CN107992655A - The quick Virtual Numerical Experiments method of deflector type combustion chamber aeroperformance - Google Patents

The quick Virtual Numerical Experiments method of deflector type combustion chamber aeroperformance Download PDF

Info

Publication number
CN107992655A
CN107992655A CN201711175310.7A CN201711175310A CN107992655A CN 107992655 A CN107992655 A CN 107992655A CN 201711175310 A CN201711175310 A CN 201711175310A CN 107992655 A CN107992655 A CN 107992655A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
formula
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711175310.7A
Other languages
Chinese (zh)
Inventor
王维明
于锦峰
邵伏永
王大磊
王春雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Power Machinery Institute
Original Assignee
Beijing Power Machinery Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Power Machinery Institute filed Critical Beijing Power Machinery Institute
Priority to CN201711175310.7A priority Critical patent/CN107992655A/en
Publication of CN107992655A publication Critical patent/CN107992655A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a kind of quick Virtual Numerical Experiments method of deflector type combustion chamber aeroperformance, it is related to small turbine engine experimental technique field.The present invention is by establishing a small turbine engine deflector type combustion chamber one-dimensional aerodynamic model quickly, simplified, applicable, solves the problems, such as combustion chamber aerodynamic model to be used in Virtual Numerical Experiments, and then form the method for the quick Virtual Numerical Experiments of small turbine engine deflector type combustion chamber aeroperformance, realize and quickly carry out combustion chamber aeroperformance experiment on a computer platform, obtain the purpose of its aeroperformance.This method computing is quick, under conditions of model empirical tests, can partly substitute the actual loading test of deflector type combustion chamber, so as to reduce the experimentation cost of combustion chamber, shortens the lead time, improves the development efficiency of combustion chamber.

Description

The quick Virtual Numerical Experiments method of deflector type combustion chamber aeroperformance
Technical field
The present invention relates to small turbine engine experimental technique field, and in particular to a kind of deflector type combustion chamber aeroperformance Quick Virtual Numerical Experiments method.
Background technology
Obtaining turbine engine combustion chamber aeroperformance mainly has two methods:A kind of is the reality using combustor test platform Thing experiment directly obtains aeroperformance;Another kind is to obtain aeroperformance using CFD technology of numerical simulation.Due to the latter's theory Limitation, such as without test data verification and correction model, limited by practical.Therefore, actual loading test is still the master used at present Want method.
Due to using the Virtual Numerical Experiments method of technology of numerical simulation, expense, the cost of development can be saved, shortening is ground In the cycle processed, improve development efficiency, avoid developing risk.So start to rise with CFD emulation technologies in eighties of last century the eighties For means, carry out the numerical analysis of turbogenerator aeroperformance and the research calculated, occur various self-editing or commercial CFD software, such as FLUENT, CFX and NUMECA etc..But what these software tools were calculated typically as general aerodynamic analysis What solver provided, it is not appropriate for as dedicated aeroperformance Virtual Numerical Experiments system, and use also inconvenience With it is convenient.
U.S. NASA develops NPSS systems, incorporates the aerothermodynamic of aero-turbine complete machine, component and system Various dimensions and the software and achievement in research of Multi-Scale Calculation analysis, establish virtual " the numerical value test run of aero-turbine Engine components, or even complete machine can be carried out Virtual Numerical Experiments, obtain the performance of engine or setting for verification engine by platform " Meter.Although China has also carried out similar ATPD plans, due to weak foundation, there is larger gap with foreign technology level, Not yet set up the tool software and environment of system, the also pole imperfection such as basic database and model library, Virtual Numerical Experiments skill Application of the art in small turbine engine experiment is not yet really carried out, and therefore, develops the critical component of small turbine engine The Virtual Numerical Experiments technology of (such as combustion chamber) is very necessary and urgent.External Virtual Numerical Experiments experience have shown that:Virtual examination The actual loading test amount that can significantly save is tested, development cost is reduced, reduces developing risk.
The content of the invention
(1) technical problems to be solved
The technical problem to be solved in the present invention is:A kind of deflector type suitable for small turbine engine how is designed to burn The quick Virtual Numerical Experiments method of room aeroperformance.
(2) technical solution
In order to solve the above technical problem, the present invention provides a kind of quick virtual number of deflector type combustion chamber aeroperformance It is worth test method, comprises the following steps:
Step 1, the subregion for carrying out combustion chamber one-dimensional aerodynamic model and calculating section are chosen;
Step 2. inputs the geometric parameter and primary condition of combustion chamber one-dimensional aerodynamic model, including:Combustion chamber inlet air Flow, inlet air stagnation pressure, inlet air total temperature, fuel flow, outlet total temperature and combustion efficiency of combustion chamber;
The geometric parameter and primary condition for the combustion chamber one-dimensional aerodynamic model that step 3. is inputted based on step 2, calculate baffling Formula combustion chamber inlet condition and Performance Parameters, including:
(a) calculating (formula (1)-(3)) of combustion chamber inlet air flow velocity coeffficient and speed;
(b) calculating (formula (4)) of the total excess air coefficient in combustion chamber;
(c) volume rate of combustion calculates (formula (5));
(d) the total flow resistance coefficient in combustion chamber calculates (formula (6)) and total pressure recovery coefficient estimation (formula (11));
The geometric parameter and primary condition for the combustion chamber one-dimensional aerodynamic model that step 4. is inputted based on step 2, deflector type combustion Burn the distribution (formula (12)-(13)) of room burner inner liner air mass flow;
The geometric parameter and primary condition for the combustion chamber one-dimensional aerodynamic model that step 5. is inputted based on step 2, deflector type combustion Process parameter in the flame tube head of room is burnt to calculate, including:
(a) in flame tube head total temperature calculating (formula (14));
(b) in flame tube head static pressure calculating (formula (15));
(c) in flame tube head static temperature (formula (19)), current density (formula (16)) and stagnation pressure calculating ((formula (20));
(d) excess air coefficient (formula (13)) in the i-th section, air velocity (formula (17)), speed system in flame tube head The calculating of number (formula (18)) and effluxvelocity (formula (21));
The geometric parameter and primary condition for the combustion chamber one-dimensional aerodynamic model that step 6. is inputted based on step 2, deflector type combustion Process parameter calculates after burning room flame tube head, including:
(a) air mass flow (formula (22)) of the i-th section wall air admission hole, superposition air mass flow (formula behind head (23)), excess air coefficient (formula (25)) and effluxvelocity (formula (26));
(b) total temperature (formula (14)) in the i-th section, static temperature (formula (19)) and current density (formula (28)) behind head;
(c) stagnation pressure (formula (20)) in the i-th section behind head, static pressure (formula (16)), air velocity (formula (17)) and The calculating of velocity coeffficient (formula (18)), the calculating (formula (29)) of combustor total pressure recovery coefficient;
Step 7. judges whether that the flow in first calculating section after the last flow for calculating section and head behind head reaches Balance has been arrived, if uneven, has turned to step 4, modification air mass flow distribution, does cycle calculations, otherwise terminate.
Preferably, in step 1, the characteristics of flowing according to deflector type combustion chamber flame drum interior air-flow, by the one-dimensional gas in combustion chamber Movable model is divided into three computational domains:Head of combustion chamber region, combustion chamber central region and combustor exit region.
Preferably, in step 1, according to burner inner liner position of opening, combustion chamber one-dimensional aerodynamic model partition is calculated for n and is cut Face, each region select to calculate section number according to hole number of rows, and the n-th section is the outlet of combustion chamber.And take burner inner liner each along journey Center streamline of the line at section ring cavity height midpoint as burner inner liner.
(3) beneficial effect
The present invention is one-dimensional by establishing a small turbine engine deflector type combustion chamber quickly, simplified, applicable Aerodynamic model, solves the problems, such as combustion chamber aerodynamic model to be used in Virtual Numerical Experiments, and then forms for small-sized whirlpool The method of the quick Virtual Numerical Experiments of turbine deflector type combustion chamber aeroperformance, realize on a computer platform quickly into The aeroperformance experiment of row combustion chamber, obtains the purpose of its aeroperformance.This method computing is quick, in the condition of model empirical tests Under, it can partly substitute the actual loading test of deflector type combustion chamber, so as to reduce the experimentation cost of combustion chamber, shorten the lead time, Improve the development efficiency of combustion chamber.
Brief description of the drawings
Fig. 1 is the one-dimensional aerodynamic model schematic diagram in the deflector type combustion chamber of the embodiment of the present invention.
Embodiment
To make the purpose of the present invention, content and advantage clearer, with reference to the accompanying drawings and examples, to the present invention's Embodiment is described in further detail.
The quick Virtual Numerical Experiments method of the small turbine engine deflector type combustion chamber aeroperformance of the present invention includes Following steps:
Step 1. combustion chamber one-dimensional aerodynamic model division and calculating section are chosen.
Step 2. inputs combustion chamber model geometric parameter and primary condition, including:Combustion chamber intake air flow, import are empty Gas stagnation pressure, inlet air total temperature, fuel flow, outlet total temperature, combustion efficiency of combustion chamber etc..
Step 3. calculates deflector type combustion chamber inlet condition and Performance Parameters, including:
(a) calculating (formula (1)-(3)) of combustion chamber inlet air flow velocity coeffficient and speed;
(b) calculating (formula (4)) of the total excess air coefficient in combustion chamber;
(c) volume rate of combustion calculates (formula (5));
(d) the total flow resistance coefficient in combustion chamber calculates (formula (6)) and total pressure recovery coefficient estimation (formula (11)).
The distribution (formula (12)-(13)) of step 4. deflector type combustion chamber flame drum air mass flow.
Process parameter calculates in step 5. deflector type combustion chamber flame drum head, including:
(a) in flame tube head total temperature calculating (formula (14));
(b) in flame tube head static pressure calculating (formula (15));
(c) in flame tube head static temperature (formula (19)), current density (formula (16)) and stagnation pressure calculating ((formula (20));
(d) excess air coefficient (formula (13)) in the i-th section, air velocity (formula (17)), speed system in flame tube head The calculating of number (formula (18)) and effluxvelocity (formula (21)).
Process parameter calculates behind step 6. deflector type combustion chamber flame drum head, including:
(a) air mass flow (formula (22)) of the i-th section wall air admission hole, superposition air mass flow (formula behind head (23)), excess air coefficient (formula (25)) and effluxvelocity (formula (26));
(b) total temperature (formula (14)) in the i-th section, static temperature (formula (19)) and current density (formula (28)) behind head;
(c) stagnation pressure (formula (20)) in the i-th section behind head, static pressure (formula (16)), air velocity (formula (17)) and The calculating of velocity coeffficient (formula (18)), the calculating (formula (29)) of combustor total pressure recovery coefficient.
Step 7. calculate convergence judge, if behind head finally calculate section flow and head after first calculating section Flow reached balanceIf uneven, step 4 is turned to, modification air mass flow distribution, does cycle calculations, otherwise, under continuing One step;
Step 8. the results show and analysis;
Step 9. terminates.
An embodiment of the present invention provides the aerodynamic model that the deflector type combustion chamber of the simplification shown in a Fig. 1 is one-dimensional, passes through The verification of test data, while be aided with the examination of three-dimensional CFD result of calculations, it was demonstrated that the validity of model.
Deflector type combustion chamber employs centrifugal fuel injection wheel loop configuration, has very compared with traditional single flow toroidal combustion chamber Big difference.The center streamline of straight-flow combustor burner inner liner is generally parallel with the axis of engine, it calculates section and hair The axis of motivation is vertical, and the burner inner liner of the deflector type combustion chamber of centrifugal fuel injection wheel is baffling structure, into the air-flow of burner inner liner Initially along Radial Flow, it is calculated, and section is parallel with engine axis, and then as turning back for air-flow, calculating section gradually turns It is changed into vertical with engine axis.
Therefore, in step 1, the characteristics of flowing according to deflector type combustion chamber flame drum interior air-flow, three meters are reduced to Calculate domain:Head of combustion chamber region (the A areas of Fig. 1), combustion chamber central region (the B areas of Fig. 1) and the combustor exit region (C of Fig. 1 Area);Computation model can be divided into, each region selects suitable according to hole number of rows by n calculating section according to burner inner liner position of opening When calculating section number.N=12 in Fig. 1, wherein 1-5 sections are the head of burner inner liner, and 6-11 sections are in burner inner liner Portion, the 12nd section are the outlet of combustion chamber.Take burner inner liner along the line at each section ring cavity height midpoint of journey as in burner inner liner Heart streamline.
According to deflector type chamber structure size, the main geometric parameters for obtaining its one-dimensional aerodynamic model (Fig. 1), bag are calculated Include:The burner inner liner actual internal area in 12 calculating sections, combustion chamber inlet -duct area, import extended area, combustion chamber maximum cross-section Product, outer wall ring cavity sectional area, inner wall ring cavity sectional area and inside and outside ring cavity total sectional area etc..
In order to which main problem is quickly calculated and considered, following main assumption is done to model:
● air-flow flowing is stable state, i.e., each section flow parameter is permanent;
● burning indoor air flow flowing is unitary, and state parameter is uniform in the circumferential direction;
● for air-flow for that can not press stream, air-flow stagnation pressure in ring cavity passage is constant.
The calculating of deflector type combustion chamber one-dimensional aerodynamic model, calculates combustion chamber inlet condition and overall performance ginseng first Number, then carries out just sub-distribution to the air mass flow of burner inner liner by flow resistance method, iterates finally by one-dimensional flow theoretical method Calculate burner inner liner along journey aerothermo-parameters, until meeting the condition of convergence, the final aeroperformance for obtaining combustion chamber.
Formula involved in step 3 to step 6 is as follows:
(2) deflector type combustion chamber inlet condition and Performance Parameters calculate
(a) combustion chamber inlet air flow velocity coeffficient λ3With speed V3
Air intlet velocity coeffficient λ3With speed V3It is obtained by the following formula:
In formula, q (λ3) it is flow function, R is gas constant, and k is specific heat ratio,For combustion chamber import stagnation pressure,For Combustion chamber import total temperature, maFor combustion chamber intake air flow, combustion chamber inlet -duct area A3
(b) the total excess air coefficient α in combustion chamberΣ
Total excess air coefficient αΣCalculated by following formula:
In formula, mfFor combustion chamber fuel flow, L0For every kilogram of fuel oil theoretical combustion air.
(c) volume rate of combustion QVC
Volumetric heat intensity QVCFor:
In formula, LcFor chamber length,For combustion efficiency of combustion chamber, AMSectional area, H are referred to for combustion chamberuFor aviation coal Oily calorific value.
(d) the total flow resistance coefficient φ in combustion chamberMWith total pressure recovery coefficient σC
The total flow resistance coefficient φ in combustion chamberMFor:
φMgfMMh (6)
In formula, φgEnlargement loss for air-flow by diffuser, φfMFor total stream of each section wall air admission hole of burner inner liner Hinder coefficient, φMhFor the thermal resistance loss in burner inner liner.
The enlargement loss φ that air-flow passes through diffusergIt can be calculated by following formula:
Wherein, AgIt is defined before other parameters for diffuser intake extended area.
Total flow resistance coefficient φ of each section wall air admission hole of burner inner linerfMFor:
In formula, φMiFor the local flow resistance coefficient of the i-th section of burner inner liner wall air admission hole, calculated by following formula:
Wherein, μiFor the i-th discharge coefficient for discharging into stomata, AiFor i-th gross area for discharging into stomata, AfiGas is discharged into for i-th Burner inner liner circulation area at hole.
Thermal resistance loss φ in burner inner linerMhIt can be calculated as follows:
In formula,For combustor exit total temperature,Ratio, A are heated for combustion chamberfhFor flame tube head, last cuts The burner inner liner circulation area in face (the 5th section in this model).
The combustor total pressure recovery coefficient σ of estimationcIt is given by:
Each parameter has been defined above in formula.
(3) the first sub-distribution of deflector type combustion chamber flame drum air mass flow
The relation with local flow resistance coefficient is distributed according to burner inner liner local flow, the i-th section of burner inner liner wall air admission hole Air inlet percentage KiIt can be calculated by following formula:
Corresponding to the excess air coefficient α in each sectioni, then calculated by following formula:
In formula,--- the overlaying flow percentage in the-the i-th section.
(4) process parameter calculates in deflector type combustion chamber flame drum head
(a) total temperature in flame tube head
According to energy-balance equation, the total temperature in the i-th section in burner inner linerIt can be calculated by following formula:
ηi(Hu-Dh)=αiL0(Ii-I3)+Hi-H0 (14)
In formula, I3For combustion chamber import total temperatureUnder air unit heat content, DhLost for thermal dissociation, IiTo calculate section Total temperatureUnder air unit heat content, ηiTo calculate the efficiency of combustion in section, H0On the basis of constant-temperature combustion enthalpy at temperature (15 DEG C) Difference, HiTo calculate section total temperatureUnder constant-temperature combustion enthalpy difference.I in formulai、HiAll it isFunction, therefore, in known temperature Under the conditions of degree, Ii、HiIt can be found, therefore can be obtained by iterative method by enthalpy tableFor last section (model of head In the 5th section) total temperature.
(b) static pressure P in flame tube headfh
Static pressure P in flame tube headfhCalculated by following formula:
In formula, NhFor flame tube head section number,For the overlaying flow percentage in each section of flame tube head,For the air admission hole effective area of the superposition in each section of flame tube head,For the ring cavity stagnation pressure of flame tube head, can use
(c) static temperature T in flame tube headfh, current density ρhAnd stagnation pressure
First with the total temperature in flame tube headAs TfhInitial value, then flame tube head interior air-flow density phFor:
It can obtain the air velocity V in last section of flame tube head by following continuity equationh:
Then, the air velocity coefficient lambda in last section of flame tube head is obtained by following formulah:
Finally, static temperature T in flame tube head is obtained by following formulafhValue:
TfhValue returns formula (16) as approximation generation, above-mentioned calculating is repeated, until front and rear T twicefhThe absolute error of value≤ Untill 0.1.The stagnation pressure in flame tube head can be obtained by following formula again
(d) in flame tube head the i-th section excess air coefficient αhi, air velocity Vhi, velocity coeffficient λhiAnd effluxvelocity Vjhi
With the burner inner liner circulation area at the overlaying flow and respective cross-section in head Nei Ge sections, and by formula (13), formula (17) and formula (18) can obtain the α in the i-th section respectivelyhi、VhiAnd λhi.The effluxvelocity V in the i-th section in headjhiCan be by following formula Calculate
Wherein, ρ3For combustion chamber inlet air flow density, KhiFor the flow percentage in the i-th section of flame tube head, μhiAhiFor The perforate effective area of the air admission hole in the i-th section of flame tube head.
(5) process parameter calculates behind deflector type combustion chamber flame drum head
(a) behind head the i-th section wall air admission hole air mass flow mai, overlaying flow Σ mai, excess air coefficient αiAnd jet stream Speed Vji
The air mass flow m of i-th section wall air admission hole after flame tube headaiIt can be calculated by following formula:
In formula, ρaniFor the ring cavity gas density in the i-th section, ρ can useani≈ρM。Pf(i-1)Cut for (i-1) in burner inner liner The static pressure in face,For the ring cavity stagnation pressure in the i-th section, can use
The superposition air mass flow Σ m in the i-th section behind headaiFor:
Σmai=mah+ΣKima (23)
In formula, mahFor the head air mass flow of burner inner liner, Σ KiFor the superposition air mass flow percentage in the i-th section.
The superposition gas flow Σ m in the i-th section behind headgiFor:
Σmgi=mf+Σmai (24)
The excess air coefficient α in the i-th section behind headiFor:
The effluxvelocity V of i-th section wall air admission hole behind headjiFor:
(b) behind head the i-th section total temperatureStatic temperature TfiAnd current density ρfi
According to the excess air coefficient α in the i-th section after flame tube headi, iterated to calculate, can be obtained i-th behind head by formula (14) The total temperature in section
(i-1) section is taken in burner inner liner, as control volume, to ignore the influence of friction loss to the gas between i sections, control The body equation of momentum processed is:
In formula, Vfi、Vf(i-1)For in burner inner liner i-th and the combustion gas speed in (i-1) section, Pfi、Pf(i-1)For in burner inner liner I and the static pressure in (i-1) section, Afi、Af(i-1)For in burner inner liner i-th and the circulation area in (i-1) section, Σ mgi、Σmg(i-1)For In burner inner liner i-th and (i-1) section superposition gas flow, β is efflux angle.By PfifiRTfiWithSubstitution formula (27), can obtain:
Above formula is solved on ρfiQuadratic equation with one unknown, obtain combustion gas density pfiValue, then by formula (17), (18) and (19) Obtain static temperature TfiValue.By TfiValue repeats above calculating process as approximation, until front and rear T twicefiThe absolute error of approximation Untill≤0.01.Finally obtain the total temperature in the i-th section in burner inner liner behind headStatic temperature TfiAnd current density ρfi
(c) behind head the i-th section stagnation pressureStatic pressure Pfi, air velocity VfiAnd velocity coeffficient λfi
Behind head in burner inner liner the i-th section static pressure PfiIt can be calculated by equation of state (16), air velocity VfiCan be by formula (17) calculate, velocity coeffficient λfiIt can be calculated by formula (18), stagnation pressureIt can be calculated by formula (20).After obtaining, the stagnation pressure of combustion chamber Recovery coefficient σcThen calculated by following formula:
In formula,For the stagnation pressure in burner inner liner outlet (the 12nd section in model).
Using the test data of combustion chamber (Fig. 1) in kind to deflector type combustion chamber one-dimensional aerodynamic computational methods of the invention And its aerodynamic model is verified, in computational accuracy, the outlet of deflector type combustion chamber one-dimensional aerodynamic model be averaged total temperature with Relative error maximum of the relative error, outlet total pressure recovery coefficient that test data compares compared with test data is no more than 1%.On the time is calculated, it can complete once to calculate in a few minutes.
The above is only the preferred embodiment of the present invention, it is noted that for the ordinary skill people of the art For member, without departing from the technical principles of the invention, some improvement and deformation can also be made, these are improved and deformation Also it should be regarded as protection scope of the present invention.

Claims (6)

1. the quick Virtual Numerical Experiments method of a kind of deflector type combustion chamber aeroperformance, it is characterised in that comprise the following steps:
Step 1, the subregion for carrying out combustion chamber one-dimensional aerodynamic model and calculating section are chosen;
Step 2. inputs the geometric parameter and primary condition of combustion chamber one-dimensional aerodynamic model, including:Combustion chamber intake air flow, Inlet air stagnation pressure, inlet air total temperature, fuel flow, outlet total temperature and combustion efficiency of combustion chamber;
The geometric parameter and primary condition for the combustion chamber one-dimensional aerodynamic model that step 3. is inputted based on step 2, calculate deflector type combustion Room inlet condition and Performance Parameters are burnt, including:
(a) calculating (formula (1)-(3)) of combustion chamber inlet air flow velocity coeffficient and speed;
(b) calculating (formula (4)) of the total excess air coefficient in combustion chamber;
(c) volume rate of combustion calculates (formula (5));
(d) the total flow resistance coefficient in combustion chamber calculates (formula (6)) and total pressure recovery coefficient estimation (formula (11));
The geometric parameter and primary condition for the combustion chamber one-dimensional aerodynamic model that step 4. is inputted based on step 2, deflector type combustion chamber The distribution (formula (12)-(13)) of burner inner liner air mass flow;
The geometric parameter and primary condition for the combustion chamber one-dimensional aerodynamic model that step 5. is inputted based on step 2, deflector type combustion chamber Process parameter calculates in flame tube head, including:
(a) in flame tube head total temperature calculating (formula (14));
(b) in flame tube head static pressure calculating (formula (15));
(c) in flame tube head static temperature (formula (19)), current density (formula (16)) and stagnation pressure calculating ((formula (20));
(d) excess air coefficient (formula (13)) in the i-th section, air velocity (formula (17)), velocity coeffficient are (public in flame tube head Formula (18)) and effluxvelocity (formula (21)) calculating;
The geometric parameter and primary condition for the combustion chamber one-dimensional aerodynamic model that step 6. is inputted based on step 2, deflector type combustion chamber Process parameter calculates after flame tube head, including:
(a) air mass flow (formula (22)) of the i-th section wall air admission hole behind head, superposition air mass flow (formula (23)), remaining Gas coefficient (formula (25)) and effluxvelocity (formula (26));
(b) total temperature (formula (14)) in the i-th section, static temperature (formula (19)) and current density (formula (28)) behind head;
(c) stagnation pressure (formula (20)) in the i-th section, static pressure (formula (16)), air velocity (formula (17)) and speed behind head The calculating of coefficient (formula (18)), the calculating (formula (29)) of combustor total pressure recovery coefficient;
Step 7. judges whether that the flow in first calculating section after the last flow for calculating section and head behind head reaches Balance, if uneven, turns to step 4, modification air mass flow distribution, does cycle calculations, otherwise terminate.
2. the method as described in claim 1, it is characterised in that in step 1, according to deflector type combustion chamber flame drum interior air-flow stream The characteristics of dynamic, combustion chamber one-dimensional aerodynamic model is divided into three computational domains:Head of combustion chamber region, combustion chamber central region and combustion Burn room exit region.
3. method as claimed in claim 2, it is characterised in that in step 1, according to burner inner liner position of opening, by combustion chamber one Dimension aerodynamic model is divided into n calculating section, and each region selects to calculate section number according to hole number of rows, and the n-th section is burning The outlet of room.And take center streamline of the burner inner liner along the line at each section ring cavity height midpoint of journey as burner inner liner.
4. method as claimed in claim 3, it is characterised in that in step 3, burnt using following formula (1)-(3) The calculating of room inlet air flow velocity coeffficient and speed;
The calculating of the total excess air coefficient in combustion chamber is carried out using following formula (4);
Volume rate of combustion calculating is carried out using following formula (5);
The total flow resistance coefficient in combustion chamber is carried out using following formula (6) to calculate, and total pressure recovery is carried out using following formula (11) Coefficient estimate;
In step 4, the distribution of deflector type combustion chamber flame drum air mass flow is carried out using following formula (12)-(13);
Step 5. carries out the calculating of total temperature in flame tube head using following formula (14);Carried out using following formula (15) The calculating of static pressure in flame tube head;Utilize following formula (19)) calculating of static temperature in flame tube head is carried out, utilization is following Formula (16) carry out the calculating of current density, utilize following formula (20) to carry out the calculating of stagnation pressure;Utilize following formula (13) calculating of the excess air coefficient in the i-th section in flame tube head is carried out, air velocity is carried out using following formula (17) Calculate, the calculating of velocity coeffficient carried out using following formula (18), utilizes following formula (21)) carry out the meter of effluxvelocity Calculate;
The air mass flow that step 6. carries out the i-th section wall air admission hole behind head using following formula (22) calculates, utilize with Under formula (23) be overlapped the calculating of air mass flow, utilize following formula (25) to carry out the calculating of excess air coefficient, utilize Following formula (26) carries out the calculating of effluxvelocity;Utilize the total temperature in the i-th section behind following formula (14) progress head Calculate, the calculating of static temperature is carried out using following formula (19), the calculating of current density is carried out using following formula (28);Profit The calculating of the stagnation pressure in the i-th section after carrying out head with following formula (20), the meter of static pressure is carried out using following formula (16) Calculate, the calculating of air velocity is carried out using following formula (17), velocity coeffficient calculating, profit are carried out using following formula (18) The calculating of combustor total pressure recovery coefficient is carried out with following formula (29):
<mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>=</mo> <msqrt> <mrow> <mfrac> <mi>k</mi> <mi>R</mi> </mfrac> <msup> <mrow> <mo>(</mo> <mfrac> <mn>2</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> </msup> </mrow> </msqrt> <mfrac> <mrow> <msub> <mi>A</mi> <mn>3</mn> </msub> <msubsup> <mi>P</mi> <mn>3</mn> <mo>*</mo> </msubsup> </mrow> <msqrt> <msubsup> <mi>T</mi> <mn>3</mn> <mo>*</mo> </msubsup> </msqrt> </mfrac> <mi>q</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>q</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> </msup> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <msubsup> <mi>&amp;lambda;</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>V</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <msqrt> <mrow> <mfrac> <mrow> <mn>2</mn> <mi>k</mi> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <msubsup> <mi>RT</mi> <mn>3</mn> <mo>*</mo> </msubsup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
In formula, combustion air inlet velocity coefficient is λ3, speed V3, q (λ3) be flow function, R is gas constant, k be than Heat capacity ratio,For combustion chamber import stagnation pressure,For combustion chamber import total temperature, maFor combustion chamber intake air flow, combustion chamber into Open area is A3
The total excess air coefficient α in combustion chamberΣFor:
<mrow> <msub> <mi>&amp;alpha;</mi> <mi>&amp;Sigma;</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>m</mi> <mi>a</mi> </msub> <mrow> <msub> <mi>m</mi> <mi>f</mi> </msub> <msub> <mi>L</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
In formula, mfFor combustion chamber fuel flow, L0For every kilogram of fuel oil theoretical combustion air;
Volume rate of combustion QVCFor:
<mrow> <msub> <mi>Q</mi> <mrow> <mi>V</mi> <mi>C</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>3600</mn> <msub> <mi>m</mi> <mi>f</mi> </msub> <msub> <mi>&amp;eta;</mi> <mi>c</mi> </msub> <mi>H</mi> <mi>u</mi> </mrow> <mrow> <msub> <mi>A</mi> <mi>M</mi> </msub> <msub> <mi>L</mi> <mi>C</mi> </msub> <msubsup> <mi>P</mi> <mn>3</mn> <mo>*</mo> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
In formula, LcFor chamber length, ηGFor combustion efficiency of combustion chamber, AMSectional area, H are referred to for combustion chamberuFor aviation kerosine heat Value;
The total flow resistance coefficient φ in combustion chamberMFor:
φMgfMMh (6)
In formula, φgEnlargement loss for air-flow by diffuser, φfMFor total flow resistance system of each section wall air admission hole of burner inner liner Number, φMhFor the thermal resistance loss in burner inner liner;
<mrow> <msub> <mi>&amp;phi;</mi> <mi>g</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msub> <mi>A</mi> <mn>3</mn> </msub> <msub> <mi>A</mi> <mi>g</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>A</mi> <mi>M</mi> </msub> <msub> <mi>A</mi> <mn>3</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Wherein, AgFor diffuser intake extended area;
Total flow resistance coefficient φ of each section wall air admission hole of burner inner linerfMFor:
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>f</mi> <mi>M</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mo>&amp;lsqb;</mo> <mi>&amp;Sigma;</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;phi;</mi> <mrow> <mi>M</mi> <mi>i</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>0.5</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
In formula, φMiFor the local flow resistance coefficient of the i-th section of burner inner liner wall air admission hole
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>M</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>A</mi> <mrow> <mi>f</mi> <mi>i</mi> </mrow> </msub> <mrow> <msub> <mi>&amp;mu;</mi> <mi>i</mi> </msub> <msub> <mi>A</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>A</mi> <mi>M</mi> </msub> <msub> <mi>A</mi> <mrow> <mi>f</mi> <mi>i</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Wherein, μiFor the i-th discharge coefficient for discharging into stomata, AiFor i-th gross area for discharging into stomata, AfiFor i-th row's air inlet position Burner inner liner circulation area;
Thermal resistance loss φ in burner inner linerMhFor:
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>M</mi> <mi>h</mi> </mrow> </msub> <mo>=</mo> <mn>0.52</mn> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>T</mi> <mn>4</mn> <mo>*</mo> </msubsup> <msubsup> <mi>T</mi> <mn>3</mn> <mo>*</mo> </msubsup> </mfrac> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>A</mi> <mi>M</mi> </msub> <msub> <mi>A</mi> <mrow> <mi>f</mi> <mi>h</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
In formula,For combustor exit total temperature,Ratio, A are heated for combustion chamberfhFor last section of flame tube head Burner inner liner circulation area;
Combustor total pressure recovery coefficient σcFor:
<mrow> <msub> <mi>&amp;sigma;</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <msub> <mi>&amp;phi;</mi> <mi>M</mi> </msub> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>A</mi> <mn>3</mn> </msub> <msub> <mi>A</mi> <mi>M</mi> </msub> </mfrac> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
According to the distribution of burner inner liner local flow and the relation of local flow resistance coefficient, the air inlet of the i-th section of burner inner liner wall air admission hole Percentage KiFor:
<mrow> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;phi;</mi> <mrow> <mi>f</mi> <mi>M</mi> </mrow> </msub> <msub> <mi>&amp;phi;</mi> <mrow> <mi>M</mi> <mi>i</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>0.5</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
Corresponding to the excess air coefficient α in each sectioniFor:
<mrow> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>m</mi> <mi>a</mi> </msub> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mn>1</mn> <mi>i</mi> </munderover> <msub> <mi>K</mi> <mi>i</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>f</mi> </msub> <msub> <mi>L</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
In formula,For the overlaying flow percentage in the i-th section;
According to energy-balance equation, the total temperature in the i-th section in burner inner linerFor:
ηi(Hu-Dh)=αiL0(Ii-I3)+Hi-H0(14)
In formula, I3For combustion chamber import total temperatureUnder air unit heat content, DhLost for thermal dissociation, IiTo calculate section total temperatureUnder air unit heat content, ηiTo calculate the efficiency of combustion in section, H0For the constant-temperature combustion enthalpy difference under preset reference temperature, Hi To calculate section total temperatureUnder constant-temperature combustion enthalpy difference, the I in formulai、HiAll it isFunction, therefore, in known temperature strip Under part, Ii、HiFound, therefore can be obtained by iterative method by enthalpy tableFor the total temperature in last section of head;
Static pressure P in flame tube headfhFor:
<mrow> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mi>h</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>a</mi> <mi>n</mi> </mrow> <mo>*</mo> </msubsup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mi>a</mi> </msub> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mn>1</mn> <msub> <mi>N</mi> <mi>h</mi> </msub> </munderover> <msub> <mi>K</mi> <mi>i</mi> </msub> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mn>1</mn> <msub> <mi>N</mi> <mi>h</mi> </msub> </munderover> <msub> <mi>&amp;mu;</mi> <mi>i</mi> </msub> <msub> <mi>A</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msub> <mi>&amp;rho;</mi> <mi>M</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
In formula, NhFor flame tube head section number,For the overlaying flow percentage in each section of flame tube head, For the air admission hole effective area of the superposition in each section of flame tube head,For the ring cavity stagnation pressure of flame tube head, take
First with the total temperature in flame tube headAs TfhInitial value, then flame tube head interior air-flow density phFor:
<mrow> <msub> <mi>&amp;rho;</mi> <mi>h</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mi>h</mi> </mrow> </msub> <mrow> <msub> <mi>RT</mi> <mrow> <mi>f</mi> <mi>h</mi> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
The air velocity V in last section of flame tube head is obtained by following continuity equationh:
<mrow> <msub> <mi>V</mi> <mi>h</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mn>1</mn> <msub> <mi>N</mi> <mi>h</mi> </msub> </munderover> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>f</mi> </msub> </mrow> <mrow> <msub> <mi>&amp;rho;</mi> <mi>h</mi> </msub> <msub> <mi>A</mi> <mrow> <mi>f</mi> <mi>h</mi> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
Then, the air velocity coefficient lambda in last section of flame tube head is obtained by following formulah:
<mrow> <msub> <mi>&amp;lambda;</mi> <mi>h</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>V</mi> <mi>h</mi> </msub> <msqrt> <mrow> <mfrac> <mrow> <mn>2</mn> <mi>k</mi> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <msubsup> <mi>RT</mi> <mrow> <mi>f</mi> <mi>h</mi> </mrow> <mo>*</mo> </msubsup> </mrow> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
Finally, static temperature T in flame tube head is obtained by following formulafhValue:
<mrow> <msub> <mi>T</mi> <mrow> <mi>f</mi> <mi>h</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>T</mi> <mrow> <mi>f</mi> <mi>h</mi> </mrow> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <msubsup> <mi>&amp;lambda;</mi> <mi>h</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
TfhValue returns formula (16) as approximation generation, above-mentioned calculating is repeated, until front and rear T twicefhThe absolute error of value is less than pre- If being worth, then the stagnation pressure in flame tube head is obtained by following formula
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>f</mi> <mi>h</mi> </mrow> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mi>h</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&amp;rho;</mi> <mi>h</mi> </msub> <msubsup> <mi>V</mi> <mi>h</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
With the burner inner liner circulation area at the overlaying flow and respective cross-section in head Nei Ge sections, and by formula (13), formula (17) and Formula (18) obtains the excess air coefficient α in the i-th section respectivelyhi, air velocity VhiWith velocity coeffficient λhi, the jet stream in the i-th section in head Speed VjhiCalculated by following formula:
<mrow> <msub> <mi>V</mi> <mrow> <mi>j</mi> <mi>h</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mi>a</mi> </msub> <mfrac> <msub> <mi>K</mi> <mrow> <mi>h</mi> <mi>i</mi> </mrow> </msub> <mrow> <msub> <mi>&amp;mu;</mi> <mrow> <mi>h</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>A</mi> <mrow> <mi>h</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&amp;rho;</mi> <mn>3</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
Wherein, ρ3For combustion chamber inlet air flow density, KhiFor the flow percentage in the i-th section of flame tube head, μhiAhiFor flame The perforate effective area of the air admission hole in cylinder the i-th section of head;
The air mass flow of the i-th section wall air admission hole is m behind headai, overlaying flow be Σ mai, excess air coefficient αiAnd jet velocity Spend for Vji
The air mass flow m of i-th section wall air admission hole after flame tube headaiFor:
<mrow> <msub> <mi>m</mi> <mrow> <mi>a</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;mu;</mi> <mi>i</mi> </msub> <msub> <mi>A</mi> <mi>i</mi> </msub> <msqrt> <mrow> <mn>2</mn> <msub> <mi>&amp;rho;</mi> <mrow> <mi>a</mi> <mi>n</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>a</mi> <mi>n</mi> <mi>i</mi> </mrow> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
In formula, ρaniFor the ring cavity gas density in the i-th section, ρ is takenani≈ρM;Pf(i-1)For in burner inner liner (i-1) section it is quiet Pressure,For the ring cavity stagnation pressure in the i-th section, take
The superposition air mass flow Σ m in the i-th section behind headaiFor:
Σmai=mah+ΣKima (23)
In formula, mahFor the head air mass flow of burner inner liner, Σ KiFor the superposition air mass flow percentage in the i-th section;
The superposition gas flow Σ m in the i-th section behind headgiFor:
Σmgi=mf+Σmai (24)
The excess air coefficient α in the i-th section behind headiFor:
<mrow> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;Sigma;m</mi> <mrow> <mi>a</mi> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>f</mi> </msub> <msub> <mi>L</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow>
The effluxvelocity V of i-th section wall air admission hole behind headjiFor:
<mrow> <msub> <mi>V</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>m</mi> <mrow> <mi>a</mi> <mi>i</mi> </mrow> </msub> <mrow> <msub> <mi>&amp;mu;</mi> <mi>i</mi> </msub> <msub> <mi>A</mi> <mi>i</mi> </msub> <msub> <mi>&amp;rho;</mi> <mi>M</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow>
According to the excess air coefficient α in the i-th section after flame tube headi, iterated to calculate by formula (14), obtain the total of the i-th section behind head Temperature
(i-1) section is taken in burner inner liner to be as control volume, the control volume equation of momentum to the gas between i sections:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <msub> <mi>A</mi> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <mo>&amp;Sigma;</mo> <msub> <mi>m</mi> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <mn>0.5</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mrow> <mi>f</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>A</mi> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>a</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mi>cos</mi> <mi>&amp;beta;</mi> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>A</mi> <mrow> <mi>f</mi> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mo>&amp;Sigma;</mo> <msub> <mi>m</mi> <mrow> <mi>g</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>f</mi> <mi>i</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow>
In formula, Vfi、Vf(i-1)For in burner inner liner i-th and the combustion gas speed in (i-1) section, Pfi、Pf(i-1)For the i-th He in burner inner liner (i-1) static pressure in section, Afi、Af(i-1)For in burner inner liner i-th and the circulation area in (i-1) section, Σ mgi、Σmg(i-1)For fire In flame cylinder i-th and (i-1) section superposition gas flow, β is efflux angle;By PfifiRTfiWithSubstitution formula (27), obtain:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>RT</mi> <mrow> <mi>f</mi> <mi>i</mi> </mrow> </msub> <mfrac> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>A</mi> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow> <mi>f</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </mfrac> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>f</mi> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mfrac> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>A</mi> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow> <mi>f</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mo>&amp;Sigma;</mo> <msub> <mi>m</mi> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>a</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mi>cos</mi> <mi>&amp;beta;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;rho;</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mo>&amp;Sigma;</mo> <msub> <mi>m</mi> <mrow> <mi>g</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>A</mi> <mrow> <mi>f</mi> <mi>i</mi> </mrow> </msub> </mfrac> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow>
Above formula is solved on ρfiQuadratic equation with one unknown, obtain combustion gas density pfiValue, then obtained by formula (17), (18) and (19) quiet Warm TfiValue, by TfiValue repeats above calculating process as approximation, until front and rear T twicefiThe absolute error of approximation is less than pre- If value, the total temperature in the i-th section in burner inner liner behind head is finally obtainedStatic temperature TfiAnd current density ρfi
Behind head in burner inner liner the i-th section static pressure PfiCalculated by equation of state (16), air velocity VfiCalculated by formula (17), Velocity coeffficient λfiCalculated by formula (18), stagnation pressureCalculated by formula (20);After obtaining, the total pressure recovery coefficient σ of combustion chambercThen Calculated by following formula:
<mrow> <msub> <mi>&amp;sigma;</mi> <mi>c</mi> </msub> <mo>=</mo> <mfrac> <msubsup> <mi>P</mi> <mrow> <mi>f</mi> <mn>12</mn> </mrow> <mo>*</mo> </msubsup> <msubsup> <mi>P</mi> <mn>3</mn> <mo>*</mo> </msubsup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow>
In formula,For the stagnation pressure of burner inner liner outlet.
5. method as claimed in claim 4, it is characterised in that the preset reference temperature is 15 DEG C.
6. method as claimed in claim 4, it is characterised in that the preset value of the absolute error is 1%.
CN201711175310.7A 2017-11-22 2017-11-22 The quick Virtual Numerical Experiments method of deflector type combustion chamber aeroperformance Pending CN107992655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711175310.7A CN107992655A (en) 2017-11-22 2017-11-22 The quick Virtual Numerical Experiments method of deflector type combustion chamber aeroperformance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711175310.7A CN107992655A (en) 2017-11-22 2017-11-22 The quick Virtual Numerical Experiments method of deflector type combustion chamber aeroperformance

Publications (1)

Publication Number Publication Date
CN107992655A true CN107992655A (en) 2018-05-04

Family

ID=62032665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711175310.7A Pending CN107992655A (en) 2017-11-22 2017-11-22 The quick Virtual Numerical Experiments method of deflector type combustion chamber aeroperformance

Country Status (1)

Country Link
CN (1) CN107992655A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109408934A (en) * 2018-10-16 2019-03-01 北京动力机械研究所 The quasi- Three-dimensional Flow Virtual Numerical Experiments method of turbogenerator complete machine
CN109460626A (en) * 2018-12-06 2019-03-12 北京空天技术研究所 Punching engine performance parameter calculation method
CN109632325A (en) * 2018-12-17 2019-04-16 中国航发沈阳发动机研究所 A kind of main chamber flow allocation method
CN111859505A (en) * 2020-07-15 2020-10-30 中国民航大学 Flow distribution design method and device for miniature evaporation tube type combustion chamber
CN115031259A (en) * 2022-03-18 2022-09-09 北京航空航天大学 Gas turbine combustion chamber and design method thereof
CN115270319A (en) * 2022-06-21 2022-11-01 哈尔滨工程大学 Automatic design modeling method for combustion chamber of gas turbine
CN115901268A (en) * 2022-11-08 2023-04-04 中国航发沈阳发动机研究所 Method for accurately acquiring total pressure loss coefficient of combustion chamber on engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967465A (en) * 2012-12-07 2013-03-13 北京动力机械研究所 Fuel chamber virtual test method and system
CN202852885U (en) * 2012-10-24 2013-04-03 哈尔滨东安发动机(集团)有限公司 Baffling type annular combustion chamber
CN104272024A (en) * 2012-11-06 2015-01-07 日野自动车株式会社 Burner
US20160069261A1 (en) * 2014-09-05 2016-03-10 -Ing. Meinhard Taher Schobeiri Ultra-High Efficiency Gas Turbine (UHEGT) with Stator Internal Combustion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202852885U (en) * 2012-10-24 2013-04-03 哈尔滨东安发动机(集团)有限公司 Baffling type annular combustion chamber
CN104272024A (en) * 2012-11-06 2015-01-07 日野自动车株式会社 Burner
CN102967465A (en) * 2012-12-07 2013-03-13 北京动力机械研究所 Fuel chamber virtual test method and system
US20160069261A1 (en) * 2014-09-05 2016-03-10 -Ing. Meinhard Taher Schobeiri Ultra-High Efficiency Gas Turbine (UHEGT) with Stator Internal Combustion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
崔凝: "重型燃机联合循环机组实时动态仿真模型研究与应用", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *
王伟利 等: "涡扇发动机折流燃烧室的气动分析", 《战术导弹技术》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109408934A (en) * 2018-10-16 2019-03-01 北京动力机械研究所 The quasi- Three-dimensional Flow Virtual Numerical Experiments method of turbogenerator complete machine
CN109408934B (en) * 2018-10-16 2022-10-14 北京动力机械研究所 Turbine engine whole machine quasi-three-dimensional flow virtual numerical test method
CN109460626A (en) * 2018-12-06 2019-03-12 北京空天技术研究所 Punching engine performance parameter calculation method
CN109460626B (en) * 2018-12-06 2023-05-16 北京空天技术研究所 Method for calculating performance parameters of ramjet engine
CN109632325A (en) * 2018-12-17 2019-04-16 中国航发沈阳发动机研究所 A kind of main chamber flow allocation method
CN109632325B (en) * 2018-12-17 2021-05-25 中国航发沈阳发动机研究所 Main combustion chamber flow distribution method
CN111859505A (en) * 2020-07-15 2020-10-30 中国民航大学 Flow distribution design method and device for miniature evaporation tube type combustion chamber
CN111859505B (en) * 2020-07-15 2022-11-01 中国民航大学 Flow distribution design method and device for miniature evaporation tube type combustion chamber
CN115031259A (en) * 2022-03-18 2022-09-09 北京航空航天大学 Gas turbine combustion chamber and design method thereof
CN115270319A (en) * 2022-06-21 2022-11-01 哈尔滨工程大学 Automatic design modeling method for combustion chamber of gas turbine
CN115270319B (en) * 2022-06-21 2023-08-25 哈尔滨工程大学 Automatic design modeling method for combustion chamber of gas turbine
CN115901268A (en) * 2022-11-08 2023-04-04 中国航发沈阳发动机研究所 Method for accurately acquiring total pressure loss coefficient of combustion chamber on engine

Similar Documents

Publication Publication Date Title
CN107992655A (en) The quick Virtual Numerical Experiments method of deflector type combustion chamber aeroperformance
CN106569977B (en) Turboshaft engine starting process modeling method
CN105184015B (en) Punching engine verification method and verification system based on function model machine
Lolis Development of a preliminary weight estimation method for advanced turbofan engines
CN112417596B (en) Parallel grid simulation method for through-flow model of combustion chamber of aero-engine
Chen Unsteady three-dimensional thin layer Navier-Stokes solutions for turbomachinery in transonic flow
CN108108528A (en) A kind of split shaft boat changes the one-dimensional adaptation design method of combustion engine power turbine
Gieras et al. Computational study of an aerodynamic flow through a micro-turbine engine combustor.
CN109408934A (en) The quasi- Three-dimensional Flow Virtual Numerical Experiments method of turbogenerator complete machine
CN107077110A (en) Method for determining emission performance
Zhewen et al. A multi-fidelity simulation method research on front variable area bypass injector of an adaptive cycle engine
CN117077293B (en) Multi-disciplinary coupling performance simulation method and system for solid rocket engine
Duchaine et al. Integrated large eddy simulation of combustor and turbine interactions: Effect of turbine stage inlet condition
Khalid et al. Enhancing dynamic model fidelity for improved prediction of turbofanengine transient performance
Davis Jr A stage-by-stage post-stall compression system modeling technique: methodology, validation, and application
CN104897407B (en) A kind of engine stabilization scale reduction method
Chiong et al. Unsteady performance prediction of a single entry mixed flow turbine using 1-D gas dynamic code extended with meanline model
Jia et al. Research on the volume-based fully coupled method of the multi-fidelity engine simulation
Dittmar et al. Numerical analysis of the stability and operation of an axial compressor connected to an array of pulsed detonation combustors
VanZante et al. The attenuation of a detonation wave by an aircraft engine axial turbine stage
CN114626146A (en) Simulation method for combined power system
Liu et al. Throughflow method for a combustion chamber with effusion cooling modelling
Godard et al. A review of inlet-fan coupling methodologies
Schmitt et al. Evaluation of unsteady cfd methods by their application to a transonic propfan stage
Jagannath et al. Wave rotor combustor turbine model development

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180504

RJ01 Rejection of invention patent application after publication