CN108003374B - 一种快速检测三聚氰胺的分子印迹光子晶体水凝胶膜 - Google Patents
一种快速检测三聚氰胺的分子印迹光子晶体水凝胶膜 Download PDFInfo
- Publication number
- CN108003374B CN108003374B CN201711245561.8A CN201711245561A CN108003374B CN 108003374 B CN108003374 B CN 108003374B CN 201711245561 A CN201711245561 A CN 201711245561A CN 108003374 B CN108003374 B CN 108003374B
- Authority
- CN
- China
- Prior art keywords
- photonic crystal
- melamine
- film
- molecular imprinting
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/26—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/16—Chemical modification with polymerisable compounds
- C08J7/18—Chemical modification with polymerisable compounds using wave energy or particle radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/042—Elimination of an organic solid phase
- C08J2201/0424—Elimination of an organic solid phase containing halogen, nitrogen, sulphur or phosphorus atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/044—Elimination of an inorganic solid phase
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2333/10—Homopolymers or copolymers of methacrylic acid esters
- C08J2333/12—Homopolymers or copolymers of methyl methacrylate
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
- G01N2021/3155—Measuring in two spectral ranges, e.g. UV and visible
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- General Chemical & Material Sciences (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
本发明涉及一种快速检测三聚氰胺的分子印迹光子晶体水凝胶膜,属于材料化学和分析检测领域。本发明利用光子晶体与分子印迹技术相结合,制备了具有三维有序排列大孔结构的对三聚氰胺分子特异性识别的分子印迹光子晶体凝胶膜。随着三聚氰胺的含量变化,布拉格衍射波长会随之红移,肉眼可分辨出颜色变化,根据该印迹光子晶体凝胶膜对目标分子的光谱响应变化,可实现对三聚氰胺的快速检测。该方法具有高灵敏度和选择性、低检出限的优点,以解决目前存在方法成本高,耗时长的缺点。
Description
技术领域
本发明涉及一种快速检测三聚氰胺的分子印迹光子晶体水凝胶膜,具体地说,本发明利用光子晶体与分子印迹技术相结合,制备能对三聚氰胺快速准确、特异性识别的分子印迹光子晶体水凝胶膜。本发明属于材料化学和分析检测领域。
背景技术
三聚氰胺(Melamine),IUPAC命名为2, 4, 6-三氨基-1, 3, 5-三嗪。简称三胺,又称密胺、氰尿酞胺、三聚酞胺、蛋白精,是一种重要的三嗪类含氮杂环有机化工材料,被广泛应用于塑料、木材加工、皮革制造 、医疗、电气等行业。三聚氰胺进入人体后会水解成三聚氰酸,三聚氰酸与三聚氰胺能形成不溶性的结晶复合物,从而导致膀胱炎、肾衰竭,严重甚至能导致尿石症及膀胱癌。由于三聚氰胺具有高达66.7 %的含氮量并且价格低廉,故常被不法商贩添加到牛奶、奶粉等食品中提高含氮量,以造成高蛋白含量的假象。
传统检测牛奶中蛋白含量的凯氏定氮法只能测定氮的总量,却并不能有效区分氮的来源和种类。现有的痕量三聚氰胺分析方法主要包括高效液相色谱(HPLC)、气相色谱-质谱联用检测法(GC-MS)、高效液相色谱-质谱法(HPLC-MS)、酶联免疫吸附法(ELISA),这些方法需要昂贵精密的仪器、专门训练的技术人员、需要复杂的样品处理、检测耗时长、成本较高,难以推广至消费者个人的使用及大批量现场快速筛选检测。因此如果能建立一种对三聚氰胺更为简便快捷且灵敏度符合日常分析要求的方法是具有非常良好的前景及实际应用意义。
分子印迹技术(molecularly imprinted technique, MIT),是指以某一特定的目标分子(模板分子、印迹分子)为模板,制备对该分子有特异选择性识别能力的聚合物的技术。基本制备过程如下:首先,模板分子与功能单体通过共价或非共价键作用相互结合,成为预组装过程,形成主客体配合物;然后通过功能单体与交联剂共聚,将主客体配合物固定;最后,除去模板分子,得到分子印迹聚合物。模板分子与功能单体接触时会形成多重作用位点,通过聚合过程就会将这些作用位点记忆下来,当模板分子除去后,聚合物中就形成了与模板分子形状和功能基团空间位置相匹配的具有多重作用点的印迹空穴,这些印迹空穴对模板分子具有特异识别性。
光子晶体是指介质材料在空间上按照一定的周期性顺序排列形成的有序结构材料,是介电常数呈周期性排布的材料,其对光的衍射符合布拉格公式:λmax=2d(n-sin2θ)1/2,其中,λmax为最大吸收波长,n为平均折射率,d为晶面间距,θ为入射角。以蛋白石光子晶体为模板,将新的材料填充在光子晶体缝隙中固化,再去除蛋白石模板,即可得到反蛋白石结构的光子晶体。由于光子晶体的孔结构对可见光的衍射服从布拉格衍定律,因此我们可以从表面观察到由其衍射平面的孔间距所决定的单一结构色,因此光子晶体可以提供一种快速简便、成本低、应用广泛的裸眼检测技术。
分子印迹技术具有很高的选择性,将分子印迹技术与光子晶体结合,制备出具有光子晶体有序孔结构的分子印迹膜,所制备的分子印迹光子晶体材料对目标物分子具有特异性识别响应。分子印迹光子晶体由相互贯通的有序大孔凝胶结构组成,凝胶的大孔壁结构中含有大量的具有分子识别特性的微孔结构。此外,三维有序的大孔具有较强的分子吸附能力,可富集目标分子并提高局部浓度,从而降低检出限。微孔对分子识别的过程可直接通过有序大孔的光子晶体衍射光信号表达出来,如果衍射光的位置移动较大,就会伴随着结构色的变化,可以方便地通过裸眼观察到,这是该技术的一个很大的优点。
针对现有检测三聚氰胺方法存在的不足,本发明将分子印迹技术和光子晶体结合起来,发明了一种裸眼观察快速定性检测三聚氰胺的分子印迹光子晶体水凝胶膜(molecularly imprinted photonic hydrogels,MIPH)。在本技术方案中,在入射角一定的情况下,MIPH的衍射峰位置与其内部孔洞的大小有关,孔洞大小不一样,出现不同的特征衍射峰,这个衍射峰可以作为检测三聚氰胺的指标。MIPH的孔洞具有与三聚氰胺相结合的特异性基团,当与三聚氰胺结合后,造成孔洞平均折射率增大,因此衍射峰发生红移,红移量与三聚氰胺浓度有关。随溶液浓度增大,最大吸收峰逐渐红移,同时MIPH的颜色有裸眼可见明显变化(颜色由绿变红),可快速定性检测,另外-通过测定MIPH的衍射峰波长变化,代入红移量-三聚氰胺浓度的标准变化曲线,即可得到待测三聚氰胺溶液的浓度。
发明内容
本发明的目的是提供一种具有高灵敏度和选择性、低检出限的三聚氰胺检测方法和工具,解决目前存在方法成本高,耗时长的缺点。
本发明的目的主要通过下述技术手段实现:
本发明的检测三聚氰胺光子晶体分子印迹水凝胶膜,合成该晶体具体步骤如下:
1)将1×8×76 mm的载体基质用去离子水超声清洗后,在piranha溶液(98 %浓硫酸与30 %双氧水的混合溶液,体积比7:3)中浸泡24小时后,用去离子水和乙醇清洗干净,用氮气吹干,备用。
2)将粒径为200~400 nm的单分散二氧化硅(SiO2)微球均匀分散到无水乙醇中,形成胶体分散体系, SiO2质量分数1.0~4.0 %。将上述制备的亲水化基质以一定角度斜插入二氧化硅溶液中,采用垂直自组装的方式,在25~35 ℃恒温密闭条件下静置至乙醇挥发完毕,制备得到光子晶体模片。
3)将模板分子、功能单体、交联剂、引发剂溶于溶剂中,充分混合后得到预聚合溶液。所述模板分子为三聚氰胺(0.05~0.02 mmol)、功能单体为α-甲基丙烯酸(8~18 mmol)、交联剂为乙二醇二甲基丙烯酸酯(0.20~0.80 mmol)、引发剂为偶氮二异丁氰(0.10~0.30mmol)、溶剂为甲醇-水混合溶液(体积比3:1~1:2) 2.0 mL。
4)将PMMA膜放置于光子晶体模片上,利用毛细管作用,将预聚合溶液采用后填充技术均匀铺满膜片与光子晶体的空隙。然后在365 nm紫外灯照射下紫外引发聚合2~5小时。
5)将上述聚合得到的光子晶体膜在浓度1~3 %的氢氟酸中浸泡6~12小时,去除二氧化硅颗粒,得到反蛋白石结构的分子印迹光子晶体水凝胶印迹膜(MIPH)。采用甲醇-乙酸(体积比3:1~1:2)作为洗脱剂,将MIPH置入洗脱溶剂中摇床孵育6~12小时,洗脱去除模板分子三聚氰胺,制备得到的分子印迹光子晶体水凝胶膜在去离子水中保存备用。
本发明合成的分子印迹光子晶体水凝胶膜对三聚氰胺的测定的应用如下:
将制备的MIPH置入10 pg/mL-1 μg/mL的三聚氰胺标准溶液中孵育。待吸附饱和后取出,利用紫外-可见分光光度仪测量不同浓度下MIPH的衍射峰的变化。
本发明取得了如下有益成果:
1.本发明通过有序结构的二氧化硅胶体颗粒在玻璃片上自组装形成光子晶体,形成三维有序的孔洞结构,可以促进分子在孔洞中的扩散传输。
2.以高度有序的光子晶体为模板,引入分子印迹技术,制备具有有序三维结构的光子晶体分子印迹膜,提高了对三聚氰胺的响应性、选择性以及灵敏性,实现对痕量三聚氰胺的快速检测。此外,由于MIPH有明显颜色变化,可由裸眼检测,进一步降低了检测成本和操作要求。
3.发明的MIPH的稳定性高,具有良好的重复利用性,检测过程便捷,制备成本低廉,可作为一种用于奶制品中添加物三聚氰胺快速检测的可靠工具。
附图说明
图1为浓度梯度三聚氰胺溶液加入MIPH后得到的红移量-三聚氰胺浓度变化曲线。
图2为MIPH加入100 ng/mL三聚氰胺标准溶液前、后的颜色变化。
具体实施方式
实施例1
本发明的快速检测三聚氰胺光子晶体分子印迹水凝胶膜的合成:
将1×8×76 mm的玻璃片去离子水超声清洗后,在piranha溶液中浸泡24小时,去离子水洗净后,乙醇清洗,氮气吹干,备用。
将粒径为260 nm的单分散SiO2微球均匀分散到无水乙醇中,形成胶体分散体系,SiO2质量分数为2.0 %。把上述制备的亲水化处理的基片以一定角度插入上述SiO2溶液中,采用垂直自组装的方式,在25~35 ℃恒温密闭条件下静置至乙醇挥发完毕,制备得到光子晶体模片。
将三聚氰胺0.10 mmol、α-甲基丙烯酸14 mmol、乙二醇二甲基丙烯酸酯0.50mmol、偶氮二异丁氰0.22 mmol溶于2.0 mL甲醇-水(3:2)溶液中,充分混合,通氮除氧,得到预聚液。
将PMMA膜放置在光子晶体模片上,利用毛细管作用,将预聚液填充到PMMA膜与光子晶体的空隙之间。365 nm紫外灯照射下聚合3h。
在浓度为1 %的氢氟酸中浸泡12小时,除去二氧化硅颗粒,得到光子晶体分子印迹水凝胶膜。在甲醇-乙酸(3:2)溶液中洗脱12小时,除去模板分子三聚氰胺,得到的三聚氰胺分子印迹光子晶体水凝胶膜在去离子水中保存备用。
实施例2
本发明的快速检测三聚氰胺光子晶体分子印迹水凝胶膜的合成:
将1×8×76 mm玻璃片去离子水超声清洗后,在piranha溶液中浸泡24小时,去离子水洗净后,乙醇清洗,氮气吹干,备用。
将粒径为280 nm的单分散SiO2微球均匀分散到无水乙醇中,形成胶体分散体系,SiO2质量分数为3.0 %。把上述制备的亲水化处理的基片以一定角度插入上述SiO2溶液中,采用垂直自组装的方式,在25~35 ℃恒温密闭条件下静置至乙醇挥发完毕,制备得到光子晶体模片。
将三聚氰胺0.10 mmol、α-甲基丙烯酸12 mmol、乙二醇二甲基丙烯酸酯0.40mmol、偶氮二异丁氰0.18 mmol溶于2.0 mL甲醇-水(3:2)溶液中,充分混合,通氮除氧,得到预聚液。
将PMMA膜放置在光子晶体模片上,利用毛细管作用,将预聚液填充到PMMA膜与光子晶体的空隙之间。365 nm紫外灯照射下聚合3小时。
在浓度为1 %的氢氟酸中浸泡12小时,除去二氧化硅颗粒,得到光子晶体分子印迹水凝胶膜。在甲醇-乙酸(3:2)溶液中洗脱12小时,除去模板分子三聚氰胺,得到的三聚氰胺分子印迹光子晶体水凝胶膜在去离子水中保存备用。
实施例3
本发明的快速检测三聚氰胺光子晶体分子印迹水凝胶膜的合成:
将1×8×76 mm的玻璃片去离子水超声清洗后,在piranha溶液中浸泡24小时,去离子水洗净后,乙醇清洗,氮气吹干,备用。
将粒径为320 nm的单分散SiO2微球均匀分散到无水乙醇中,形成胶体分散体系,SiO2质量分数为4.0 %。把上述制备的亲水化处理的基片以一定角度插入上述SiO2溶液中,采用垂直自组装的方式,在25~35 ℃恒温密闭条件下静置至乙醇挥发完毕,制备得到光子晶体模片。
将三聚氰胺0.10 mmol、α-甲基丙烯酸10 mmol、乙二醇二甲基丙烯酸酯0.30mmol、偶氮二异丁氰0.15 mmol溶于2.0 mL甲醇-水(3:2)溶液中,充分混合,通氮除氧,得到预聚液。
将PMMA膜放置在光子晶体模片上,利用毛细管作用,将预聚液填充到PMMA膜与光子晶体的空隙之间。365 nm紫外灯照射下聚合3小时。
在浓度为1 %的氢氟酸中浸泡12小时,除去二氧化硅颗粒,得到光子晶体分子印迹水凝胶膜。在甲醇-乙酸(3:2)溶液中洗脱12小时,除去模板分子三聚氰胺,得到的三聚氰胺分子印迹光子晶体水凝胶膜在去离子水中保存备用。
实施例1中合成快速检测三聚氰胺分子印迹光子晶体水凝胶膜,其具体应用如下:
将MIPH分别放入浓度分别为10 pg/mL、100 pg/mL、1 ng/mL、10 ng/mL、100 ng/mL、1 μg/mL的三聚氰胺标准溶液中,待吸附饱和后,取出MIPH,测定其在紫外-可见吸收光谱,得到红移量-三聚氰胺浓度变化曲线如图1所示。
将上述方法合成的MIPH加入到待测样品中,通过测定MIPH的衍射峰波长变化,代入第一步得到的红移量-三聚氰胺浓度的标准变化曲线,即可得到待测三聚氰胺溶液的浓度。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (2)
1.一种三聚氰胺检测用分子印迹光子晶体水凝胶膜的制备方法,其特征在于:
1)将1×8×76 mm的载体基质用去离子水超声清洗后,在98 %浓硫酸与30 %双氧水以体积比为7:3的混合piranha溶液中浸泡24小时后,用去离子水和乙醇清洗干净,用氮气吹干;
2)将粒径为260 nm的单分散二氧化硅(SiO2)微球均匀分散到无水乙醇中,形成胶体分散体系, SiO2质量分数1.0~4.0 %,将上述制备的亲水化基质以一定角度斜插入二氧化硅溶液中,采用垂直自组装的方式,在25~35 ℃恒温密闭条件下静置至乙醇挥发完毕,制备得到光子晶体模片;
3)将模板分子、功能单体、交联剂、引发剂溶于溶剂中,充分混合后得到预聚合溶液,所述模板分子为三聚氰胺0.1mmol、功能单体为α-甲基丙烯酸14 mmol、交联剂为乙二醇二甲基丙烯酸酯0.5mmol、引发剂为偶氮二异丁腈0.22mmol、溶剂为体积比3:2的甲醇-水混合溶液2.0 mL;
4)将PMMA膜放置于光子晶体模片上,利用毛细管作用,将预聚合溶液采用后填充技术均匀铺满膜片与光子晶体的空隙,然后在365 nm紫外灯照射下紫外引发聚合3小时;
5)将上述聚合得到的光子晶体膜在浓度1~3 %的氢氟酸中浸泡6-12小时,去除二氧化硅颗粒,得到反蛋白石结构的分子印迹光子晶体水凝胶印迹膜(MIPH),采用体积比为3:2的甲醇-乙酸作为洗脱剂,将MIPH置入洗脱溶剂中摇床孵育6~12小时,洗脱去除模板分子三聚氰胺,制备得到的分子印迹光子晶体水凝胶膜在去离子水中保存备用。
2.根据权利要求1所述三聚氰胺检测用分子印迹光子晶体水凝胶膜的制备方法,其特征在于:单分散二氧化硅微球浓度为2.0 %。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711245561.8A CN108003374B (zh) | 2017-12-01 | 2017-12-01 | 一种快速检测三聚氰胺的分子印迹光子晶体水凝胶膜 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711245561.8A CN108003374B (zh) | 2017-12-01 | 2017-12-01 | 一种快速检测三聚氰胺的分子印迹光子晶体水凝胶膜 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108003374A CN108003374A (zh) | 2018-05-08 |
CN108003374B true CN108003374B (zh) | 2021-03-30 |
Family
ID=62055687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711245561.8A Active CN108003374B (zh) | 2017-12-01 | 2017-12-01 | 一种快速检测三聚氰胺的分子印迹光子晶体水凝胶膜 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108003374B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111289500A (zh) * | 2018-12-06 | 2020-06-16 | 中国科学院沈阳应用生态研究所 | 一种光子晶体传感器及其利用传感器快速检测果蔬中农药残留的方法 |
CN109400920A (zh) * | 2018-12-26 | 2019-03-01 | 浙江海洋大学 | 一种快速检测二氧化硫的蛋白石光子晶体水凝胶制备方法和应用 |
CN111961159B (zh) * | 2020-07-31 | 2022-04-08 | 大连大学 | 一维光子晶体结构聚合物膜的制备方法 |
CN111978466B (zh) * | 2020-07-31 | 2022-08-16 | 大连大学 | 具有一维光子晶体结构的美沙酮分子印迹膜的制备方法 |
CN114609123A (zh) * | 2020-12-09 | 2022-06-10 | 中国科学院沈阳应用生态研究所 | 一种快速检测环境中磺酰脲类除草剂的传感器及其检测方法 |
CN113234188B (zh) * | 2021-04-02 | 2022-02-15 | 华南理工大学 | 一种分子印迹光子晶体及其制备方法和应用 |
CN115165819B (zh) * | 2022-05-27 | 2024-08-09 | 天津科技大学 | 一种快速定量分析芦丁的荧光分子印迹光子晶体凝胶条的制备方法及应用 |
CN117647493A (zh) * | 2023-11-27 | 2024-03-05 | 齐鲁工业大学(山东省科学院) | 一种快速检测食品中磺胺二甲基嘧啶的分子印迹光子晶体传感器及其制备方法与应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101559352A (zh) * | 2009-05-15 | 2009-10-21 | 华南农业大学 | 用于检测三聚氰胺的分子印迹聚合物及其制备方法 |
CN103499548A (zh) * | 2013-09-17 | 2014-01-08 | 南昌大学 | 基于光子晶体分子印迹水凝胶对香兰素的测定方法 |
CN105754036A (zh) * | 2016-03-25 | 2016-07-13 | 江南大学 | 一种检测三聚氰胺的磁性分子印迹光子晶体传感器的制备方法 |
-
2017
- 2017-12-01 CN CN201711245561.8A patent/CN108003374B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101559352A (zh) * | 2009-05-15 | 2009-10-21 | 华南农业大学 | 用于检测三聚氰胺的分子印迹聚合物及其制备方法 |
CN103499548A (zh) * | 2013-09-17 | 2014-01-08 | 南昌大学 | 基于光子晶体分子印迹水凝胶对香兰素的测定方法 |
CN105754036A (zh) * | 2016-03-25 | 2016-07-13 | 江南大学 | 一种检测三聚氰胺的磁性分子印迹光子晶体传感器的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108003374A (zh) | 2018-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108003374B (zh) | 一种快速检测三聚氰胺的分子印迹光子晶体水凝胶膜 | |
JP5970551B2 (ja) | インプリントフォトニックポリマーならびにその調製および使用方法 | |
Chen et al. | Influence of thermal annealing on the thermodynamic and mass-transfer kinetic properties of D-and L-phenylalanine anilide on imprinted polymeric stationary phases | |
Liu et al. | Response surface methodology for optimizing adsorption process parameters for methylene blue removal by a hydrogel composite | |
Liu et al. | Molecularly imprinted photonic polymer based on β-cyclodextrin for amino acid sensing | |
Zhou et al. | Molecularly imprinted photonic polymer as an optical sensor to detect chloramphenicol | |
CN103499548A (zh) | 基于光子晶体分子印迹水凝胶对香兰素的测定方法 | |
Zhao et al. | 3D cryogel composites as adsorbent for isolation of protein and small molecules | |
CN109900653B (zh) | 一种快速检测溶菌酶的分子印迹光子晶体膜及其制备方法和应用 | |
Yang et al. | Label-free colorimetric detection of tetracycline using analyte-responsive inverse-opal hydrogels based on molecular imprinting technology | |
Chen et al. | The visual detection of anesthetics in fish based on an inverse opal photonic crystal sensor | |
Wu et al. | Fabrication and evaluation of artemisinin-imprinted composite membranes by developing a surface functional monomer-directing prepolymerization system | |
Zhang et al. | Preparation of cinchonine molecularly imprinted photonic crystal film and its specific recognition and optical responsive properties | |
Kazemifard et al. | A review of the incorporation of QDs and imprinting technology in optical sensors–imprinting methods and sensing responses | |
CN113813933B (zh) | 一种精准控制分子印迹过程的聚合物纳米片的制备方法及其吸附应用 | |
Wei-Zhen et al. | Molecularly imprinted photonic hydrogels for visual detection of methylanthranilate in wine | |
Yasen et al. | A novel sandwich method to prepare robust SPME polymer coating on glass slide with controllable thickness for direct analysis through fluorescence and MS imaging | |
CN107266627B (zh) | 一种可识别赤藓红的核-壳型分子印迹聚合物及制备方法 | |
Lyu et al. | Preparation of a long‐alkyl‐chain‐based hybrid monolithic column with mixed‐mode interactions using a “one‐pot” process for pressurized capillary electrochromatography | |
Kryvshenko et al. | A highly permeable membrane for separation of quercetin obtained by nickel (II) ion-mediated molecular imprinting | |
US20090191644A1 (en) | Imprinted polymer for binding of organic molecules or metal ions | |
CN110426521B (zh) | 一种用于检测α-甲胎蛋白的反蛋白石结构凝胶膜的制备方法及应用 | |
JP5093633B2 (ja) | 複数物質応答性ゲルおよびその製造方法並びにその利用 | |
Luo et al. | Cross‐linked Polyvinyl Alcohol pH Sensitive Membrane Immobilized with Phenol Red for Optical pH Sensors | |
Yang et al. | Recent advances in photonic crystal-based chemical sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |