CN107994355A - A kind of array antenna and its application method for suppressing the vortex electromagnetic wave energy angle of divergence - Google Patents
A kind of array antenna and its application method for suppressing the vortex electromagnetic wave energy angle of divergence Download PDFInfo
- Publication number
- CN107994355A CN107994355A CN201711076814.3A CN201711076814A CN107994355A CN 107994355 A CN107994355 A CN 107994355A CN 201711076814 A CN201711076814 A CN 201711076814A CN 107994355 A CN107994355 A CN 107994355A
- Authority
- CN
- China
- Prior art keywords
- antenna
- vortex electromagnetic
- array
- electromagnetic wave
- divergence angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000009826 distribution Methods 0.000 claims description 11
- 230000005284 excitation Effects 0.000 claims description 10
- 230000002401 inhibitory effect Effects 0.000 claims 3
- 230000000452 restraining effect Effects 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 description 7
- 238000003491 array Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/22—Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种抑制涡旋电磁波能量发散角的阵列天线及其使用方法,属于天线设计领域。The invention relates to an array antenna capable of suppressing the divergence angle of vortex electromagnetic wave energy and a method for using the same, belonging to the field of antenna design.
背景技术Background technique
到目前为止,国内外利用天线产生涡旋电磁波已经成为无线电领域的主流方法。目前主流的产生涡旋电磁波的天线形式有透射螺旋结构、螺旋反射结构及阵列天线结构。So far, the use of antennas to generate vortex electromagnetic waves has become the mainstream method in the radio field at home and abroad. At present, the mainstream antenna forms for generating vortex electromagnetic waves include transmission helical structure, helical reflection structure and array antenna structure.
透射螺旋结构包括单阶梯、多阶梯和多孔型螺旋相位结构。这种方法将普通的电磁波直接透射过螺旋相位板,从而添加相位因子使电磁波具有扭曲的波前结构形成涡旋电磁波。透射螺旋结构具有较高的衍射效率,结构原理简单,但波束方向性不理想,不利于能量发散角抑制。Transmission helical structures include single-step, multi-step and porous helical phase structures. This method directly transmits ordinary electromagnetic waves through the helical phase plate, thereby adding a phase factor to make the electromagnetic wave have a distorted wavefront structure to form a vortex electromagnetic wave. The transmission helical structure has high diffraction efficiency and simple structure principle, but the beam directivity is not ideal, which is not conducive to the suppression of energy divergence angle.
涡旋反射面结构可分为阶梯型反射面和螺旋抛物面,当波束入射到反射面时,由于反射面具有非平面的螺旋结构,波前的不同区域会在反射面上引起波束相邻部分有一个相对延迟,从而实现波前扭曲的效果。2011年,B.Thide等人利用该结构天线试验证明了OAM涡旋电磁波在无线通信系统中进行信息传输的可行性。螺旋反射结构的缺点是一旦天线结构确定,就只能产生一种模态的涡旋电磁波,无法同时产生多种模态的涡旋电磁波。The structure of the vortex reflector can be divided into a stepped reflector and a helical parabola. When the beam is incident on the reflector, because the reflector has a non-planar spiral structure, different regions of the wavefront will cause differences in the adjacent parts of the beam on the reflector. A relative delay to achieve the effect of wavefront distortion. In 2011, B.Thide et al. used the structural antenna test to prove the feasibility of OAM vortex electromagnetic waves for information transmission in wireless communication systems. The disadvantage of the helical reflection structure is that once the antenna structure is determined, only one mode of vortex electromagnetic waves can be generated, and multiple modes of vortex electromagnetic waves cannot be generated simultaneously.
阵列天线是产生涡旋电磁波的一种高效可行方法。其通过调整每个阵元的馈电信号相位来产生不同模态的涡旋电磁波。该形式目前常用的主要有偶极子天线阵列、时控阵列天线及相控贴片阵列。Array antenna is an efficient and feasible method to generate vortex electromagnetic waves. It generates vortex electromagnetic waves of different modes by adjusting the phase of the feed signal of each array element. This form is currently commonly used mainly dipole antenna arrays, timed array antennas and phased patch arrays.
