CN107994739B - 一种基于齿槽转矩的制动设计方法 - Google Patents

一种基于齿槽转矩的制动设计方法 Download PDF

Info

Publication number
CN107994739B
CN107994739B CN201711344429.2A CN201711344429A CN107994739B CN 107994739 B CN107994739 B CN 107994739B CN 201711344429 A CN201711344429 A CN 201711344429A CN 107994739 B CN107994739 B CN 107994739B
Authority
CN
China
Prior art keywords
cogging torque
motor
model
requirement
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711344429.2A
Other languages
English (en)
Other versions
CN107994739A (zh
Inventor
尹海韬
宗西霞
方海玉
惠旋
胡博
郭炳岐
李敏哲
胡昊
郗珂庆
张瑗
成俊康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Observation And Control Technology Research Institute Of Xi'an Space Dynamic
Original Assignee
Observation And Control Technology Research Institute Of Xi'an Space Dynamic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Observation And Control Technology Research Institute Of Xi'an Space Dynamic filed Critical Observation And Control Technology Research Institute Of Xi'an Space Dynamic
Priority to CN201711344429.2A priority Critical patent/CN107994739B/zh
Publication of CN107994739A publication Critical patent/CN107994739A/zh
Application granted granted Critical
Publication of CN107994739B publication Critical patent/CN107994739B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Abstract

本发明提出一种基于齿槽转矩的制动设计方法,首先应用Maxwell软件中RMxprt模型对电机进行磁路方案设计,确定电机定子的槽型参数;其次在软件模型中逐步增大电机定子槽口宽度Bs0,并在齿槽转矩满足要求时观察电机性能;若电机性能降低,则在软件模型中逐步增加磁钢厚度,使齿槽转矩满足要求的同时电机性能也满足要求;最后将RMxprt模型的设计结果导入Maxwell软件中2D模型中进行齿槽转矩和定子磁密校核,确认齿槽转矩是否达到要求已经定子磁密是否饱和,若没有达到要求,则重新调整槽口宽度和磁钢厚度,直至齿槽转矩和定子磁密达到要求为止。本发明解决了制动器可靠度低,机构冗余,重量大等缺点,在保证电机性能的同时提高了整体机构的可靠性,设计简便,易于实现。

Description

一种基于齿槽转矩的制动设计方法
技术领域
本发明涉及电机技术领域,具体为一种基于齿槽转矩的静态制动方案,用于大减速比机构中的制动措施。
背景技术
制动器位于执行机构末端,是使机械中的运动/传动机构停止或减速的机械零件。对于大减速比机构来说,制动器/制动机构是必不可少的部分。但制动器的使用造成机构整体的可靠度下降、结构复杂度增高、体积和重量加大等一系列问题。
齿槽式永磁电机中,在电枢绕组不通电的状态下,由永磁体产生的磁场同电枢铁心的齿槽作用在圆周方向产生的转矩称为齿槽转矩。它的产生来自于永磁体与电枢齿部之间的切向力,使永磁电机的转子有一种沿着某一特定方向与定子对齐的趋势,试图将转子定位在某些位置,由此趋势产生的一种振荡转矩。齿槽转矩与转子结构尺寸、定子齿槽结构、气隙大小、磁极形状以及磁场分布等因素有关。同时在实际工程应用中,装配工艺、轴承静态/动态磨擦力矩、机械加工同轴度、磁钢粘接分布等因素也对齿槽转矩有一定的影响。
齿槽转矩会造成电机工作时转速波动的加剧,尤其在转速较低时,这种影响尤为明显。但在高转速、大减速比的机构中若实现对齿槽转矩的合理设计和利用,则可代替传统的制动器,提高机构的可靠度。
发明内容
要解决的技术问题
由于传统作动机构中制动器的使用会造成机构整体的可靠度下降、结构复杂度增高、体积和重量加大等一系列问题。故本发明提出一种基于齿槽转矩的制动设计方法,通过合理设计齿槽转矩实现制动效果,代替传统的制动器,提高机构的可靠度。
技术方案
为了避免现有制动器的不足之处,本发明提出一种基于齿槽转矩的制动设计方法,用于以齿槽电机为原动力的大减速比机构中,实现齿槽转矩的精确设计。在不影响电机整体性能的情况下,以齿槽转矩代替传统的制动器,作为静态保持力矩应用,简化系统结构,减轻系统重量。
齿槽转矩是气隙磁组变化引起的磁阻转矩,以下式表示:
Figure BDA0001509023600000021
其中Tcog为齿槽转矩,Φm为磁通,R为气隙磁阻,θ转子角度。由上式可以看出,设计齿槽转矩主要有两类措施:1.调整磁通;2调整
Figure BDA0001509023600000022
基于上述原理,为实现上述发明目的采用如下技术解决方案:
所述一种基于齿槽转矩的制动设计方法,其特征在于:包括以下步骤:
步骤1:应用Maxwell软件中RMxprt模型对电机进行磁路方案设计,确定电机定子的槽型参数;
步骤2:在软件模型中逐步增大电机定子槽口宽度Bs0,并在齿槽转矩满足要求时观察电机性能;若电机性能降低,则在软件模型中逐步增加磁钢厚度,使齿槽转矩满足要求的同时电机性能也满足要求;
步骤3:将步骤2中RMxprt模型的设计结果导入Maxwell软件中2D模型中进行齿槽转矩和定子磁密校核,确认齿槽转矩是否达到要求已经定子磁密是否饱和,若没有达到要求,则返回步骤2重新调整槽口宽度和磁钢厚度,直至齿槽转矩和定子磁密达到要求为止。
有益效果
本发明提出的基于齿槽转矩的大减速比机构制动设计方案,解决了制动器可靠度低,机构冗余,重量大等缺点,在保证电机性能的同时提高了整体机构的可靠性,设计简便,易于实现。
经电机磁路2D、3D仿真及型号实际应用显示:该制动方案设计简便,易于实现,可靠度高,满足大减速比机构的制动要求。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1槽口——极间单元模型图;
图2某电机定子齿槽结构设计图;
图3某电机在有限元软件Maxwell下的磁路分析图;
图4某电机齿槽转矩分布图。
具体实施方式
下面详细描述本发明的实施例,所述实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
本发明的目的是通过合理设计齿槽转矩实现制动效果,实现齿槽转矩的精确设计,在不影响电机整体性能的情况下,以齿槽转矩代替传统的制动器,作为静态保持力矩应用,简化系统结构,减轻系统重量。
齿槽转矩是气隙磁组变化引起的磁阻转矩,以下式表示:
Figure BDA0001509023600000031
其中Tcog为齿槽转矩,Φm为磁通,R为气隙磁阻,θ转子角度。由上式可以看出,设计齿槽转矩主要有两类措施:1.调整磁通;2调整
Figure BDA0001509023600000032
基于该原理,本发明基于齿槽转矩的制动设计方法包括以下步骤:
步骤1:应用Maxwell软件中RMxprt模型对电机进行磁路方案设计,确定电机定子的槽型参数;
步骤2:在软件模型中逐步增大电机定子槽口宽度Bs0,Bs0越大齿槽转矩越大,在齿槽转矩满足要求时观察电机性能,此处目的是调整上述公式中的
Figure BDA0001509023600000033
若电机性能降低,则在软件模型中逐步增加磁钢厚度,使齿槽转矩满足要求的同时电机性能也满足要求,此处目的是调整上述公式中的磁通Φm
步骤3:将步骤2中RMxprt模型的设计结果导入Maxwell软件中2D模型中进行齿槽转矩和定子磁密校核,确认齿槽转矩是否达到要求已经定子磁密是否饱和,若没有达到要求,则返回步骤2重新调整槽口宽度和磁钢厚度,直至齿槽转矩和定子磁密达到要求为止。
本实施例中,应用Maxwell软件中RMxprt模型对该电机进行磁路方案设计,确定该电机为10极12槽结构,如图2所示。调整槽口宽度Bs0,将槽口宽度Bs0调整至0.8mm时齿槽转矩Tcog=35mNm,此时电机性能未下降。将RMxprt模型的设计结果导入Maxwell软件中2D模型中进行齿槽转矩和定子磁密的校核,确认该设计方案的齿槽转矩是否达到要求,定子磁密是否饱和。
之后对该电机进行实际验证,根据该电机的齿槽转矩测试曲线,可知该电机齿槽转矩实测值为35mNm。结果表明:该制动方案设计简便,易于实现,可靠度高,满足大减速比机构的制动要求,达到了简化设计提高可靠性的目的。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (1)

1.一种基于齿槽转矩的制动设计方法,其特征在于:包括以下步骤:
步骤1:应用Maxwell软件中RMxprt模型对电机进行磁路方案设计,确定电机定子的槽型参数;
步骤2:在RMxprt模型中逐步增大电机定子槽口宽度Bs0,并在齿槽转矩满足制动要求时观察电机性能;若电机性能降低,则在RMxprt模型中逐步增加磁钢厚度,使齿槽转矩满足制动要求的同时电机性能也满足要求;
步骤3:将步骤2中RMxprt模型的设计结果导入Maxwell软件中2D模型中进行齿槽转矩和定子磁密校核,确认齿槽转矩是否达到制动要求以及定子磁密是否饱和,若齿槽转矩没有达到制动要求或定子磁密没有饱和,则返回步骤2重新调整槽口宽度和磁钢厚度,直至齿槽转矩达到制动要求且定子磁密饱和为止。
CN201711344429.2A 2017-12-15 2017-12-15 一种基于齿槽转矩的制动设计方法 Active CN107994739B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711344429.2A CN107994739B (zh) 2017-12-15 2017-12-15 一种基于齿槽转矩的制动设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711344429.2A CN107994739B (zh) 2017-12-15 2017-12-15 一种基于齿槽转矩的制动设计方法

Publications (2)

Publication Number Publication Date
CN107994739A CN107994739A (zh) 2018-05-04
CN107994739B true CN107994739B (zh) 2020-03-31

Family

ID=62038700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711344429.2A Active CN107994739B (zh) 2017-12-15 2017-12-15 一种基于齿槽转矩的制动设计方法

Country Status (1)

Country Link
CN (1) CN107994739B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768402B (zh) * 2018-07-27 2021-11-02 广东美芝制冷设备有限公司 永磁电机和具有其的压缩机
CN109672283A (zh) * 2019-01-04 2019-04-23 北京首航艾启威节能技术股份有限公司 一种新型直流无刷电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715305B2 (ja) * 2005-05-24 2011-07-06 ミツミ電機株式会社 単相ブラシレスモータ
EP2733299B1 (en) * 2011-03-11 2015-09-02 Lutron Electronics Co., Inc. Motorized window treatment
FR2998347B1 (fr) * 2012-11-19 2015-06-26 Sagem Defense Securite Frein magnetique a hysteresis a crantage reduit

Also Published As

Publication number Publication date
CN107994739A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
Jung et al. Experimental verification and effects of step skewed rotor type IPMSM on vibration and noise
Zhao et al. Material-efficient permanent-magnet shape for torque pulsation minimization in SPM motors for automotive applications
Hao et al. Cogging torque reduction of axial-field flux-switching permanent magnet machine by rotor tooth notching
Niazi et al. A low-cost and efficient permanent-magnet-assisted synchronous reluctance motor drive
Xiao et al. Cogging torque analysis and minimization of axial flux PM machines with combined rectangle-shaped magnet
US20140062254A1 (en) Permanent Magnet Rotating Electrical Machine
Liu et al. Cogging force reduction of double-sided linear flux-switching permanent magnet machine for direct drives
CN107994739B (zh) 一种基于齿槽转矩的制动设计方法
Seo et al. Analysis of overhang effect for a surface-mounted permanent magnet machine using a lumped magnetic circuit model
EP1863150A3 (en) Permanent magnet rotor for motors
EP1850455A3 (en) Rotor of electric motor for simplifying manufacturing process and electric motor having the same
CN205105069U (zh) 一种可弱磁的永磁同步电机转子结构
JP5325074B2 (ja) 回転電機およびその固定子
Yong et al. Principle and simulation analysis of a novel structure magnetic gear
Kaňuch et al. Design and simulation of disk stepper motor with permanent magnets
Kim A stress analysis method for the rotor design of an IPMSM considering radial force
TWI528684B (zh) 軸向氣隙切換磁阻馬達結構
Lee et al. Evaluation of slotless permanent synchronous motor with toroidal winding
Sakuma et al. Stator structure for noise reduction of switched reluctance motor
Ma et al. Structural parameter optimization to reduce cogging torque of the consequent pole in-wheel motor
Fu et al. The design of Interior Permanent Magnet brushless motor control system based on finite element method
Setiabudy Investigation of the influence of variations in the number and width of anti-notch depending on cogging torque reduction
Patel Cogging torque minimization by magnet edge inset variation technique in radial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor
Leitner et al. Analysis of claw deflections and radial magnetic forces in low-cost sub-fractional horsepower BLDC claw-pole motors
Tripathi et al. Virtual design optimization of a BLDC motor for a two wheeler electric cargo vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Yin Haitao

Inventor after: Zhang Huan

Inventor after: Zong Xixia

Inventor after: Cheng Junkang

Inventor after: Hui Xuan

Inventor after: Hu Bo

Inventor after: Guo Bingqi

Inventor after: Li Minzhe

Inventor after: Hu Hao

Inventor after: Chi Keqing

Inventor before: Chi Keqing

Inventor before: Zhang Yuan

Inventor before: Yin Haitao

Inventor before: Cheng Junkang

Inventor before: Hui Xuan

Inventor before: Hu Bo

Inventor before: Guo Bingqi

Inventor before: Li Minzhe

Inventor before: Hu Hao

Inventor before: Zong Xixia

CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Yin Haitao

Inventor after: Zhang Huan

Inventor after: Cheng Junkang

Inventor after: Zong Xixia

Inventor after: Fang Haiyu

Inventor after: Hui Xuan

Inventor after: Hu Bo

Inventor after: Guo Bingqi

Inventor after: Li Minzhe

Inventor after: Hu Hao

Inventor after: Chi Keqing

Inventor before: Yin Haitao

Inventor before: Zhang Huan

Inventor before: Zong Xixia

Inventor before: Cheng Junkang

Inventor before: Hui Xuan

Inventor before: Hu Bo

Inventor before: Guo Bingqi

Inventor before: Li Minzhe

Inventor before: Hu Hao

Inventor before: Chi Keqing

GR01 Patent grant
GR01 Patent grant