CN107991754A - 一种适用于空间飞行器的大口径折叠光学装置及设计方法 - Google Patents

一种适用于空间飞行器的大口径折叠光学装置及设计方法 Download PDF

Info

Publication number
CN107991754A
CN107991754A CN201711139003.3A CN201711139003A CN107991754A CN 107991754 A CN107991754 A CN 107991754A CN 201711139003 A CN201711139003 A CN 201711139003A CN 107991754 A CN107991754 A CN 107991754A
Authority
CN
China
Prior art keywords
mirror
sub
laser
optical
spacecraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711139003.3A
Other languages
English (en)
Inventor
郑本昌
闫波
温聚英
郭剑
张佳
路鹰
张耀磊
王金昌
李成祥
晁鲁静
郭利明
乙冉冉
任金磊
孙健
高著秀
王玉林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Original Assignee
China Academy of Launch Vehicle Technology CALT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201711139003.3A priority Critical patent/CN107991754A/zh
Publication of CN107991754A publication Critical patent/CN107991754A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Astronomy & Astrophysics (AREA)
  • Sustainable Development (AREA)
  • Telescopes (AREA)

Abstract

本发明公开了一种适用于空间飞行器的大口径折叠光学装置及设计方法,其中,该装置包括仪器舱、主镜、遮光筒、次镜支撑杆和次镜;其中,所述仪器舱、所述主镜和所述遮光筒依次相连接;所述次镜支撑杆的一端套设于所述遮光筒,另一端与所述次镜相连接,所述次镜支撑杆能够沿所述遮光筒滑动;所述主镜包括中央子镜和若干个旁瓣子镜;其中,每个旁瓣子镜的底端与中央子镜的外圆周端销轴连接,相邻两个旁瓣子镜的折叠方向相反;若干个旁瓣子镜沿中央子镜的外圆周分布。本发明解决了现有大口径空间光学装置尺寸大受限于运载空间、现有大口径空间光学装置功能单一和现有大型空间光机系统难以进行空间自主校正的问题。

Description

一种适用于空间飞行器的大口径折叠光学装置及设计方法
技术领域
本发明属于空间光机系统设计技术领域,尤其涉及一种适用于空间飞行器的大口径折叠光学装置及设计方法。
背景技术
大口径空间光机系统在对地观测、深空探测等领域的应用具有重要意义。对于数米级口径以上的光机系统来说,尺寸和质量均超出了现有的运载能力的极限,因此寻求折叠展开式的轻质空间用光机系统成为必然趋势。
(1)大口径空间光机系统在对地观测、深空探测等领域的应用具有重要意义。现有的大口径光机系统一般采用整体式设计,尺寸和质量均超出了现有的运载能力的极限,难以被送入空间应用。
(2)现有的空间光机系统功能较为单一,一般只用于探测成像,对于强激光发射、激光测距等功能往往采用多个设备,功能分散,不利于集成化设计。
(3)现有的大型空间光机系统难以进行空间自主校正,由于要承受运载复杂力学载荷环境,容易造成光机系统性能下降。
发明内容
本发明解决的技术问题是:克服现有技术的不足,提供一种适用于空间飞行器的大口径折叠光学装置及设计方法,解决了现有大口径空间光学装置尺寸大受限于运载空间、现有大口径空间光学装置功能单一和现有大型空间光机系统难以进行空间自主校正的问题。
本发明的技术方案是:根据本发明的一个方面,提供了一种适用于空间飞行器的大口径折叠光学装置,包括:仪器舱、主镜、遮光筒、次镜支撑杆和次镜;其中,所述仪器舱、所述主镜和所述遮光筒依次相连接;所述次镜支撑杆的一端套设于所述遮光筒,另一端与所述次镜相连接,所述次镜支撑杆能够沿所述遮光筒滑动;所述主镜包括中央子镜和若干个旁瓣子镜;其中,每个旁瓣子镜的底端与中央子镜的外圆周端销轴连接,相邻两个旁瓣子镜的折叠方向相反;若干个旁瓣子镜沿中央子镜的外圆周分布。
上述适用于空间飞行器的大口径折叠光学装置中,所述次镜支撑杆包括第一圆环部、若干个套杆和第二圆环部;其中,所述第一圆环部通过若干个套杆和所述第二圆环部相连接;所述第一圆环部套设于所述遮光筒;所述第二圆环部与所述次镜相连接。
上述适用于空间飞行器的大口径折叠光学装置中,所述仪器舱包括快速反射镜、发射分光片、第一光束整形镜组和激光器;其中,激光器发射激光经过第一光束整形镜组整形后变成平行光,平行光经过发射分光片反射到快速反射镜,经过快速反射镜反射到次镜,经次镜反射到主镜,再经主镜反射到空间目标。
上述适用于空间飞行器的大口径折叠光学装置中,所述仪器舱还包括第一接收分光片、第二滤光片、第三光束整形镜组、激光测距接收模块、激光发射斜劈和激光测距发射激光器;其中,激光测距发射激光器发射激光到激光发射斜劈,经激光发射斜劈反射到第一接收分光片,经第一接收分光片反射到发射分光片,经发射分光片透射到快速反射镜,经过快速反射镜反射到次镜,经次镜反射到主镜,再经主镜反射到空间目标,空间目标将反射到其的激光再漫反射至主镜,再反射到次镜,再依次经过次镜、快速反射镜、发射分光片和第一接收分光片反射到第二滤光片,经第二滤光片滤光后通过第三光束整形镜组会聚进入激光测距接收模块,激光测距接收模块得到空间目标的距离。
上述适用于空间飞行器的大口径折叠光学装置中,所述仪器舱还包括第一滤光片、第二光束整形镜组、可见光探测CCD、第四光束整形镜组、波前检测探测器和第二接收分光片;其中,空间目标漫反射的自然光反射至主镜,再反射到次镜,再依次经过次镜、快速反射镜、发射分光片和第一接收分光片进入到第二接收分光片,透射第二接收分光片的光进入到第一滤光片,经第一滤光片滤光后再经第二光束整形镜组会聚到可见光探测CCD,可见光探测CCD得到空间目标的图像;经第二接收分光片反射的光经第四光束整形镜组会聚到波前检测探测器,波前检测探测器得到图像畸变信息。
上述适用于空间飞行器的大口径折叠光学装置中,所述次镜设置有光学校正机构,光学校正机构包括电容传感器和致动器;其中,电容传感器感知次镜与主镜的距离信息;致动器根据次镜与主镜的距离信息和图像畸变信息调整次镜的面形和位置。
上述适用于空间飞行器的大口径折叠光学装置中,若干个旁瓣子镜沿中央子镜的外圆周均匀分布。
上述适用于空间飞行器的大口径折叠光学装置中,每个旁瓣子镜的背面设置有锁紧定位机构,锁紧定位机构包括连杆、滑块、滑道、固定轴和转轴;其中,所述仪器舱的外壁开设有所述滑道,所述滑块嵌设于所述滑道;所述滑块通过所述连杆与所述固定轴相连接;每个旁瓣子镜的底端通过所述转轴与中央子镜的外圆周端销轴连接。
上述适用于空间飞行器的大口径折叠光学装置中,所述仪器舱的形状为棱柱,其中,棱柱的每个侧面的宽度与相对应的旁瓣子镜的底端弧长一致。
根据本发明的另一个方面,还提供了一种适用于空间飞行器的大口径折叠光学装置设计方法,所述方法包括以下步骤:将仪器舱与主镜的中央子镜相连接,将主镜的中央子镜与遮光筒相连接;将次镜支撑杆的一端套设于遮光筒,将次镜支撑杆的另一端与次镜相连接,次镜支撑杆能够沿遮光筒滑动;将每个旁瓣子镜的底端与中央子镜的外圆周端销轴连接;其中,相邻两个旁瓣子镜的折叠方向相反。
本发明与现有技术相比的优点在于:
(1)本发明通过主镜的折叠展开的设计方案,能够大幅减少系统体积,提升运载适应能力。
(2)本发明共用一套主次镜光学镜头,同时实现强激光发射、激光测距和探测功能,提升了系统的集成化,可应用于激光碎片清除方向。
(3)本发明通过光学校正机构能够在空间进行自主光学机构校正,有效提升光机系统性能。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1是本发明实施例提供的空间大口径折叠展开光机结构展开状态下结构示意图;
图2是本发明实施例提供的空间大口径折叠展开光机结构主镜剖分方案示意图;
图3是本发明实施例提供的锁紧定位机构示意图;
图4是本发明实施例提供的空间大口径折叠展开光机结构次镜伸缩结构示意图;
图5是本发明实施例提供的空间大口径折叠展开光机结构折叠状态下结构示意图;
图6是本发明实施例提供的空间大口径折叠展开光机结构光路系统原理图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
装置实施例
图1是本发明实施例提供的空间大口径折叠展开光机结构展开状态下结构示意图。如图1所示,本实施例提供了空间大口径折叠光学装置设计方案,其展开状态如图1所示,包括仪器舱300、主镜1、遮光筒100、次镜支撑杆200和次镜2;其中,仪器舱300、主镜1和遮光筒100依次相连接;次镜支撑杆200的一端套设于遮光筒100,另一端与次镜2相连接,次镜支撑杆200能够沿其遮光筒100滑动。进一步的,仪器舱300的形状为棱柱,其中,棱柱的每个侧面的宽度与相对应的旁瓣子镜102的底端弧长一致。通过这种设置,从而使得旁瓣子镜朝仪器舱折叠时,相接触的是面面接触,从而使得旁瓣子镜的折叠效果好,更好的减小系统体积。
图2是本发明实施例提供的空间大口径折叠展开光机结构主镜剖分方案示意图。如图2所示,主镜1采用花瓣式方案,包括中央子镜1001和若干个旁瓣子镜1002;其中,每个旁瓣子镜1002的底端与中央子镜1001的外圆周端销轴连接,相邻两个旁瓣子镜1002的折叠方向相反;若干个旁瓣子镜1002沿中央子镜1001的外圆周均匀分布;
图3是本发明实施例提供的锁紧定位机构示意图。如图3所示,每个旁瓣子镜的背面设置有锁紧定位机构,锁紧定位机构包括连杆1005、滑块1006、滑道1007、固定轴1003和转轴1004;其中,仪器舱300的外壁开设有滑道1007,滑块1006嵌设于滑道1007;滑块1006通过连杆1005与固定轴1003相连接;每个旁瓣子镜1002的底端通过转轴1004与中央子镜1001的外圆周端销轴连接。通过驱动滑块的上下移动,可以带动旁瓣子镜绕转轴旋转,从而达到使旁瓣子镜按要求展开或合拢的效果。
图4是本发明实施例提供的空间大口径折叠展开光机结构次镜伸缩结构示意图。如图4所示,次镜支撑杆200包括第一圆环部210、若干个套杆220和第二圆环部230;其中,第一圆环部210通过若干个套杆220和第二圆环部230相连接;第一圆环部210套设于遮光筒100;第二圆环部230与次镜2相连接。次镜2展开动作为沿着光轴方向的直线平动,在位于主镜1中央子镜的遮光筒外部有次镜支撑杆200,同时也起到导柱的作用。这种伸缩式滑筒设计方式,既能够实现次镜2的伸缩也能够遮挡杂散光。
图5是本发明实施例提供的空间大口径折叠展开光机结构折叠状态下结构示意图。如图5所示是主镜1折叠和次镜2收缩状态,相比于如图1所示的展开张太,折叠状态可以大幅减小装置体积,有效利用运载空间。在运载主动段时,本光学装置处于如图5所示的折叠状态,进入空间后展开。在展开后需要对光机系统性能进行检测校正。其基本原理是先在地面进行标定,通过对空间固定的恒星进行星光成像,调整好光机系统结构,进入空间后对同样的恒星进行星光成像,此时检测成像质量。如果成像质量发生变化,则进行光学校正。
次镜2设置有光学校正机构,光学校正机构包括电容传感器和致动器;其中,电容传感器感知次镜与主镜的距离信息,电容传感器具有检测速度快、精度高的优点;致动器根据次镜与主镜的距离信息和图像畸变信息调整次镜的面形和位置。通过若干次调整迭代,可以实现对光机系统的自主校正。传统的校正方案中一般是校正主镜,需要的器件多,系统复杂,本实施例中提出直接调整次镜2,在实现面形检测和校正的同时可以最小化系统复杂程度。
图6是本发明实施例提供的空间大口径折叠展开光机结构光路系统原理图。如图6所示是仪器舱300中包含的中继光路系统,包括快速反射镜3、发射分光片4、第一接收分光片5、第一光束整形镜组6、激光器7、第一滤光片8、第二光束整形镜组9、可见光探测CCD10、第二滤光片11、第三光束整形镜组12、激光测距接收模块13、激光发射斜劈14、激光测距发射激光器15、第四光束整形镜组16、波前检测探测器17和第二接收分光片18;
激光器7发射激光经过第一光束整形镜组6整形后变成平行光,平行光经过发射分光片4反射到快速反射镜3,经过快速反射镜3反射到次镜2,经次镜2反射到主镜1,再经主镜1反射到空间目标;
激光测距发射激光器15发射激光到激光发射斜劈14,经激光发射斜劈14反射到第一接收分光片5,经第一接收分光片5反射到发射分光片4,经发射分光片4透射到快速反射镜3,经过快速反射镜3反射到次镜2,经次镜2反射到主镜1,再经主镜1反射到空间目标,空间目标将反射到其的激光再漫反射至主镜1,再反射到次镜2,再依次经过次镜2、快速反射镜3、发射分光片4和第一接收分光片5反射到第二滤光片11,经第二滤光片11滤光后通过第三光束整形镜组12会聚进入激光测距接收模块13,激光测距接收模块13得到空间目标的距离;
空间目标漫反射的自然光反射至主镜1,再反射到次镜2,再依次经过次镜2、快速反射镜3、发射分光片4和第一接收分光片5进入到第二接收分光片18,透射第二接收分光片18的光进入到第一滤光片8,经第一滤光片8滤光后(主要滤去激光测距发射激光器15的测距光)再经第二光束整形镜组9会聚到可见光探测CCD10,可见光探测CCD10得到空间目标的图像;经第二接收分光片18反射的光经第四光束整形镜组16会聚到波前检测探测器17,波前检测探测器17得到图像畸变信息。
光路系统采用共口径设计,共用一个光学前段,后面通过分光设计,实现了强激光发射、激光测距和目标探测功能一体化设计,大大缩小了光学系统体积。
本实施例通过主镜的折叠展开的设计方案,能够大幅减少系统体积,提升运载适应能力;本实施例共用一套主次镜光学镜头,同时实现强激光发射、激光测距和探测功能,提升了系统的集成化,可应用于激光碎片清除方向;本实施例通过光学校正机构能够在空间进行自主光学机构校正,有效提升光机系统性能。
方法实施例
本实施例还提供了一种适用于空间飞行器的大口径折叠光学装置设计方法,结合图1,该方法包括以下步骤:将仪器舱300与主镜1的中央子镜1001相连接,将主镜1的中央子镜1001与遮光筒100相连接;将次镜支撑杆200的一端套设于遮光筒100,将次镜支撑杆200的另一端与次镜2相连接,次镜支撑杆200能够沿遮光筒100滑动;将每个旁瓣子镜1002的底端与中央子镜1001的外圆周端销轴连接;其中,相邻两个旁瓣子镜1002的折叠方向相反。
上述实施例中,结合图4,次镜支撑杆200包括第一圆环部210、若干个套杆220和第二圆环部230;其中,第一圆环部210通过若干个套杆220和第二圆环部230相连接;第一圆环部210套设于遮光筒100;第二圆环部230与次镜2相连接。
本实施例通过主镜的折叠展开的设计方案,能够大幅减少系统体积,提升运载适应能力。
以上所述的实施例只是本发明较优选的具体实施方式,本领域的技术人员在本发明技术方案范围内进行的通常变化和替换都应包含在本发明的保护范围内。

Claims (10)

1.一种适用于空间飞行器的大口径折叠光学装置,其特征在于包括:仪器舱(300)、主镜(1)、遮光筒(100)、次镜支撑杆(200)和次镜(2);其中,
所述仪器舱(300)、所述主镜(1)和所述遮光筒(100)依次相连接;
所述次镜支撑杆(200)的一端套设于所述遮光筒(100),另一端与所述次镜(2)相连接,所述次镜支撑杆(200)能够沿所述遮光筒(100)滑动;
所述主镜(1)包括中央子镜(1001)和若干个旁瓣子镜(1002);其中,每个旁瓣子镜(1002)的底端与中央子镜(1001)的外圆周端销轴连接,相邻两个旁瓣子镜(1002)的折叠方向相反;若干个旁瓣子镜(1002)沿中央子镜(1001)的外圆周分布。
2.根据权利要求1所述的适用于空间飞行器的大口径折叠光学装置,其特征在于,所述次镜支撑杆(200)包括第一圆环部(210)、若干个套杆(220)和第二圆环部(230);其中,
所述第一圆环部(210)通过若干个套杆(220)和所述第二圆环部(230)相连接;
所述第一圆环部(210)套设于所述遮光筒(100);
所述第二圆环部(230)与所述次镜(2)相连接。
3.根据权利要求1所述的适用于空间飞行器的大口径折叠光学装置,其特征在于,所述仪器舱(300)包括快速反射镜(3)、发射分光片(4)、第一光束整形镜组(6)和激光器(7);其中,
激光器(7)发射激光经过第一光束整形镜组(6)整形后变成平行光,平行光经过发射分光片(4)反射到快速反射镜(3),经过快速反射镜(3)反射到次镜(2),经次镜(2)反射到主镜(1),再经主镜(1)反射到空间目标。
4.根据权利要求3所述的适用于空间飞行器的大口径折叠光学装置,其特征在于,所述仪器舱(300)还包括第一接收分光片(5)、第二滤光片(11)、第三光束整形镜组(12)、激光测距接收模块(13)、激光发射斜劈(14)和激光测距发射激光器(15);其中,
激光测距发射激光器(15)发射激光到激光发射斜劈(14),经激光发射斜劈(14)反射到第一接收分光片(5),经第一接收分光片(5)反射到发射分光片(4),经发射分光片(4)透射到快速反射镜(3),经过快速反射镜(3)反射到次镜(2),经次镜(2)反射到主镜(1),再经主镜(1)反射到空间目标,空间目标将反射到其的激光再漫反射至主镜(1),再反射到次镜(2),再依次经过次镜(2)、快速反射镜(3)、发射分光片(4)和第一接收分光片(5)反射到第二滤光片(11),经第二滤光片(11)滤光后通过第三光束整形镜组(12)会聚进入激光测距接收模块(13),激光测距接收模块(13)得到空间目标的距离。
5.根据权利要求4所述的适用于空间飞行器的大口径折叠光学装置,其特征在于,所述仪器舱(300)还包括第一滤光片(8)、第二光束整形镜组(9)、可见光探测CCD(10)、第四光束整形镜组(16)、波前检测探测器(17)和第二接收分光片(18);其中,
空间目标漫反射的自然光反射至主镜(1),再反射到次镜(2),再依次经过次镜(2)、快速反射镜(3)、发射分光片(4)和第一接收分光片(5)进入到第二接收分光片(18),透射第二接收分光片(18)的光进入到第一滤光片(8),经第一滤光片(8)滤光后再经第二光束整形镜组(9)会聚到可见光探测CCD(10),可见光探测CCD(10)得到空间目标的图像;经第二接收分光片(18)反射的光经第四光束整形镜组(16)会聚到波前检测探测器(17),波前检测探测器(17)得到图像畸变信息。
6.根据权利要求1-5任一所述的适用于空间飞行器的大口径折叠光学装置,其特征在于,所述次镜(2)设置有光学校正机构,光学校正机构包括电容传感器和致动器;其中,电容传感器感知次镜与主镜的距离信息;致动器根据次镜与主镜的距离信息和图像畸变信息调整次镜的面形和位置。
7.根据权利要求1所述的适用于空间飞行器的大口径折叠光学装置,其特征在于,若干个旁瓣子镜(1002)沿中央子镜(1001)的外圆周均匀分布。
8.根据权利要求1所述的适用于空间飞行器的大口径折叠光学装置,其特征在于,每个旁瓣子镜的背面设置有锁紧定位机构,锁紧定位机构包括连杆(1005)、滑块(1006)、滑道(1007)、固定轴(1003)和转轴(1004);其中,
所述仪器舱(300)的外壁开设有所述滑道(1007),所述滑块(1006)嵌设于所述滑道(1007);
所述滑块(1006)通过所述连杆(1005)与所述固定轴(1003)相连接;
每个旁瓣子镜(1002)的底端通过所述转轴(1004)与中央子镜(1001)的外圆周端销轴连接。
9.根据权利要求1所述的适用于空间飞行器的大口径折叠光学装置,其特征在于,所述仪器舱(300)的形状为棱柱,其中,棱柱的每个侧面的宽度与相对应的旁瓣子镜(1002)的底端弧长一致。
10.一种适用于空间飞行器的大口径折叠光学装置设计方法,其特征在于,所述方法包括以下步骤:
将仪器舱(300)与主镜(1)的中央子镜(1001)相连接,将主镜(1)的中央子镜(1001)与遮光筒(100)相连接;
将次镜支撑杆(200)的一端套设于遮光筒(100),将次镜支撑杆(200)的另一端与次镜(2)相连接,次镜支撑杆(200)能够沿遮光筒(100)滑动;
将每个旁瓣子镜(1002)的底端与中央子镜(1001)的外圆周端销轴连接;其中,相邻两个旁瓣子镜(1002)的折叠方向相反。
CN201711139003.3A 2017-11-16 2017-11-16 一种适用于空间飞行器的大口径折叠光学装置及设计方法 Pending CN107991754A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711139003.3A CN107991754A (zh) 2017-11-16 2017-11-16 一种适用于空间飞行器的大口径折叠光学装置及设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711139003.3A CN107991754A (zh) 2017-11-16 2017-11-16 一种适用于空间飞行器的大口径折叠光学装置及设计方法

Publications (1)

Publication Number Publication Date
CN107991754A true CN107991754A (zh) 2018-05-04

Family

ID=62031664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711139003.3A Pending CN107991754A (zh) 2017-11-16 2017-11-16 一种适用于空间飞行器的大口径折叠光学装置及设计方法

Country Status (1)

Country Link
CN (1) CN107991754A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526741A (zh) * 2020-12-22 2021-03-19 北京遥测技术研究所 一种星载双波长同轴反射式激光扩束镜
CN115980962A (zh) * 2022-11-30 2023-04-18 中国科学院长春光学精密机械与物理研究所 一种聚光结构、装置以及系统
CN116841001A (zh) * 2023-08-31 2023-10-03 中国科学院长春光学精密机械与物理研究所 轻质大型光学反射镜阵面支撑结构及其安装方法
CN117130172A (zh) * 2023-10-25 2023-11-28 中国科学院长春光学精密机械与物理研究所 一种拼接式空间望远镜全局装调方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118579A (en) * 1998-04-04 2000-09-12 Endemann; Thomas R. Planetary astrographic telescope
CN102628978A (zh) * 2012-03-26 2012-08-08 北京空间机电研究所 一种次镜可伸缩的轻小型相机光机系统
CN105629481A (zh) * 2014-11-05 2016-06-01 北京航天计量测试技术研究所 一种高能激光、探测成像光及远距离测距激光共光路结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118579A (en) * 1998-04-04 2000-09-12 Endemann; Thomas R. Planetary astrographic telescope
CN102628978A (zh) * 2012-03-26 2012-08-08 北京空间机电研究所 一种次镜可伸缩的轻小型相机光机系统
CN105629481A (zh) * 2014-11-05 2016-06-01 北京航天计量测试技术研究所 一种高能激光、探测成像光及远距离测距激光共光路结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘志全,孙国鹏: "空间光学遥感器的主镜展开机构", 《中国空间科学技术》 *
王翔,张广宇,初昶波,胡玉禧,马德胜: "空间大口径望远镜可展开镜片系统的概念设计", 《机械设计与研究》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526741A (zh) * 2020-12-22 2021-03-19 北京遥测技术研究所 一种星载双波长同轴反射式激光扩束镜
CN115980962A (zh) * 2022-11-30 2023-04-18 中国科学院长春光学精密机械与物理研究所 一种聚光结构、装置以及系统
CN116841001A (zh) * 2023-08-31 2023-10-03 中国科学院长春光学精密机械与物理研究所 轻质大型光学反射镜阵面支撑结构及其安装方法
CN116841001B (zh) * 2023-08-31 2023-11-10 中国科学院长春光学精密机械与物理研究所 轻质大型光学反射镜阵面支撑结构及其安装方法
CN117130172A (zh) * 2023-10-25 2023-11-28 中国科学院长春光学精密机械与物理研究所 一种拼接式空间望远镜全局装调方法、装置、设备及介质
CN117130172B (zh) * 2023-10-25 2024-01-02 中国科学院长春光学精密机械与物理研究所 一种拼接式空间望远镜全局装调方法、装置、设备及介质

Similar Documents

Publication Publication Date Title
CN107991754A (zh) 一种适用于空间飞行器的大口径折叠光学装置及设计方法
US5905591A (en) Multi-aperture imaging system
CN109150302B (zh) 一种光通信系统的光轴自校准装置及方法
US6837586B2 (en) Ring optical interferometer
Guyon Wide field interferometric imaging with single-mode fibers
CN104848945A (zh) 一种相干扫描波前探测方法及系统
Minowa et al. Subaru laser guide adaptive optics system: performance and science operation
CN109739015B (zh) 一种小型化回扫补偿光学系统的折反式望远系统设计方法
Ge et al. Simultaneous measurements of sodium column density and laser guide star brightness
CN116594188B (zh) 大口径望远镜库德光路的装调方法
CN100443869C (zh) 高稳定度高光谱分辨率干涉成像光谱仪成像方法及光谱仪
CN114185162B (zh) 一种简约型搜索跟踪一体化光学系统
KR20240022515A (ko) 가시광선 및 적외선 대역에서 고해상도 이미징을 위한 디옵트릭 망원경
Schwartz et al. Design of the HARMONI Pyramid WFS module
Garcia-Talavera et al. Analysis of large optical ground stations for deep-space optical communications
CN109884776B (zh) 基于像素级滤光片的大视场、低畸变高光谱光学系统
US8044332B2 (en) Hybrid architecture active wavefront sensing and control system, and method
Contos et al. Laser guide star adaptive optics at the Keck Observatory
CN106342249B (zh) 激光合成孔径成像系统
Gavel et al. Concept for the keck next generation adaptive optics system
CN216013811U (zh) 一种基于共相位技术的新型天文望远镜
Oakes et al. Techniques and results for the calibration of the MST prototype for the Cherenkov telescope array
Hénault Nulling interferometry in space does not require a rotating telescope array
Hippler et al. ALFA: three years of experience in adaptive optics with a laser guide star
Rao et al. Bhavnagar Telescope: the most widely travelled telescope in the country

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180504