在微波领域,各种产生方法各有利弊,针对不同的使用环境进行合理的设计和改进具有重要的研究价值。目前生成涡旋电磁波的天线设计大都属于以上三种类型中的一种或几种的结合。由于涡旋电磁波的能量主要集中在相位波瓣上,电磁波中心存在能量奇点,能量发散角的存在使得接收端对信号的接收提出了巨大的挑战,大范围布阵成本高,极大的限制了涡旋电磁波的应用。In the microwave field, various generation methods have their own advantages and disadvantages, and it is of great research value to rationally design and improve them for different use environments. At present, most antenna designs for generating vortex electromagnetic waves belong to one or a combination of the above three types. Since the energy of the vortex electromagnetic wave is mainly concentrated on the phase lobe, there is an energy singularity in the center of the electromagnetic wave, and the existence of the energy divergence angle makes the receiving end pose a huge challenge to the signal reception, and the cost of large-scale array deployment is high and greatly limited The application of vortex electromagnetic waves.
目前国际上常用的OAM特征模态产生方法中,无论采用天线阵列方式,还是采用相位板方式或螺旋反射面,都存在着能量发散角的问题。在圆形天线阵列的轴线方向存在能量奇点,是涡旋电磁波的固有特征,该奇点是无法消除的。目前还未见有成熟的天线能对能量发散角进行有效抑制。In the OAM eigenmode generation methods commonly used in the world at present, there is a problem of energy divergence angle no matter whether the antenna array method is used, the phase plate method or the spiral reflector is used. There is an energy singularity in the axial direction of the circular antenna array, which is an inherent feature of vortex electromagnetic waves, and this singularity cannot be eliminated. At present, there is no mature antenna that can effectively suppress the energy divergence angle.
发明内容Contents of the invention
本发明的技术解决问题是:Technical solution problem of the present invention is:
克服现有技术的缺陷,提出一种抑制涡旋电磁波能量发散角的阵列天线及其使用方法,解决使用天线生成涡旋电磁波过程中的能量发散角问题,从而解决限制涡旋电磁波远距离传输的瓶颈问题。To overcome the defects of the existing technology, an array antenna and its application method for suppressing the energy divergence angle of vortex electromagnetic waves are proposed to solve the problem of energy divergence angle in the process of using the antenna to generate vortex electromagnetic waves, thereby solving the problem of limiting the long-distance transmission of vortex electromagnetic waves Bottleneck problem.
本发明的技术解决方案是:Technical solution of the present invention is:
一种抑制涡旋电磁波能量发散角的阵列天线,包括:底座和多个天线元;An array antenna for suppressing the divergence angle of vortex electromagnetic wave energy, comprising: a base and a plurality of antenna elements;
所述多个天线元均为相同的螺旋天线,安装在所述底座上,并且所述多个天线元同轴心等间隔分布在圆周上,以组成圆形阵列;The plurality of antenna elements are the same helical antenna installed on the base, and the plurality of antenna elements are equally spaced on the circumference of the coaxial center to form a circular array;
每个天线元的水平横截面的半径与所述圆周半径相等。The radius of the horizontal cross-section of each antenna element is equal to the radius of the circumference.
根据本发明的实施例,相邻天线元之间的相位差为其中,为相邻天线元之间的相位差,N为天线元的数量,l为任意正整数。According to an embodiment of the present invention, the phase difference between adjacent antenna elements is in, is the phase difference between adjacent antenna elements, N is the number of antenna elements, and l is any positive integer.
根据本发明的实施例,天线元的电流分布为jn=jexp(iφn),其中,jn为第n个天线元上的电流,j为提供至所述抑制涡旋电磁波能量发散角的阵列天线的激励信号的电流,φn为第n个天线元的相位,n=0、1…N-1。According to an embodiment of the present invention, the current distribution of the antenna elements is j n =jexp(iφ n ), where j n is the current on the nth antenna element, and j is the energy divergence angle provided to the suppressed vortex electromagnetic wave The current of the excitation signal of the array antenna, φ n is the phase of the nth antenna element, n=0, 1...N-1.
根据本发明的实施例,第n个天线元的相位为 According to an embodiment of the present invention, the phase of the nth antenna element is
根据本发明的实施例,天线元的数量为8个。According to the embodiment of the present invention, the number of antenna elements is 8.
一种抑制涡旋电磁波能量发散角的阵列天线的使用方法,包括以下步骤:A method for using an array antenna for suppressing the divergence angle of vortex electromagnetic wave energy, comprising the following steps:
S1、向抑制涡旋电磁波能量发散角的阵列天线的每个天线元提供激励信号;S1. Provide an excitation signal to each antenna element of the array antenna that suppresses the divergence angle of vortex electromagnetic wave energy;
S2、将第n个天线元的相位设置为N为天线元的数量,为相邻天线元之间的相位差;S2. Set the phase of the nth antenna element to N is the number of antenna elements, is the phase difference between adjacent antenna elements;
S3、将多个天线元的电流分布设置为jn=jexp(iφn),其中,jn为第n个天线元上的电流,j为提供至所述抑制涡旋电磁波能量发散角的阵列天线的激励信号的电流,n=0、1…N-1。S3. The current distribution of multiple antenna elements is set to j n =jexp(iφ n ), wherein j n is the current on the nth antenna element, and j is an array provided to the divergence angle of the suppressed vortex electromagnetic wave energy The current of the excitation signal of the antenna, n=0, 1...N-1.
根据本发明的实施例,相邻天线元之间的相位差其中,l为任意正整数。According to an embodiment of the present invention, the phase difference between adjacent antenna elements Among them, l is any positive integer.
根据本发明的实施例,天线元的数量为8个。According to the embodiment of the present invention, the number of antenna elements is 8.
本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:
(1)通过采用本发明的技术方案,可以显著的抑制涡旋电磁波的能量发散角。(1) By adopting the technical solution of the present invention, the energy divergence angle of the vortex electromagnetic wave can be significantly suppressed.
(2)通过改变天线阵元的相位,消除能量奇点。(2) Eliminate the energy singularity by changing the phase of the antenna elements.
(3)通过采用本发明的技术方案,可解决涡旋电磁波远距离传输的问题。(3) By adopting the technical solution of the present invention, the problem of long-distance transmission of vortex electromagnetic waves can be solved.
附图说明Description of drawings
图1是根据本发明的实施例的抑制涡旋电磁波能量发散角的阵列天线的示意图。Fig. 1 is a schematic diagram of an array antenna for suppressing the divergence angle of vortex electromagnetic wave energy according to an embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图,详细描述本发明的实施例。Embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
当以场分布特性描述OAM特征模态的时候,每组螺旋相位分布组合对应一个轨道角动量的本征态,用来描述OAM特征模态的状态,不同的本征值对应着不同的相位分布本征模态。对一个横坐标是时间,纵坐标是幅度的信号进行傅里叶变换,变换的结果称为该信号的频域特征。同理,对一个横坐标是角度,纵坐标是幅度的信号进行傅里叶变换,变换的结果称为该信号的角动量域特征。当这个角度坐标系构建在于电磁波传播方向垂直的平面内的时候,傅里叶变换后得到角动量域特征就是所谓的OAM特征模态的本征值。When the OAM eigenmode is described by the field distribution characteristics, each group of spiral phase distribution combinations corresponds to an eigenstate of the orbital angular momentum, which is used to describe the state of the OAM eigenmode, and different eigenvalues correspond to different phase distributions eigenmode. Fourier transform is performed on a signal whose abscissa is time and ordinate is amplitude, and the result of the transformation is called the frequency domain feature of the signal. Similarly, Fourier transform is performed on a signal whose abscissa is angle and ordinate is magnitude, and the result of the transformation is called the angular momentum domain characteristic of the signal. When this angular coordinate system is constructed in a plane perpendicular to the electromagnetic wave propagation direction, the angular momentum domain characteristics obtained after Fourier transform are the eigenvalues of the so-called OAM eigenmodes.
利用天线阵列产生携带OAM特征模态的涡旋电磁波是一种高效可行的方案。天线阵通常可采用相控阵,利用相控阵对每个天线元的相位进行控制。首先,将天线等间隔的分布在圆周上,组成圆形阵列,再通过相位控制的方法,让每个天线元都携带不同的相位。Using antenna arrays to generate vortex electromagnetic waves carrying OAM eigenmodes is an efficient and feasible solution. The antenna array can usually adopt a phased array, and use the phased array to control the phase of each antenna element. First, distribute the antennas at equal intervals on the circumference to form a circular array, and then use phase control to make each antenna element carry a different phase.
在阵列天线产生涡旋电磁波中,与其他现有方法不同的是,通过改变能量奇点位置的方法来实现。In the generation of vortex electromagnetic waves by the array antenna, different from other existing methods, it is realized by changing the position of the energy singularity.
采用螺旋天线作为单个阵元来产生涡旋电磁波。天线阵面法向轴线的能量零点是阵元上的谐振电流均匀散布在轴线周围,构成相控阵天线阵列的必然结果。如果要解决这个问题,必须让天线阵列阵元上的谐振电流环绕天线阵面法向轴线,而能实现这种需求的天线类型是螺旋天线。螺旋天线的辐射场是圆极化波,具有波较宽的频带特性。A helical antenna is used as a single array element to generate vortex electromagnetic waves. The energy zero point of the normal axis of the antenna array is the inevitable result of the resonant current on the array elements being evenly distributed around the axis to form a phased array antenna array. If this problem is to be solved, the resonant current on the elements of the antenna array must surround the normal axis of the antenna array, and the type of antenna that can realize this requirement is a helical antenna. The radiation field of the helical antenna is a circularly polarized wave, which has a wide frequency band characteristic.
阵列天线系统中,通常采用波束成形技术来控制阵列天线每个阵元激励信号的幅度和相位。当采用天线阵列来产生涡旋电磁波时,就需要相移网络来完成不同阵元激励信号相位的分配。采用Butler矩阵相移网络来实现对天线阵列的多相位差馈电,从而达到多路信号OAM模态分配,同时生成多种模态的涡旋电磁波。In the array antenna system, beamforming technology is usually used to control the amplitude and phase of the excitation signal of each element of the array antenna. When an antenna array is used to generate vortex electromagnetic waves, a phase shift network is needed to complete the distribution of the phases of excitation signals of different array elements. The Butler matrix phase-shifting network is used to realize the multi-phase difference feeding to the antenna array, so as to achieve the OAM mode distribution of multi-channel signals and generate vortex electromagnetic waves of various modes at the same time.
如图1所示,根据本发明的实施例的抑制涡旋电磁波能量发散角的阵列天线包括底座和多个天线元,多个天线元均为相同的螺旋天线,安装在所述底座上,并且所述多个天线元同轴心等间隔分布在圆周上,以组成圆形阵列,每个天线元的水平横截面的半径与所述圆周半径相等。在示例中,天线元的数量为8个。As shown in FIG. 1, the array antenna for suppressing the divergence angle of vortex electromagnetic wave energy according to an embodiment of the present invention includes a base and a plurality of antenna elements, and the plurality of antenna elements are the same helical antennas, installed on the base, and The plurality of antenna elements are distributed on the circumference at equal intervals with the axial center to form a circular array, and the radius of the horizontal cross section of each antenna element is equal to the radius of the circumference. In the example, the number of antenna elements is 8.
相邻天线元之间的相位差为如以下等式(1):The phase difference between adjacent antenna elements is given by equation (1):
其中,为相邻天线元之间的相位差,N为天线元的数量,l为任意正整数。in, is the phase difference between adjacent antenna elements, N is the number of antenna elements, and l is any positive integer.
因此,第n个天线元的相位为以下等式(2):Therefore, the phase of the nth antenna element is given by equation (2):
在示例中,天线元的数量为8个,因此,相邻天线元之间的相位差如以下等式(3):In the example, the number of antenna elements is 8, therefore, the phase difference between adjacent antenna elements is as the following equation (3):
第n个天线元的相位为以下等式(4):The phase of the nth antenna element is given by equation (4):
天线元的电流分布为以下等式(5):The current distribution of the antenna element is given by equation (5):
jn=jexp(iφn) (5)j n =jexp(iφ n ) (5)
其中,jn为第n个天线元上的电流,j为提供至所述抑制涡旋电磁波能量发散角的阵列天线的激励信号的电流,φn为第n个天线元的相位,n=0、1…N-1。Wherein, j n is the current on the nth antenna element, j is the current of the excitation signal provided to the array antenna that suppresses the vortex electromagnetic wave energy divergence angle, φ n is the phase of the nth antenna element, n=0 , 1...N-1.
在本发明的实施例中,还提供一种抑制涡旋电磁波能量发散角的阵列天线的使用方法,具体包括以下步骤:In an embodiment of the present invention, a method for using an array antenna that suppresses the divergence angle of vortex electromagnetic wave energy is also provided, which specifically includes the following steps:
S1、向抑制涡旋电磁波能量发散角的阵列天线的每个天线元提供激励信号。S1. Provide an excitation signal to each antenna element of the array antenna that suppresses the divergence angle of vortex electromagnetic wave energy.
S2、将第n个天线元的相位设置为φn,φn如等式(2)所示,在示例中,N=8,则φn如等式(4)所示。S2. Set the phase of the nth antenna element to φ n , where φ n is shown in equation (2). In the example, N=8, then φ n is shown in equation (4).
S3、将多个天线元的电流分布设置为jn,jn如等式(5)所示,n=0、1…N-1。S3. Set the current distribution of multiple antenna elements as j n , where j n is shown in equation (5), n=0, 1...N-1.
通过以上使用方法,天线阵列阵元上的谐振电流环绕天线阵面法向轴线,可以显著的抑制涡旋电磁波的能量发散角,且可解决涡旋电磁波远距离传输的问题。Through the above use method, the resonant current on the antenna array element surrounds the normal axis of the antenna array, which can significantly suppress the energy divergence angle of the vortex electromagnetic wave, and can solve the problem of long-distance transmission of the vortex electromagnetic wave.
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。The content that is not described in detail in the description of the present invention belongs to the well-known technology of those skilled in the art.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711076814.3A CN107994355B (en) | 2017-11-06 | 2017-11-06 | Array antenna for inhibiting vortex electromagnetic wave energy divergence angle and using method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711076814.3A CN107994355B (en) | 2017-11-06 | 2017-11-06 | Array antenna for inhibiting vortex electromagnetic wave energy divergence angle and using method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107994355A true CN107994355A (en) | 2018-05-04 |
CN107994355B CN107994355B (en) | 2021-02-09 |
Family
ID=62030218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711076814.3A Active CN107994355B (en) | 2017-11-06 | 2017-11-06 | Array antenna for inhibiting vortex electromagnetic wave energy divergence angle and using method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107994355B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109450497A (en) * | 2018-11-28 | 2019-03-08 | 中国运载火箭技术研究院 | A kind of jam-resistant communication system based on vortex electromagnetic wave |
CN110350323A (en) * | 2019-07-02 | 2019-10-18 | 苏州迈斯维通信技术有限公司 | The design method of the super skin antenna of circular polarisation based on character modules analysis method |
CN110994157A (en) * | 2019-12-23 | 2020-04-10 | 浙江科技学院 | Vortex-shaped array antenna of double-helix phase-shifting unit |
CN111613895A (en) * | 2020-04-30 | 2020-09-01 | 南京理工大学 | A Conformal OAM Antenna Combined with Butler Matrix Feed Network |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2410130A (en) * | 2004-01-19 | 2005-07-20 | Roke Manor Research | Planar phased array radio antenna for orbital angular momentum (OAM) vortex modes |
CN103812543A (en) * | 2014-01-27 | 2014-05-21 | 华中科技大学 | Method of improving wireless communication capacity by orbital angular momentum |
CN105322285A (en) * | 2015-11-12 | 2016-02-10 | 电子科技大学 | Orbital angular momentum antenna |
-
2017
- 2017-11-06 CN CN201711076814.3A patent/CN107994355B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2410130A (en) * | 2004-01-19 | 2005-07-20 | Roke Manor Research | Planar phased array radio antenna for orbital angular momentum (OAM) vortex modes |
CN103812543A (en) * | 2014-01-27 | 2014-05-21 | 华中科技大学 | Method of improving wireless communication capacity by orbital angular momentum |
CN105322285A (en) * | 2015-11-12 | 2016-02-10 | 电子科技大学 | Orbital angular momentum antenna |
Non-Patent Citations (4)
Title |
---|
DU-JUAN WEI ETC.: "The Vortical Radio Waves Realized by Helical Antennas", 《2017 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING》 * |
WENJIE YAN ETC.: "Simulation and Experimental Research of Transmission Characteristics of Multi-Modal OAM Antenna Array Based on Vortex Electromagnetic Wave", 《2018 IEEE 18TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT)》 * |
ZHI-YA ZHANG ETC.: "Broadband Circularly Polarized Spiral Antenna Array", 《2015 IEEE 4TH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP)》 * |
常青 等: "电磁涡旋通信技术发展与现状", 《系统工程与电子技术》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109450497A (en) * | 2018-11-28 | 2019-03-08 | 中国运载火箭技术研究院 | A kind of jam-resistant communication system based on vortex electromagnetic wave |
CN110350323A (en) * | 2019-07-02 | 2019-10-18 | 苏州迈斯维通信技术有限公司 | The design method of the super skin antenna of circular polarisation based on character modules analysis method |
CN110994157A (en) * | 2019-12-23 | 2020-04-10 | 浙江科技学院 | Vortex-shaped array antenna of double-helix phase-shifting unit |
CN110994157B (en) * | 2019-12-23 | 2021-11-05 | 浙江科技学院 | Vortex-shaped array antenna of double-helix phase-shifting unit |
CN111613895A (en) * | 2020-04-30 | 2020-09-01 | 南京理工大学 | A Conformal OAM Antenna Combined with Butler Matrix Feed Network |
CN111613895B (en) * | 2020-04-30 | 2022-04-01 | 南京理工大学 | Conformal OAM antenna combined with Butler matrix feed network |
Also Published As
Publication number | Publication date |
---|---|
CN107994355B (en) | 2021-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109728448B (en) | Circular Array Structure and Excitation Method for Orbital Angular Momentum Long-distance Communication | |
Huang et al. | High-efficiency planar reflectarray with small-size for OAM generation at microwave range | |
CN108539417B (en) | A circularly polarized orbital angular momentum reflectarray antenna | |
CN107994355B (en) | Array antenna for inhibiting vortex electromagnetic wave energy divergence angle and using method thereof | |
US9515377B2 (en) | Antenna apparatus, antenna device and signal transmitting apparatus | |
US20200153107A1 (en) | Multibeam antenna designs and operation | |
CN103022728B (en) | Design method of offset feed paraboloid multi-beam antenna feed source array | |
Zhou et al. | Doubly curved reflectarray for dual-band multiple spot beam communication satellites | |
US7728782B2 (en) | Versatile wideband phased array FED reflector antenna system and method for varying antenna system beamwidth | |
CN107645068A (en) | A kind of circular array design method for rotating circular polarisation array element and producing OAM wave beams | |
CN103560336A (en) | Ku-band dual-band dual-polarized microstrip planar reflectarray antenna | |
CN105789908B (en) | A kind of novel circular polarisation or double-circle polarization cylinder Luneberg lens antenna | |
Pan et al. | Pmsat: Optimizing passive metasurface for low earth orbit satellite communication | |
US20180241497A1 (en) | Planar electromagnetic wave generation apparatus for concentrating orbital angular momentum and method therefor | |
CN107768837A (en) | A kind of circular polarized antenna | |
CN107134659A (en) | High Gain Orbital Angular Momentum Array Antenna Based on Multilayer Dielectric Plate | |
CN115917879B (en) | Antenna device with improved radiation directivity | |
CN216120772U (en) | Circularly polarized PSOAM array antenna and wireless communication system | |
AU2020406407B2 (en) | Multibeam antenna | |
CN110024218B (en) | Apparatus, method and computer program for generating broadcast beams | |
Tahseen et al. | High efficiency Ka-Band single layer air vias Reflectarray: Design and analysis | |
CN109103610B (en) | A multi-beam antenna with non-uniform sub-beam coverage and design method | |
Lu et al. | A wideband reflectarray antenna unit with double-loop phase delay lines for satellite communication systems | |
Li et al. | Multibeam folded transmitarray antenna for massive MIMO applications | |
CN212277394U (en) | Array antenna subarray, array antenna module and array antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |