cerevisiae, and then simultaneously constructing the two genes in a saccharomyces cerevisiae expression vector YCplac33 to obtain a vector 2, wherein the expression vector YCplac33 has an ampicillin resistance gene of escherichia coli and a screening marker Leu gene of the saccharomyces cerevisiae;
3) knocking out a PDC1 gene, a DLD1 gene, a GPD1 gene and a GPD2 gene in the Saccharomyces cerevisiae BY4741 to obtain a modified Saccharomyces cerevisiae BY 4741-delta PDC 1-delta DLD 1-delta GPD 1-delta GPD2 strain;
4) simultaneously transferring the vectors 1 and 2 into the modified saccharomyces cerevisiae BY 4741-delta PDC 1-delta DLD 1-delta GPD 1-delta GPD2 described in 3), screening positive clones according to screening markers ura and Leu genes of the saccharomyces cerevisiae, then extracting a saccharomyces cerevisiae genome, and further carrying out PCR verification;
5) culturing saccharomyces cerevisiae host bacteria, and performing induced expression;
6) adding a glycerol substrate into the expressed bacterial liquid, and continuing to react for 20-26 h;
7) extracting, separating and purifying the acrylic acid in the reaction liquid.
Preferably, the addition amount of glycerol in step 6) is: 10g/L-100g/L, the reaction temperature is as follows: 25-35 ℃.
The genes referred to in this patent are GlyDH, DAK, NOX and ceaS2 (see Table 1).
Figure BDA0001552463180000031
Figure BDA0001552463180000041
The difference between the preparation of acrylic acid by the invention and the prior art is that:
1) the compound with low cost is used as the raw material, and the cost of the raw material of the process is low.
2) The method is based on the technical foundation of modifying the microorganism, carries out the catalytic synthesis of the biological enzyme in the microorganism body, avoids the large-scale extraction, separation and purification processes, and is easy to control from the aspects of production cost and environmental friendliness.
3) The process has the advantages of smaller scale and quantity of production equipment than other methods, simple operation and easy industrial transformation.
4) The process only has a separation and purification process in the last step of production, the product purification process is simple, and the product quality is higher than that of the general method in purity and content.
5) The synthesis process has no waste liquid discharge, is environment-friendly, has no pollution, and can be used for sustainable production.
Drawings
FIG. 1 is a scheme of the acrylic acid biosynthesis scheme of the present invention;
FIG. 2(a) is a plasmid map of YCplac33-GlyDH-DAK in the present invention;
FIG. 2(b) is a YCplac33-ceaS2-NOX plasmid map in accordance with the present invention;
FIG. 3 is a liquid phase result graph of a synthetic sample according to the present invention;
FIG. 4 is a mass spectrum result chart of a synthesized sample of the present invention, wherein FIG. 4(a) is a chromatogram of LC-MS analysis of an acrylic acid standard, FIG. 4(b) is a chromatogram of LC-MS analysis of a control sample, FIG. 4(c) is a chromatogram of LC-MS analysis of a strain culture reaction solution after modification, and FIG. 4(d) is a mass spectrum of LC-MS analysis of a strain culture reaction solution after modification.
Detailed Description
The technical solution of the present invention is further specifically described below by way of specific examples in conjunction with the accompanying drawings. The principles and features of this invention are described below in conjunction with examples which are set forth to illustrate, but are not to be construed to limit the scope of the invention.
A method for producing acrylic acid by saccharomyces cerevisiae fermentation is shown in figure 1, and the synthesis method is completed by using glycerol as a raw material and saccharomyces cerevisiae as a host bacterium and catalyzing a plurality of enzymes in the host bacterium; the host bacterium is constructed and obtained according to the following method:
1) optimizing codons of genes GlyDH and DAK according to the codon preference of saccharomyces cerevisiae, and then constructing the two genes in a saccharomyces cerevisiae expression vector YCplac33 by using a bidirectional promoter to obtain a vector 1, wherein the expression vector YCplac33 has ampicillin resistance of escherichia coli and a selection marker URA gene of the saccharomyces cerevisiae as shown in a figure 2 (a); constructing a heterologous glycerol metabolic pathway in saccharomyces cerevisiae, wherein glycerol can be converted into dihydroxyacetone by an enzyme expressed by a GlyDH gene, and the dihydroxyacetone is converted into dihydroxyacetone phosphate by an enzyme expressed by a DAK gene;
2) optimizing the ceaS2 gene and the NOX gene according to the codon preference of the saccharomyces cerevisiae, and then simultaneously constructing the two genes in a saccharomyces cerevisiae expression vector YCplac33 to obtain a vector 2, wherein the expression vector YCplac33 has an ampicillin resistance gene of escherichia coli and a screening marker Leu gene of the saccharomyces cerevisiae as shown in a figure 2 (b);
the enzyme expressed by the ceaS2 gene has the function of converting dihydroxyacetone phosphate or glyceraldehyde 3-phosphate into acrylic acid, and since GlyDH enzyme needs NADH to catalyze the conversion of glycerol into dihydroxyacetone, NADH is converted into NAD +. In order to increase the supply of NADH and thus the efficiency of the heterologous glycerol metabolic pathway constructed in 1), a heterologous NADH circulation module is constructed in Saccharomyces cerevisiae, i.e. by introducing a NOX gene, the enzyme expressed by the NOX gene is capable of reducing NAD + to NADH;
3) knocking out a PDC1 gene, a DLD1 gene, a GPD1 gene and a GPD2 gene in the Saccharomyces cerevisiae BY4741 to obtain a modified Saccharomyces cerevisiae BY 4741-delta PDC 1-delta DLD 1-delta GPD 1-delta GPD2 strain; the aim is to reduce consumption of core intermediate products, namely dihydroxyacetone phosphate and glyceraldehyde 3-phosphate by other metabolic pathways;
4) and (3) simultaneously transferring the vectors 1 and 2 into the modified saccharomyces cerevisiae BY 4741-delta PDC 1-delta DLD 1-delta GPD 1-delta GPD2 described in the step 3), screening positive clones according to screening markers ura and Leu genes of the saccharomyces cerevisiae, then extracting a saccharomyces cerevisiae genome, and further carrying out PCR verification.
Specifically, in this example, the GlyDH and DAK genes in step 1) were synthesized according to the amino acid sequences of the corresponding genes in Geobacillus stearothermophilus and Pichia pastoris, respectively.
Specifically, in this example, the ceaS2 and the NOX gene in step 2) were synthesized based on the amino acid sequences of the corresponding genes of Streptomyces clavuligerus and Geobacillus stearothermophilus, respectively.
A method for producing acrylic acid by saccharomyces cerevisiae fermentation comprises the following steps:
1) optimizing codons of genes GlyDH and DAK according to the codon preference of saccharomyces cerevisiae, and then constructing the two genes in a saccharomyces cerevisiae expression vector YCplac33 by using a bidirectional promoter to obtain a vector 1, wherein the expression vector YCplac33 has ampicillin resistance of escherichia coli and a selection marker URA gene of the saccharomyces cerevisiae;
2) optimizing the ceaS2 gene and the NOX gene according to the codon preference of the saccharomyces cerevisiae, and then simultaneously constructing the two genes in a saccharomyces cerevisiae expression vector YCplac33 to obtain a vector 2, wherein the expression vector YCplac33 has an ampicillin resistance gene of escherichia coli and a screening marker Leu gene of the saccharomyces cerevisiae;
3) knocking out a PDC1 gene, a DLD1 gene, a GPD1 gene and a GPD2 gene in the Saccharomyces cerevisiae BY4741 to obtain a modified Saccharomyces cerevisiae BY 4741-delta PDC 1-delta DLD 1-delta GPD 1-delta GPD2 strain;
4) simultaneously transferring the vectors 1 and 2 into the modified saccharomyces cerevisiae BY 4741-delta PDCl-delta DLD 1-delta GPD 1-delta GPD2 described in 3), screening positive clones according to screening markers ura and Leu genes of the saccharomyces cerevisiae, then extracting a saccharomyces cerevisiae genome, and further carrying out PCR verification;
5) culturing saccharomyces cerevisiae host bacteria, and performing induced expression;
6) adding a glycerol substrate into the expressed bacterial liquid, and continuing to react for 20-60h, preferably 36-48 h;
7) extracting, separating and purifying the acrylic acid in the reaction liquid.
Preferably, the addition amount of glycerol in step 6) is: 10g/L to 100g/L, preferably 60 g/L to 80g/L, and the reaction temperature is as follows: 25-35 ℃, preferably 30 ℃.
The liquid phase result graph and the mass spectrum result graph of the sample synthesized by the present invention are shown in fig. 3 and fig. 4(a) - (d), respectively.
The above-described embodiments are only preferred embodiments of the present invention, and are not intended to limit the present invention in any way, and other variations and modifications may be made without departing from the spirit of the invention as set forth in the claims.
Sequence listing
<110> Jiaxing Xin Beilai Biotech Ltd
JIAXING SYNBIOLAB BIOTECHNOLOGY Co.,Ltd.
<120> method for producing acrylic acid by fermentation of saccharomyces cerevisiae
<130> 20182018
<160> 2
<170> SIPOSequenceListing 1.0
<210> 3
<211> 10513
<212> DNA
<213> Artificial sequence (unknown)
<400> 3
ctgcattaat gaatcggcca acgcgcgggg agaggcggtt tgcgtattgg gcgctcttcc 60
gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct 120
cactcaaagg cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg 180
tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc 240
cataggctcc gcccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga 300
aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct 360
cctgttccga ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg 420
gcgctttctc atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag 480
ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat 540
cgtcttgagt ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac 600
aggattagca gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac 660
tacggctaca ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc 720
ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt 780
tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc 840
ttttctacgg ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg 900
agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag ttttaaatca 960
atctaaagta tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca 1020
cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc cgtcgtgtag 1080
ataactacga tacgggaggg cttaccatct ggccccagtg ctgcaatgat accgcgagac 1140
ccacgctcac cggctccaga tttatcagca ataaaccagc cagccggaag ggccgagcgc 1200
agaagtggtc ctgcaacttt atccgcctcc atccagtcta ttaattgttg ccgggaagct 1260
agagtaagta gttcgccagt taatagtttg cgcaacgttg ttgccattgc tacaggcatc 1320
gtggtgtcac gctcgtcgtt tggtatggct tcattcagct ccggttccca acgatcaagg 1380
cgagttacat gatcccccat gttgtgcaaa aaagcggtta gctccttcgg tcctccgatc 1440
gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg ttatggcagc actgcataat 1500
tctcttactg tcatgccatc cgtaagatgc ttttctgtga ctggtgagta ctcaaccaag 1560
tcattctgag aatagtgtat gcggcgaccg agttgctctt gcccggcgtc aatacgggat 1620
aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg 1680
cgaaaactct caaggatctt accgctgttg agatccagtt cgatgtaacc cactcgtgca 1740
cccaactgat cttcagcatc ttttactttc accagcgttt ctgggtgagc aaaaacagga 1800
aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat actcatactc 1860
ttcctttttc aatattattg aagcatttat cagggttatt gtctcatgag cggatacata 1920
tttgaatgta tttagaaaaa taaacaaata ggggttccgc gcacatttcc ccgaaaagtg 1980
ccacctgacg tctaagaaac cattattatc atgacattaa cctataaaaa taggcgtatc 2040
acgaggccct ttcgtcttca agaattagct tttcaattca attcatcatt ttttttttat 2100
tctttttttt gatttcggtt tctttgaaat tttttttaac tgtgggaata ctcaggtatc 2160
gtaagatgca agagttcgaa tctcttagca accattattt ttttcctcaa cataacgaga 2220
acacacaggg gcgctatcgc acagaatcaa attcgatgac tggaaatttt ttgttaattt 2280
cagaggtcgc ctgacgcata tacctttttc aactgaaaaa ttgggagaaa aaggaaaggt 2340
gagagccgcg gaaccggctt ttcatataga atagagaagc gttcatgact aaatgcttgc 2400
atcacaatac ttgaagttga caatattatt taaggaccta ttgttttttc caataggtgg 2460
ttagcaatcg tcttactttc taacttttct taccttttac atttcagcaa tatatatata 2520
tatatttcaa ggatatacca ttctaatgtc tgcccctaag aagatcgtcg ttttgccagg 2580
tgaccacgtt ggtcaagaaa tcacagccga agccattaag gttcttaaag ctatttctga 2640
tgttcgttcc aatgtcaagt tcgatttcga aaatcattta attggtggtg ctgctatcga 2700
tgctacaggt gtcccacttc cagatgaggc gctggaagcc tccaagaagg ttgatgccgt 2760
tttgttaggt gctgtgggtg gtcctaaatg gggtacaggt agtgttagac ctgaacaagg 2820
tttactaaaa atccgtaaag aacttcaatt gtacgccaac ttaagaccat gtaactttgc 2880
atccgactct cttttagact tatctccaat caagccacaa tttgctaaag gtactgactt 2940
cgttgttgtc agagaattag tgggaggtat ttactttggt aagagaaagg aagacgatgg 3000
tgatggtgtc gcttgggata gtgaacaata caccgttcca gaagtgcaaa gaatcacaag 3060
aatggccgct ttcatggccc tacaacatga gccaccattg cctatttggt ccttggataa 3120
agctaatgtt ttggcctctt caagattatg gagaaaaact gtggaggaaa ccatcaagaa 3180
cgaatttcct acattgaagg ttcaacatca attgattgat tctgccgcca tgatcctagt 3240
taagaaccca acccacctaa atggtattat aatcaccagc aacatgtttg gtgatatcat 3300
ctccgatgaa gcctccgtta tcccaggttc cttgggtttg ttgccatctg cgtccttggc 3360
ctctttgcca gacaagaaca ccgcatttgg tttgtacgaa ccatgccacg gttctgctcc 3420
agatttgcca aagaataagg tcaaccctat cgccactatc ttgtctgctg caatgatgtt 3480
gaaattgtca ttgaacttgc ctgaagaagg taaggccatt gaagatgcag ttaaaaaggt 3540
tttggatgca ggtatcagaa ctggtgattt aggtggttcc aacagtacca cggaagtcgg 3600
tgatgctgtc gccgaagaag ttaagaaaat ccttgcttaa aaagattctc tttttttatg 3660
atatttgtac ataaacttta taaatgaaat tcataataga aacgacacga aattacaaaa 3720
tggaatatgt tcatagggta gattattacc caattctcat gtttgacagc ttatcatcga 3780
tcgtccaact gcatggagat gagtcgtggc aagaatacca agagttcctc ggtttgccag 3840
ttattaaaag actcgtattt ccaaaagact gcaacatact actcagtgca gcttcacaga 3900
aacctcattc gtttattccc ttgtttgatt cagaagcagg tgggacaggt gaacttttgg 3960
attggaactc gatttctgac tgggttggaa ggcaagagag ccccgagagc ttacatttta 4020
tgttagctgg tggactgacg ccagaaaatg ttggtgatgc gcttagatta aatggcgtta 4080
ttggtgttga tgtaagcgga ggtgtggaga caaatggtgt aaaagactct aacaaaatag 4140
caaatttcgt caaaaatgct aagaaatagg ttattactga gtagtattta tttaagtatt 4200
gtttgtgcac ttgcctgcaa gccttttgaa aagcaagcat aaaagatcta aacataaaat 4260
ctgtaaaata acaagatgta aagataatgc taaatcattt ggctttttga ttgattgtac 4320
aggaaaatat acatcgcagg gggttgactt ttaccatttc accgcaatgg aatcaaactt 4380
gttgaagaga atgttcacag gcgcatacgc tacaatgacc cgattcttgc tagccttttc 4440
tcggtcttgc aaacaaccgc cggcagctta gtatataaat acacatgtac atacctctct 4500
ccgtatcctc gtaatcattt tcttgtattt atcgtctttt cgctgtaaaa actttatcac 4560
acttatctca aatacactta ttaaccgctt ttactattat cttctacgct gacagtaata 4620
tcaaacagtg acacatatta aacacagtgg tttctttgca taaacaccat cagcctcaag 4680
tcgtcaagta aagatttcgt gttcatgcag atagataaca atctatatgt tgataattag 4740
cgttgcctca tcaatgcgag atccgtttaa ccggacccta gtgcacttac cccacgttcg 4800
gtccactgtg tgccgaacat gctccttcac tattttaaca tgtggaatta attctcatgt 4860
ttgacagctt atcatcgaac tctaagaggt gatacttatt tactgtaaaa ctgtgacgat 4920
aaaaccggaa ggaagaataa gaaaactcga actgatctat aatgcctatt ttctgtaaag 4980
agtttaagct atgaaagcct cggcattttg gccgctccta ggtagtgctt tttttccaag 5040
gacaaaacag tttctttttc ttgagcaggt tttatgtttc ggtaatcata aacaataaat 5100
aaattatttc atttatgttt aaaaataaaa aataaaaaag tattttaaat ttttaaaaaa 5160
gttgattata agcatgtgac cttttgcaag caattaaatt ttgcaatttg tgattttagg 5220
caaaagttac aatttctggc tcgtgtaata tatgtatgct aaagtgaact tttacaaagt 5280
cgatatggac ttagtcaaaa gaaattttct taaaaatata tagcactagc caatttagca 5340
cttctttatg agatatatta tagactttat taagccagat ttgtgtatta tatgtattta 5400
cccggcgaat catggacata cattctgaaa taggtaatat tctctatggt gagacagcat 5460
agataaccta ggatacaagt taaaagctag tactgttttg cagtaatttt tttctttttt 5520
ataagaatgt taccacctaa ataagttata aagtcaatag ttaagtttga tatttgattg 5580
taaaataccg taatatattt gcatgatcaa aaggctcaat gttgactagc cagcatgtca 5640
accactatat tgatcaccga tatatggact tccacaccaa ctagtaatat gacaataaat 5700
tcaagatatt cttcatgaga atggcccagc gatatatgcg gtgtgaaata ccgcacagat 5760
gcgtaaggag aaaataccgc atcaggcgcc attcgccatt caggctgcgc aactgttggg 5820
aagggcgatc ggtgcgggcc tcttcgctat tacgccagct ggcgaaaggg ggatgtgctg 5880
caaggcgatt aagttgggta acgccagggt tttcccagtc acgacgttgt aaaacgacgg 5940
ccagtgaatt cgagctctgt caacgcagat taagcacacc ctaaaacttg aataatgcaa 6000
attccatagc ttagtttaat caaggcgcca ttattcctca gttgaaaagt atatctaatg 6060
gttaggatta gaaatatgtt cattgctcat tgttatgtgt atcatatcgt acaaaaatta 6120
tataaagaaa taataatgaa aaagagtaaa acaaagacaa atagacaaaa atagaggata 6180
gaaaaagaaa aacaacagat acataaataa gtcttatgac aaaaaaacga ttgtataaaa 6240
attaaagtgc atgccatttt tacctccttt tgcttaactt aaacttttca ttgcaatcat 6300
gatagacaaa gcaccgaaac cacctggttg gaagtcgtag ttaactggaa cttcgatcaa 6360
gaatggtcta cccaattcag caccctttct caaagcagcc aacaattctt ctctgttagt 6420
agctctagta gcgtcaacac cgttagcttc agccaaagca acgaagtcaa caccaccgaa 6480
cttaacagct gggtcgtgag atctgtggtg accgatgttt tggtacaatt cgatcaaacc 6540
gttagtgtcg ttgttaacaa caacagtaac gattggcaag ttcaatctag cgatagtttc 6600
caagtcagaa gagttagagt ggaaaccacc gtcaccagcg atcaagaaag ttggttggtc 6660
tggtctagcc atttgagcac cgatagcagc tgggataccg taaccgaaag aagaacaacc 6720
agcagaagtc aagaaaccga atggttggtc agctctagcg aacaaaacac cgtagtgtct 6780
gaagaaaccg atgtcagaaa cgatagtacc ttcacctggt tcagcagctt cttccataac 6840
agtgttcata gagtcgataa cttggtgaac tctcataccg tcttcgtaag tttctgggtc 6900
agccaagaat tcagcgattc tagctctcaa tggttcgatg tcgtgtcttt gcttagcacc 6960
gaaagaagca gtagcagttt cgaagtgttc aacgaaagcc aaaacgtcag taacaacgtc 7020
aacgtctggt ctgtaaactc ttgggattgg gttaacagtt ggagagattc taacagtctt 7080
cttttcgata cccttttgcc acatagatgg tctcaagtct tcagcgtagt cgtaaccaac 7140
agtcaaaacc aagtcaactg gagcgaacat agtttgcaaa gctgggaagt tcaagatacc 7200
gtccatgtaa ccagtaacag caccgtagtt caattcgtga ccaactggca aaacaccctt 7260
agcgatgtaa gtagtgataa ctgggatgtt caatctttca gccaaagctc tgatagctgg 7320
aacagcacca gatctgatag cagcagcacc aacaaccaaa actgggtgct tagcttcagc 7380
caacaaagca gcagcttggt cagcagcctt ttgccaaccg tcagcaacaa caccaactgg 7440
cttagctgga gtgttagctg gtgggtttgg aacagtagtg tcgatacctt cagaagaacc 7500
caacaagtca actggcaaag agatgaaaga tggaccaact ggttcagtca tagcagcgtt 7560
aacagcagag tcaaccaagt cagtgatttc gtgtggtctt tgcaattcaa cagcgtactt 7620
agacattgga gcaacgatag caacagagtc caaacattgg tgagtgtcgt ttgggaagat 7680
gtcgtgagat tcagattgag cagccaaagc gataactgga gatctgtcca aaacagaagt 7740
agcgatacca gtagacaagt tagtcatacc tggacccaaa gtagcccaac aagcttgtgg 7800
tctaccagtg attctagcca aaacgtcagc agcaacacca gcagtgaatt cgtgtctagt 7860
caaaacgaag tcgatacctt caacttcgtc gaacaagata gaagcagctt ctctaccaac 7920
aacaccgaaa accttaccaa caccgtggtc tctcaatcta gacaacaaag cgtgagcagc 7980
agttggctta ccagatggag cagtagaaac tctagacatt ttgtttgttt atgtgtgttt 8040
attcgaaact aagttcttgg tgttttaaaa ctaaaaaaaa gactaactat aaaagtagaa 8100
tttaagaagt ttaagaaata gatttacaga attacaatca atacctaccg tctttatata 8160
cttattagtc aagtagggga ataatttcag ggaactggtt tcaacctttt ttttcagctt 8220
tttccaaatc agagagagca gaaggtaata gaaggtgtaa gaaaatgaga tagatacatg 8280
cgtgggtcaa ttgccttgtg tcatcattta ctccaggcag gttgcatcac tccattgagg 8340
ttgtgcccgt tttttgcctg tttgtgcccc tgttctctgt agttgcgcta agagaatgga 8400
cctatgaact gatggttggt gaagaaaaca atattttggt gctgggattc tttttttttc 8460
tggatgccag cttaaaaagc gggctccatt atatttagtg gatgccagga ataaactgtt 8520
cacccagaca cctacgatgt tatatattct gtgtaacccg ccccctattt tgggcatgta 8580
cgggttacag cagaattaaa aggctaattt tttgactaaa taaagttagg aaaatcacta 8640
ctattaatta tttacgtatt ctttgaaatg gcagtattga taatgataaa ctcgaactga 8700
aaaagcgtgt tttttattca aaatgattct aactccctta cgtaatcaag gaatcttttt 8760
gccttggcct ccgcgtcatt aaacttcttg ttgttgacgc taacattcaa cgctagtatt 8820
atacttacat atagtagatg tcaagcgtag gcgcttcccc tgccggctgt gagggcgcca 8880
taaccaaggt atctatagac cgccaatcag caaactacct ccgtacattc atgttgcacc 8940
cacacattta tacacccaga ccgcgacaaa ttacccataa ggttgtttgt gacggcgtcg 9000
tacaagagaa cgtgggaact ttttaggctc accaaaaaag aaagaaaaaa tacgagttgc 9060
tgacagaagc ctcaagaaaa aaaaaattct tcttcgacta tgctggaggc agagatgatc 9120
gagccggtag ttaactatat atagctaaat tggttccatc accttctttt ctggtgtcgc 9180
tccttctagt gctatttctg gcttttccta tttttttttt tccatttttc tttctctctt 9240
tctaatatat aaattctctt gcattttcta tttttctctc tatctattct acttgtttat 9300
tcccttcaag gttttttttt aaggagtact tgtttttaga atatacggtc aacgaactat 9360
aattaactaa acactagtac catggaagct actttgccag ttttggacgc taagactgct 9420
gctttgaaga gaagatctat cagaagatac agaaaggacc cagttccaga aggtttgttg 9480
agagaaatct tggaagctgc tttgagagct ccatctgctt ggaacttgca accatggaga 9540
atcgttgttg ttagagaccc agctactaag agagctttga gagaagctgc tttcggtcaa 9600
gctcacgttg aagaagctcc agttgttttg gttttgtacg ctgacttgga agacgctttg 9660
gctcacttgg acgaagttat ccacccaggt gttcaaggtg aaagaagaga agctcaaaag 9720
caagctatcc aaagagcttt cgctgctatg ggtcaagaag ctagaaaggc ttgggcttct 9780
ggtcaatctt acatcttgtt gggttacttg ttgttgttgt tggaagctta cggtttgggt 9840
tctgttccaa tgttgggttt cgacccagaa agagttagag ctatcttggg tttgccatct 9900
cacgctgcta tcccagcttt ggttgctttg ggttacccag ctgaagaagg ttacccatct 9960
cacagattgc cattggaaag agttgttttg tggagataag cttgttgtct acaaattata 10020
aaatagtttt ttataatcaa ccattaaata attttgtaca cttataataa cactttattt 10080
ctcgttccaa ttatgcgatg catgtgcctt ccgtttagag tgagcattat caaatataaa 10140
gtcaaatcct tttggcattt attttgattg aaacccagtc tgtccttaac tcttttgcct 10200
atcaaacgct gtaggtcact cttggtacgg tacagcggat agcgctattt attcagcaag 10260
agaagcaaga ttaggcgact acaatagatc aaaattttag gatcctctag agtcgacctg 10320
caggcatgca agcttggcgt aatcatggtc atagctgttt cctgtgtgaa attgttatcc 10380
gctcacaatt ccacacaaca tacgagccgg aagcataaag tgtaaagcct ggggtgccta 10440
atgagtgagc taactcacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa 10500
cctgtcgtgc cag 10513
<210> 3
<211> 10763
<212> DNA
<213> Artificial sequence (unknown)
<400> 3
ctgcattaat gaatcggcca acgcgcgggg agaggcggtt tgcgtattgg gcgctcttcc 60
gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct 120
cactcaaagg cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg 180
tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc 240
cataggctcc gcccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga 300
aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct 360
cctgttccga ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg 420
gcgctttctc atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag 480
ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat 540
cgtcttgagt ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac 600
aggattagca gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac 660
tacggctaca ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc 720
ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt 780
tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc 840
ttttctacgg ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg 900
agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag ttttaaatca 960
atctaaagta tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca 1020
cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc cgtcgtgtag 1080
ataactacga tacgggaggg cttaccatct ggccccagtg ctgcaatgat accgcgagac 1140
ccacgctcac cggctccaga tttatcagca ataaaccagc cagccggaag ggccgagcgc 1200
agaagtggtc ctgcaacttt atccgcctcc atccagtcta ttaattgttg ccgggaagct 1260
agagtaagta gttcgccagt taatagtttg cgcaacgttg ttgccattgc tacaggcatc 1320
gtggtgtcac gctcgtcgtt tggtatggct tcattcagct ccggttccca acgatcaagg 1380
cgagttacat gatcccccat gttgtgcaaa aaagcggtta gctccttcgg tcctccgatc 1440
gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg ttatggcagc actgcataat 1500
tctcttactg tcatgccatc cgtaagatgc ttttctgtga ctggtgagta ctcaaccaag 1560
tcattctgag aatagtgtat gcggcgaccg agttgctctt gcccggcgtc aatacgggat 1620
aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg 1680
cgaaaactct caaggatctt accgctgttg agatccagtt cgatgtaacc cactcgtgca 1740
cccaactgat cttcagcatc ttttactttc accagcgttt ctgggtgagc aaaaacagga 1800
aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat actcatactc 1860
ttcctttttc aatattattg aagcatttat cagggttatt gtctcatgag cggatacata 1920
tttgaatgta tttagaaaaa taaacaaata ggggttccgc gcacatttcc ccgaaaagtg 1980
ccacctgacg tctaagaaac cattattatc atgacattaa cctataaaaa taggcgtatc 2040
acgaggccct ttcgtcttca agaattagct tttcaattca attcatcatt ttttttttat 2100
tctttttttt gatttcggtt tctttgaaat ttttttgatt cggtaatctc cgaacagaag 2160
gaagaacgaa ggaaggagca cagacttaga ttggtatata tacgcatatg tagtgttgaa 2220
gaaacatgaa attgcccagt attcttaacc caactgcaca gaacaaaaac atgcaggaaa 2280
cgaagataaa tcatgtcgaa agctacatat aaggaacgtg ctgctactca tcctagtcct 2340
gttgctgcca agctatttaa tatcatgcac gaaaagcaaa caaacttgtg tgcttcattg 2400
gatgttcgta ccaccaagga attactggag ttagttgaag cattaggtcc caaaatttgt 2460
ttactaaaaa cacatgtgga tatcttgact gatttttcca tggagggcac agttaagccg 2520
ctaaaggcat tatccgccaa gtacaatttt ttactcttcg aagacagaaa atttgctgac 2580
attggtaata cagtcaaatt gcagtactct gcgggtgtat acagaatagc agaatgggca 2640
gacattacga atgcacacgg tgtggtgggc ccaggtattg ttagcggttt gaagcaggcg 2700
gcagaagaag taacaaagga acctagaggc cttttgatgt tagcagaatt gtcatgcaag 2760
ggctccctat ctactggaga atatactaag ggtactgttg acattgcgaa gagcgacaaa 2820
gattttgtta tcggctttat tgctcaaaga gacatgggtg gaagagatga aggttacgat 2880
tggttgatta tgacacccgg tgtgggttta gatgacaagg gagacgcatt gggtcaacag 2940
tatagaaccg tggatgatgt ggtctctaca ggatctgaca ttattattgt tggaagagga 3000
ctatttgcaa agggaaggga tgctaaggta gagggtgaac gttacagaaa agcaggctgg 3060
gaagcatatt tgagaagatg cggccagcaa aactaaaaaa ctgtattata agtaaatgca 3120
tgtatactaa actcacaaat tagagcttca atttaattat atcagttatt acccaattct 3180
catgtttgac agcttatcat cgatcgtcca actgcatgga gatgagtcgt ggcaagaata 3240
ccaagagttc ctcggtttgc cagttattaa aagactcgta tttccaaaag actgcaacat 3300
actactcagt gcagcttcac agaaacctca ttcgtttatt cccttgtttg attcagaagc 3360
aggtgggaca ggtgaacttt tggattggaa ctcgatttct gactgggttg gaaggcaaga 3420
gagccccgag agcttacatt ttatgttagc tggtggactg acgccagaaa atgttggtga 3480
tgcgcttaga ttaaatggcg ttattggtgt tgatgtaagc ggaggtgtgg agacaaatgg 3540
tgtaaaagac tctaacaaaa tagcaaattt cgtcaaaaat gctaagaaat aggttattac 3600
tgagtagtat ttatttaagt attgtttgtg cacttgcctg caagcctttt gaaaagcaag 3660
cataaaagat ctaaacataa aatctgtaaa ataacaagat gtaaagataa tgctaaatca 3720
tttggctttt tgattgattg tacaggaaaa tatacatcgc agggggttga cttttaccat 3780
ttcaccgcaa tggaatcaaa cttgttgaag agaatgttca caggcgcata cgctacaatg 3840
acccgattct tgctagcctt ttctcggtct tgcaaacaac cgccggcagc ttagtatata 3900
aatacacatg tacatacctc tctccgtatc ctcgtaatca ttttcttgta tttatcgtct 3960
tttcgctgta aaaactttat cacacttatc tcaaatacac ttattaaccg cttttactat 4020
tatcttctac gctgacagta atatcaaaca gtgacacata ttaaacacag tggtttcttt 4080
gcataaacac catcagcctc aagtcgtcaa gtaaagattt cgtgttcatg cagatagata 4140
acaatctata tgttgataat tagcgttgcc tcatcaatgc gagatccgtt taaccggacc 4200
ctagtgcact taccccacgt tcggtccact gtgtgccgaa catgctcctt cactatttta 4260
acatgtggaa ttaattctca tgtttgacag cttatcatcg aactctaaga ggtgatactt 4320
atttactgta aaactgtgac gataaaaccg gaaggaagaa taagaaaact cgaactgatc 4380
tataatgcct attttctgta aagagtttaa gctatgaaag cctcggcatt ttggccgctc 4440
ctaggtagtg ctttttttcc aaggacaaaa cagtttcttt ttcttgagca ggttttatgt 4500
ttcggtaatc ataaacaata aataaattat ttcatttatg tttaaaaata aaaaataaaa 4560
aagtatttta aatttttaaa aaagttgatt ataagcatgt gaccttttgc aagcaattaa 4620
attttgcaat ttgtgatttt aggcaaaagt tacaatttct ggctcgtgta atatatgtat 4680
gctaaagtga acttttacaa agtcgatatg gacttagtca aaagaaattt tcttaaaaat 4740
atatagcact agccaattta gcacttcttt atgagatata ttatagactt tattaagcca 4800
gatttgtgta ttatatgtat ttacccggcg aatcatggac atacattctg aaataggtaa 4860
tattctctat ggtgagacag catagataac ctaggataca agttaaaagc tagtactgtt 4920
ttgcagtaat ttttttcttt tttataagaa tgttaccacc taaataagtt ataaagtcaa 4980
tagttaagtt tgatatttga ttgtaaaata ccgtaatata tttgcatgat caaaaggctc 5040
aatgttgact agccagcatg tcaaccacta tattgatcac cgatatatgg acttccacac 5100
caactagtaa tatgacaata aattcaagat attcttcatg agaatggccc agcgatatat 5160
gcggtgtgaa ataccgcaca gatgcgtaag gagaaaatac cgcatcaggc gccattcgcc 5220
attcaggctg cgcaactgtt gggaagggcg atcggtgcgg gcctcttcgc tattacgcca 5280
gctggcgaaa gggggatgtg ctgcaaggcg attaagttgg gtaacgccag ggttttccca 5340
gtcacgacgt tgtaaaacga cggccagtga attcgagctc tgtcaacgca gattaagcac 5400
accctaaaac ttgaataatg caaattccat agcttagttt aatcaaggcg ccattattcc 5460
tcagttgaaa agtatatcta atggttagga ttagaaatat gttcattgct cattgttatg 5520
tgtatcatat cgtacaaaaa ttatataaag aaataataat gaaaaagagt aaaacaaaga 5580
caaatagaca aaaatagagg atagaaaaag aaaaacaaca gatacataaa taagtcttat 5640
gacaaaaaaa cgattgtata aaaattaaag tgcatgccat ttttacctcc ttttgcttaa 5700
cttaaacttt tcattgcaat catttacaac ttagtttcag acttgaagta agcgtcagtg 5760
ataccagaga tcaaagcagc caaaccgata gcacctgggt ctggcaaacc accttcagat 5820
tcgaattgct tgaattcttc ttcagcaacg taagaagctc taccgaactt agcttccaac 5880
tttctagtag cttcagcacc gtcgtgagca gccttgttag ccaacttcaa gtccttagac 5940
ttagcgaatt ccttaacgaa tggttccaaa gcgtcgatca aagttctgtc accagttcta 6000
gctctagtgt acttgaacaa agattgcaaa gcagcttgca aagaaccaga gatagtttcc 6060
aaagtcaaag tgtaagcacc ttcagacaat tccttttcct tcaaagactt agccaaagca 6120
gagatgaaga tagagtacaa accaccagaa gtaccaccca tagcagtttc aacgatgtca 6180
gtgatttgaa ccaaagactt aacaccgtcc ttcaagtcca acttaccttc agccaaagcc 6240
ttcaagatag cgttagaacc gttagccaaa gtttcaccac agtcaccgtc accagcaaca 6300
gtgtcgtaca aagtgatctt tggttcctta gagataacct tcttaacacc agattccaac 6360
aagtcagcgt acaacttagc gtcaacagaa accttagaag aagagtcacc ttcgtcgatt 6420
tctggagcag caacgatgaa gttgtcaact ctaccagacc agtcagagat gttagagttc 6480
caacctggag cagaagtctt gtggtccaag aacttcaaga tgtccttgtc accagtctta 6540
gtagcgttca acaaagtgat agagaaacct ggaccgtcca aagaagtagt gaaagtacca 6600
gtgaagattc taactggctt gatagagtac ttagaagcca attggtcaac aacgatgttt 6660
tggatagcgt acaattccaa aacagaagta ccacccaagt tgttgatcaa caaaacaact 6720
tcgtcgttct tgtcgaattg aacgtagttt ctgtccttgt cagtagtaga caacaagtat 6780
tccaacaatt cagcaaccaa ttcgtcaaca gttgggattg gagaagactt cttgatacct 6840
ggttcgttgt ggatacccat accgatttcg aattcgtcgt gcttcaaaac ttcgtaaccg 6900
tgttcgtcgt cagagtcgtc ttcttcttgc ttgttagctc tagctgggat agtaacgtgg 6960
tccaaagaag caccgatagt aaccaagtta gcaacaacct tttcaccgaa agtaaccaat 7020
tggtgcaatt ccaagttgtc cttttgcaag taagccttag cacccaagat cttgtgaacc 7080
aaagaagtac cagccaaacc tcttctacca accaaaccgt tcttagcctt accaacagaa 7140
acgtcgtctt gaacgatcaa caattcagcg ttcaaacctt cagccttagc cttttcagca 7200
gccaaaccga agtgcaagat gtcaccagtg tagttcttaa cgatgatcaa agtacccttc 7260
ttagatggct tagccttgat agcagagaag atttgcttag tagatggaga agcgaagatg 7320
aaaccagcaa cagcagcgtc caacaaaccg tccttagtaa cgaaaccagc gtgcaatggt 7380
tcgtgaccag aaccaccacc agagatcaaa gtgatcttgt cttcttggtt ttcagcagag 7440
ataacaactc tttcagattc gatcaatcta acgtgtgggt tagattgaca caaaccagcc 7500
aagtgagaca aaaccaagtc cttcttgtag tcccagtgct tagaagacat tgtttttata 7560
tttgttgtaa aaagtagata attacttcct tgatgatctg taaaaaaaga gaaaaagaaa 7620
gcatctaaga acttgaaaaa actacgaatt agaaaagacc aaatatgtat ttcttgcatt 7680
gaccaattta tgcaagttta tatatatgta aatgtaagtt tcacgaggtt ctactaaact 7740
aaaccacccc cttggttaga agaaaagagt gtgtgagaac aggctgttgt tgtcacacga 7800
ttcggacaat tctgtttgaa agagagagag taacagtacg atcgaacgaa ctttgctctg 7860
gagatcacag tgggcatcat agcatgtggt actaaaccct ttcccgccat tccagaacct 7920
tcgattgctt gttacaaaac ctgtgagccg tcgctaggac cttgttgtgt gacgaaattg 7980
gaagctgcaa tcaataggaa gacaggaagt cgagcgtgtc tgggtttttt cagttttgtt 8040
ctttttgcaa acaaatcacg agcgacggta atttctttct cgataagagg ccacgtgctt 8100
tatgagggta acatcaattc aagaaggagg gaaacacttc ctttttctgg ccctgataat 8160
agtatgaggg tgaagccaaa ataaaggatt cgcgcccaaa tcggcatctt taaatgcagg 8220
tatgcgatag ttcctcactc tttccttact cacgagtaat tcttgcaaat gcctattgtg 8280
cagatgttat aatatctgtg cgtcttgagt tgaagtcagg aatctaaaat aacatgtagg 8340
tggcggaggg gagatataca atagaacaga taccagacaa gacataatgg gctaaacaag 8400
actacaccaa ttacactgcc tcattgatgg tggtacataa cgaactaata ctgtagccct 8460
agacttgata gccatcatca tatcgaagtt tcactaccct ttttccattt gccatctatt 8520
gaagtaataa taggcgcatg caacttcttt tctttttttt tcttttctct ctcccccgtt 8580
gttgtctcac catatccgca atgacaaaaa aatgatggaa gacactaaag gaaaaaatta 8640
acgacaaaga cagcaccaac agatgtcgtt gttccagagc tgatgagggg tatctcgaag 8700
cacacgaaac tttttccttc cttcattcac gcacactact ctctaatgag caacggtata 8760
cggccttcct tccagttact tgaatttgaa ataaaaaaaa gtttgctgtc ttgctatcaa 8820
gtataaatag acctgcaatt attaatcttt tgtttcctcg tcattgttct cgttcccttt 8880
cttccttgtt tctttttctg cacaatattt caagctatac caagcataca atcaactatc 8940
tcatatacaa tggctgctga aagagttttc atctctccag ctaagtacgt tcaaggtaag 9000
aacgttatca ctaagatcgc taactacttg gaaggtatcg gtaacaagac tgttgttatc 9060
gctgacgaaa tcgtttggaa gatcgctggt cacactatcg ttaacgaatt gaagaagggt 9120
aacatcgctg ctgaagaagt tgttttctct ggtgaagctt ctagaaacga agttgaaaga 9180
atcgctaaca tcgctagaaa ggctgaagct gctatcgtta tcggtgttgg tggtggtaag 9240
actttggaca ctgctaaggc tgttgctgac gaattggacg cttacatcgt tatcgttcca 9300
actgctgctt ctactgacgc tccaacttct gctttgtctg ttatctactc tgacgacggt 9360
gttttcgaat cttacagatt ctacaagaag aacccagact tggttttggt tgacactaag 9420
atcatcgcta acgctccacc aagattgttg gcttctggta tcgctgacgc tttggctact 9480
tgggttgaag ctagatctgt tatcaagtct ggtggtaaga ctatggctgg tggtatccca 9540
actatcgctg ctgaagctat cgctgaaaag tgtgaacaaa ctttgttcaa gtacggtaag 9600
ttggcttacg aatctgttaa ggctaaggtt gttactccag ctttggaagc tgttgttgaa 9660
gctaacactt tgttgtctgg tttgggtttc gaatctggtg gtttggctgc tgctcacgct 9720
atccacaacg gtttcactgc tttggaaggt gaaatccacc acttgactca cggtgaaaag 9780
gttgctttcg gtactttggt tcaattggct ttggaagaac actctcaaca agaaatcgaa 9840
agatacatcg aattgtactt gtctttggac ttgccagtta ctttggaaga catcaagttg 9900
aaggacgctt ctagagaaga catcttgaag gttgctaagg ctgctactgc tgaaggtgaa 9960
actatccaca acgctttcaa cgttactgct gacgacgttg ctgacgctat cttcgctgct 10020
gaccaatacg ctaaggctta caaggaaaag cacagaaagt aaatttattg gagaaagata 10080
acatatcata ctttccccca cttttttcga ggctcttcta tatcatattc ataaattagc 10140
attatgtcat ttctcataac tactttatca cgttagaaat tacttattat tattaaatta 10200
atacaaaatt tagtaaccaa ataaatataa ataaatatgt atatttaaat tttaaaaaaa 10260
aaatcctata gagcaaaagg attttccatt ataatattag ctgtacacct cttccgcatt 10320
ttttgagggt ggttacaaca ccactcattc agaggctgtc ggcacagttg cttctagcat 10380
ctggcgtccg tattccgata cgccttgtct ccaactcaat acagtcggta gctgaacgag 10440
aaaactcttg ataagctggg gaatggttct tggaagtagt ataggcgcca gctaggatct 10500
ttctcttccc agccccgttc tgtcaggtag aactcgtcca attgagacgg gatcctctag 10560
agtcgacctg caggcatgca agcttggcgt aatcatggtc atagctgttt cctgtgtgaa 10620
attgttatcc gctcacaatt ccacacaaca tacgagccgg aagcataaag tgtaaagcct 10680
ggggtgccta atgagtgagc taactcacat taattgcgtt gcgctcactg cccgctttcc 10740
agtcgggaaa cctgtcgtgc cag 10763

Claims (5)

1. A method for producing acrylic acid by saccharomyces cerevisiae fermentation is characterized in that glycerol is used as a raw material, saccharomyces cerevisiae is used as host bacteria, and the method is completed by catalysis of a plurality of enzymes in the host bacteria;
the host bacterium is constructed and obtained according to the following method:
1) optimizing codons of genes GlyDH and DAK according to the codon preference of saccharomyces cerevisiae, and then constructing the two genes in a saccharomyces cerevisiae expression vector YCplac33 by using a bidirectional promoter to obtain a vector 1, wherein the expression vector YCplac33 has ampicillin resistance of escherichia coli and a selection marker URA gene of the saccharomyces cerevisiae;
2) optimizing the ceaS2 gene and the NOX gene according to the codon preference of the saccharomyces cerevisiae, and then simultaneously constructing the two genes in a saccharomyces cerevisiae expression vector YCplac33 to obtain a vector 2, wherein the expression vector YCplac33 has an ampicillin resistance gene of escherichia coli and a screening marker Leu gene of the saccharomyces cerevisiae;
3) knocking out a PDC1 gene, a DLD1 gene, a GPD1 gene and a GPD2 gene in the Saccharomyces cerevisiae BY4741 to obtain a modified Saccharomyces cerevisiae BY 4741-delta PDC 1-delta DLD 1-delta GPD 1-delta GPD2 strain;
4) and (3) simultaneously transferring the vectors 1 and 2 into the modified saccharomyces cerevisiae BY 4741-delta PDC 1-delta DLD 1-delta GPD 1-delta GPD2 described in the step 3), screening positive clones according to screening markers ura and Leu genes of the saccharomyces cerevisiae, then extracting a saccharomyces cerevisiae genome, and further carrying out PCR verification.
2. The method for producing acrylic acid by fermentation of Saccharomyces cerevisiae according to claim 1, wherein the GlyDH and DAK genes in step 1) are synthesized according to the amino acid sequences of the corresponding genes in Geobacillus stearothermophilus and Pichia pastoris, respectively.
3. The method for producing acrylic acid by fermentation of Saccharomyces cerevisiae according to claim 1, wherein in step 2) ceaS2 and NOX genes are synthesized based on the amino acid sequences of the corresponding genes of Streptomyces clavuligerus and Geobacillus stearothermophilus, respectively.
4. The method for producing acrylic acid by saccharomyces cerevisiae fermentation according to claim 1, wherein the synthetic method comprises the following steps:
1) optimizing codons of genes GlyDH and DAK according to the codon preference of saccharomyces cerevisiae, and then constructing the two genes in a saccharomyces cerevisiae expression vector YCplac33 by using a bidirectional promoter to obtain a vector 1, wherein the expression vector YCplac33 has ampicillin resistance of escherichia coli and a selection marker URA gene of the saccharomyces cerevisiae;
2) optimizing the ceaS2 gene and the NOX gene according to the codon preference of the saccharomyces cerevisiae, and then simultaneously constructing the two genes in a saccharomyces cerevisiae expression vector YCplac33 to obtain a vector 2, wherein the expression vector YCplac33 has an ampicillin resistance gene of escherichia coli and a screening marker Leu gene of the saccharomyces cerevisiae;
3) knocking out a PDC1 gene, a DLD1 gene, a GPD1 gene and a GPD2 gene in the Saccharomyces cerevisiae BY4741 to obtain a modified Saccharomyces cerevisiae BY 4741-delta PDC 1-delta DLD 1-delta GPD 1-delta GPD2 strain;
4) simultaneously transferring the vectors 1 and 2 into the modified saccharomyces cerevisiae BY 4741-delta PDC 1-delta DLD 1-delta GPD 1-delta GPD2 described in 3), screening positive clones according to screening markers ura and Leu genes of the saccharomyces cerevisiae, then extracting a saccharomyces cerevisiae genome, and further carrying out PCR verification;
5) culturing saccharomyces cerevisiae host bacteria, and performing induced expression;
6) adding a glycerol substrate into the expressed bacterial liquid, and continuing to react for 20-60 h;
7) extracting, separating and purifying the acrylic acid in the reaction liquid.
5. The method for producing acrylic acid by saccharomyces cerevisiae fermentation according to claim 4, wherein the glycerol is added in the step 6) in an amount of: 10g/L-100g/L, the reaction temperature is as follows: 25-35 ℃.
CN201810051564.6A 2018-01-19 2018-01-19 Method for producing acrylic acid by fermentation of saccharomyces cerevisiae Active CN108004274B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810051564.6A CN108004274B (en) 2018-01-19 2018-01-19 Method for producing acrylic acid by fermentation of saccharomyces cerevisiae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810051564.6A CN108004274B (en) 2018-01-19 2018-01-19 Method for producing acrylic acid by fermentation of saccharomyces cerevisiae

Publications (2)

Publication Number Publication Date
CN108004274A CN108004274A (en) 2018-05-08
CN108004274B true CN108004274B (en) 2021-06-04

Family

ID=62050515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810051564.6A Active CN108004274B (en) 2018-01-19 2018-01-19 Method for producing acrylic acid by fermentation of saccharomyces cerevisiae

Country Status (1)

Country Link
CN (1) CN108004274B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728474A (en) * 2018-06-25 2018-11-02 嘉兴欣贝莱生物科技有限公司 A method of utilizing cyanobacteria acrylic acid synthesizing
CN109266565B (en) * 2018-09-14 2022-05-13 中国科学技术大学 Construction and application of heat-resistant yeast engineering strain for producing L-lactic acid
WO2023049789A2 (en) * 2021-09-24 2023-03-30 Nitto Denko Corporation Yeast cells with reduced propensity to degrade acrylic acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638676A (en) * 2009-08-24 2010-02-03 山东禹王实业有限公司 Manufacturing method of polyunsaturated fatty acid triglycercide
WO2011003893A1 (en) * 2009-07-10 2011-01-13 Dsm Ip Assets B.V. Fermentative production of ethanol from glucose, galactose and arabinose employing a recombinant yeast strain
CN107586795A (en) * 2017-10-10 2018-01-16 嘉兴欣贝莱生物科技有限公司 A kind of method of fermentation by saccharomyces cerevisiae production phloretin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011003893A1 (en) * 2009-07-10 2011-01-13 Dsm Ip Assets B.V. Fermentative production of ethanol from glucose, galactose and arabinose employing a recombinant yeast strain
CN101638676A (en) * 2009-08-24 2010-02-03 山东禹王实业有限公司 Manufacturing method of polyunsaturated fatty acid triglycercide
CN107586795A (en) * 2017-10-10 2018-01-16 嘉兴欣贝莱生物科技有限公司 A kind of method of fermentation by saccharomyces cerevisiae production phloretin

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Direct fermentation route for the production of acrylic acid;Hun Su Chu等;《Metabolic Engineering》;20151231;全文 *
酿酒酵母乙醇及3-羟基丙酸代谢的辅因子工程研究;索凡;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20180831;全文 *

Also Published As

Publication number Publication date
CN108004274A (en) 2018-05-08

Similar Documents

Publication Publication Date Title
CN108004274B (en) Method for producing acrylic acid by fermentation of saccharomyces cerevisiae
CN109735479A (en) A kind of recombined bacillus subtilis synthesizing 2&#39;-Fucosyl lactose and its construction method and application
US20050260625A1 (en) Process and system for crosslinking polynucleotide molecules
CN108998464B (en) pSP107 plasmid and application and construction method thereof
CN102010870B (en) High-expression streptolysin O (SLO) gene as well as secreting expression vector and application thereof
CN114480499A (en) Circular RNA molecule expression element and circular RNA molecule expression vector circEXPRO
CN113166772B (en) Recombinant coryneform bacterium having 1,3-PDO productivity and reduced 3-HP productivity and method for producing 1,3-PDO using the same
CN100510107C (en) Method for preparing internal standard of molecular weight, and internal standard of molecular weight prepared by using the method
CN113215155A (en) Primer designed for TCR with epitope point of FLYALALLL and application thereof
CN113388612A (en) Primer designed for TCR with epitope point of IYVLVMLVL and application thereof
CN113943782B (en) Method for evaluating concentration of 2-methyl isoborneol in water body
CN114195884B (en) Recombinant human collagen and preparation method thereof
CN107988202B (en) Method for knocking out saccharomyces cerevisiae chromosome
CN113088531B (en) Bovine-derived ingredient quantitative analysis standard plasmid, preparation and detection methods and application
CN113493800B (en) Method for improving secretion or surface display expression of heterologous protein in saccharomyces cerevisiae
CN110777146A (en) Construction method of PDGFB (platelet-derived growth factor receptor) promoter activity report plasmid
CN112342216B (en) CRISPR-Cas13d system for improving expression efficiency of CHO cells and recombinant CHO cells
CN113308466A (en) Primer designed for TCR with epitope point of TYGPVFMSL and application thereof
CN111378677A (en) DNA assembling method and application thereof
KR101562866B1 (en) Strain for manufacturing of 2,3-butanediol and method for producing 2,3-butanediol using the same
KR102176556B1 (en) Strain with increased squalene production and method for producing squalene using the same
CN116497052A (en) Construction method of yarrowia lipolytica genetically engineered bacteria for producing astaxanthin
JP2711326B2 (en) Yellowtail growth hormone structural gene DNA
CN109706149B (en) Improved 16S-seq method and application thereof
CN114574376A (en) Saccharomyces cerevisiae Delta-M3 for high-yield carotenoid production and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210928

Address after: 518110 A1501, building 1, Yinxing Zhijie phase II, No. 1301-76, sightseeing Road, Xinlan community, Guanlan street, Longhua District, Shenzhen, Guangdong

Patentee after: Shenzhen small molecule New Drug Innovation Center Co.,Ltd.

Address before: Room 101, 3 Floors, 2 Buildings, 3 Floors, Zhejiang Euro-American Biotechnology Industrial Park, 501 Changsheng South Road, Nanhu District, Jiaxing City, Zhejiang Province

Patentee before: JIAXING SYNBIOLAB BIOTECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method for producing acrylic acid by fermentation of Saccharomyces cerevisiae

Effective date of registration: 20230628

Granted publication date: 20210604

Pledgee: Shenzhen hi tech investment small loan Co.,Ltd.

Pledgor: Shenzhen small molecule New Drug Innovation Center Co.,Ltd.

Registration number: Y2023980046396

PE01 Entry into force of the registration of the contract for pledge of patent right