CN107991262A - 一种在低悬移质含沙量下的红外光学式自动测沙装置和方法 - Google Patents

一种在低悬移质含沙量下的红外光学式自动测沙装置和方法 Download PDF

Info

Publication number
CN107991262A
CN107991262A CN201711463031.0A CN201711463031A CN107991262A CN 107991262 A CN107991262 A CN 107991262A CN 201711463031 A CN201711463031 A CN 201711463031A CN 107991262 A CN107991262 A CN 107991262A
Authority
CN
China
Prior art keywords
silt content
infrared analysis
determining sand
infrared
under low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711463031.0A
Other languages
English (en)
Other versions
CN107991262B (zh
Inventor
曾淳灏
区松顺
黄桂英
陈容
聂伯武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou And Time Electronic Technology Co Ltd
Original Assignee
Guangzhou And Time Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou And Time Electronic Technology Co Ltd filed Critical Guangzhou And Time Electronic Technology Co Ltd
Priority to CN201711463031.0A priority Critical patent/CN107991262B/zh
Publication of CN107991262A publication Critical patent/CN107991262A/zh
Application granted granted Critical
Publication of CN107991262B publication Critical patent/CN107991262B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及水文测沙技术领域,公开了一种在低悬移质含沙量下的红外光学式自动测沙装置和方法。自动测沙装置包括导轨、设置于导轨上并沿导轨运动的滑轮装置,以及由滑轮装置直接或间接带动沿导轨上下运动的高度调节装置、红外测沙传感器和数据采集与控制模块;所述高度调节装置使得红外测沙传感器与水面保持距离;所述红外测沙传感器的朝向与水面相平行;所述数据采集与控制模块用以数据处理和通信。本发明的自动测沙装置开创性的采用浮动测量方案,通过高度调节装置确保了在不同时间段或不同水位时红外测沙传感器能够在与水面保持相同距离进行测量,有效的提高了测量精度和准确性。

Description

一种在低悬移质含沙量下的红外光学式自动测沙装置和方法
技术领域
本发明涉及水文测沙的技术领域,具体地,涉及一种在低悬移质含沙量下的红外光学式自动测沙装置和方法。
背景技术
在水文学中,泥沙一般是指在河道水流作用下移动着或曾经移动的固体颗粒。水流挟带着泥沙运动,河床又由泥沙组成,两者之间的泥沙经常发生交换,这种交换引起了河床的冲淤变化。
而悬移质也称悬沙,是指被水流挟带,而远离河床悬浮于水中,随水流向前浮游运动的泥沙。一般把自河底泥沙粒径的两倍以上至水面之间运动的泥沙视为悬移质。由于水流的紊动保持悬浮,在相当长的时间内这部分泥沙不与河床接触。
水文上传统的悬移质泥沙测验方法为:使用泥沙采样仪器现场采样,在测沙室采用烘干法,计算悬移质泥沙含量。其中,现场采样要耗费大量的时间和人力,而且在高洪时进行野外取样工作,存在较高的风险。此外,烘干法有沉淀浓缩水样,烘干冷却装有浓缩水样烧杯这两个步骤,根据含沙量的不同,所需的时间也不同,但至少需要7天进行沉淀,8小时进行烘干,步骤繁琐,时效性差。传统的悬移质取样测验方法,无法实时在线测量,难以捕捉沙峰,不符合当前水文发展的趋势。
目前可用于在线测量的测沙仪主要有以下四种类型:同位素测沙仪,超声波测沙仪,红外光测沙仪,振动测沙仪。其中,同位素测沙仪的测量范围较广,可到1000kg/m3,但在低含沙量下的分辨率不理想,且存在辐射问题。超声波测沙仪体积较大,价格昂贵,难以安装。振动测沙仪则要求安装位置的流速必须较大,此外,在流速较小,或含沙量较大时,容易堵塞振动管,无法正常测量。红外光测沙仪体积小,便于安装,在低含沙量下测量精准。
我国华南区的基本水文站,大部分站点上下游均有水利工程,且水土保持力度持续加大,因此粒径大的悬移质颗粒大部分被拦截在闸门下,这也使得河流的悬移质泥沙在断面的横向分布上趋于均匀,是水文站实现悬移质泥沙在线监测的有利条件。
发明内容
本发明解决的技术问题在于克服现有技术的缺陷,提供一种在低悬移质含沙量下的红外光学式自动测沙装置;
本发明的另一目的在于提供一种在低悬移质含沙量下的红外光学式自动测沙方法。
本发明目的通过以下技术方案实现:
一种在低悬移质含沙量下的红外光学式自动测沙装置,包括导轨、设置于导轨上并沿导轨运动的滑轮装置,以及由滑轮装置直接或间接带动沿导轨上下运动的高度调节装置、红外测沙传感器和数据采集与控制模块;所述高度调节装置使得红外测沙传感器与水面保持距离;所述数据采集与控制模块用以数据处理和通信。
发明人意外发现泥沙含量与水深的关系曲线,以及红外测沙传感器在不同水深不同泥沙浓度不同水流朝向下的测量精准度影响,为此本发明的自动测沙装置开创性的采用浮动测量方案,通过高度调节装置确保了在不同时间段或不同水位时红外测沙传感器能够在与水面保持相同距离进行测量,有效的提高了测量精度和准确性。
进一步地,所述红外测沙传感器包括后散射和侧散射两个光学传感器和温度传感器。
进一步地,所述红外测沙传感器设置在高度调节装置上;所述高度调节装置为浮筒或浮球;优选地,所述浮筒的浮力大小为确保红外测沙传感器保持在水下0.5~1m之间的水深处。发明人意外发现在水面下0.5~1m之间的水深处测量的含沙量最具代表性,精确度和准确度也最高。水面下是指以水面为参考面。由于沙含量与水深存在的关系曲线,本发明采用浮动式测量,以水面为参考面,确保了红外测沙传感器的测量点与含沙量的关系。同时,在水面下0.5米深以下可以避免了自然界阳光对红外光谱产生影响。优选地,所述浮筒设有水深测量传感器。或所述浮筒设有荧光浮标。或所述浮筒设有竖直的直杆,所述导轨上设有水位观察标尺。所述直杆的长度大于浮筒与水面的距离。本发明通过直杆和水位观察标尺结合来观测红外测沙传感器的水深。
进一步地,所述高度调节装置上设有用于安装数据采集与控制模块的支架,所述支架的长度为大于高度调节装置与水面之间的距离。所述支架用于确保数据采集与控制模块露出水面,避免长期浸泡而损坏。优选地,所述支架设有高度调节器,在不同水域根据测量水深的需求,而调整支架的高度。优选地,高度调节器为伸缩套管。
进一步地,所述滑轮装置包括至少两个滑轮和安装支架,所述滑轮设置于安装支架上;所述滑轮与导轨上的凹槽或凸起相配合;所述安装支架与浮筒连接。
优选地,所述安装支架通过抱箍与浮筒连接。
进一步地,所述滑轮装置设有网罩来罩住。所述网罩罩住滑轮装置以免水中杂物卡住滑轮装置。
优选地,所述红外测沙传感器的朝向与水面相平行。
进一步地,所述高度调节装置上设有用于调节方位的云台,所述红外测沙传感器设置在云台上。所述云台为三维云台或球形云台等。
所述云台为电动云台,所述电动云台是由两台执行电动机来实现,电动机接受来自控制器的信号精确地运行定位。在控制信号的作用下,云台上的红外测沙传感器可调整朝向,也可在监控中心值班人员的操纵下调整朝向。
进一步地,所述红外测沙传感器上设有方位检测传感器;所述方位检测传感器与数据采集与控制模块连接。所述方位检测传感器用集成在一起的加速度计、陀螺仪和磁感应计三个传感器通过与静止时重力和地磁场的比较得出当前时刻追踪器的姿态,再结合姿态和加速度进行积分得出空间位置。所述方位检测传感器能够检测红外测沙传感器的方位,避免因水流等冲击而改变朝向,影响检测准确性。
一种所述在低悬移质含沙量下的红外光学式自动测沙装置的测沙方法,包括以下步骤:
S1.调节红外测沙传感器与水面之间的距离;测量开始前先预热仪器,直到仪器测量前后的温度相差不超过0.5℃,达到温度平衡后再开始正式测量;
S2.数据采集与控制模块向红外测沙传感器发送测量指令,接收并处理红外测沙传感器返回的浊度数据,根据标准偏差的大小,判定是否需要重测;
S3.建立浊度数据与含沙量的关系:
Y=aX,其中Y为含沙量,X为浊度,a为系数;
S4.建立含沙量与国家标准方法测量的含沙量数据建立数学模型;
S5.将测得的浊度数据代入S4的数学模型,求得实际含沙量。
本发明通过在距离水面一定深处测定泥沙含量,采用红外测沙传感器测得准确的浊度数据。通过与《河流悬移质泥沙测验规范》(GB/T 50159-2015)国家标准方法测得的数据进行建模,建立了适宜测量当地的数学模型,测量结果准确度高。
优选地,红外测沙传感器所测为浊度,浊度的定义是1浊度(NTU)为1L水含1mg的二氧化硅颗粒,水文上的单位为0.001kg/m3。a为0.01。
进一步地,步骤S4中所述数学模型为:
Y’=a’Y+b或Y’=a’Y 2+bY+c
其中,Y’为国家标准方法测量的含沙量数据,a、b、c为系数。
进一步地,步骤S1中红外测沙传感器与水面之间的距离为0.5~1m。
优选地,使用红外测沙传感器的后散射或侧散射数据分别按一元一次方程或一元二次方程,与国家标准方法测得的数据建立关系,根据回归系数,选用越接近1的回归系数的关系式,作为含沙量模型的关系式。
与现有技术相比,本发明具有以下有益效果:
本发明发明人意外发现泥沙含量与水深的关系曲线,以及红外测沙传感器在不同水深不同泥沙浓度不同水流朝向下的测量精准度影响,为此本发明的自动测沙装置开创性的采用浮动测量方案,通过高度调节装置确保了在不同时间段或不同水位时红外测沙传感器能够在与水面保持相同距离进行测量,有效的提高了测量精度和准确性。
本发明通过在距离水面一定深处测定泥沙含量,采用红外测沙传感器测得准确的浊度数据。通过与国家标准方法测得的数据进行建模,建立了适宜测量当地的数学模型,测量结果准确度高。
附图说明
图1为红外光学式自动测沙装置的结构示意图;
图2为红外测沙传感器的后散射与国家标准方法测得的数据(人工测沙数据)建立的数学模型;
图3为红外测沙传感器的侧散射与国家标准方法测得的数据(人工测沙数据)建立的数学模型;
图4为测沙仪数据在显示界面的显示。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
实施例1
如图1所示,一种在低悬移质含沙量下的红外光学式自动测沙装置,包括导轨1、设置于导轨1上并沿导轨1运动的滑轮装置2,以及由滑轮装置2直接或间接带动沿导轨1上下运动的高度调节装置3、红外测沙传感器4和数据采集与控制模块5。高度调节装置3使得红外测沙传感器4与水面保持一定距离。红外测沙传感器4的朝向与水面相平行。数据采集与控制模块5用以数据处理和通信。
红外测沙传感器4包括后散射和侧散射两个光学传感器和温度传感器。
本实施例的自动测沙装置开创性的采用浮动测量方案,通过高度调节装置3确保了在不同时间段或不同水位时红外测沙传感器4能够在与水面保持相同距离进行测量,有效的提高了测量精度和准确性。
红外测沙传感器4设置在高度调节装置3上,高度调节装置3为浮筒,浮筒的浮力大小为确保红外测沙传感器保持在水下0.7m的水深处。在水面下0.7m之间的水深处测量的含沙量最具代表性,精确度和准确度也最高。
浮筒设有水深测量传感器6。浮筒设有荧光浮标。浮筒设有竖直的直杆,导轨上设有水位观察标尺。直杆的长度大于浮筒与水面的距离。本发明还可以通过直杆和水位观察标尺结合来观测红外测沙传感器的水深。
高度调节装置3上设有用于安装数据采集与控制模块5的支架7。支架7的长度为大于高度调节装置3与水面之间的距离。支架用于确保数据采集与控制模块5露出水面,避免长期浸泡而损坏。
支架7设有高度调节器8,在不同水域根据测量水深的需求,而调整支架的高度。高度调节器8为伸缩套管。
滑轮装置2包括至少两个滑轮21和安装支架22。滑轮21设置于安装支架22上。滑轮21与导轨1上的凹槽或凸起相配合。安装支架22与浮筒连接。
安装支架22通过抱箍24与浮筒连接。
滑轮装置2设有网罩来罩住。网罩罩住滑轮装置2以免水中杂物卡住滑轮装置2。
浮筒上设有用于调节方位的云台31,红外测沙传感器4设置在云台31上。云台31为三维云台或球形云台等。
云台为电动云台,所述电动云台是由两台执行电动机来实现,电动机接受来自控制器的信号精确地运行定位。在控制信号的作用下,云台上的红外测沙传感器可调整朝向,也可在监控中心值班人员的操纵下调整朝向。
红外测沙传感器4上设有方位检测传感器41。方位检测传感器41与数据采集与控制模块5连接。方位检测传感器41用集成在一起的加速度计、陀螺仪和磁感应计三个传感器通过与静止时重力和地磁场的比较得出当前时刻追踪器的姿态,再结合姿态和加速度进行积分得出空间位置。方位检测传感器41能够检测红外测沙传感器4的方位,避免因水流等冲击而改变朝向,影响检测准确性。
一种所述在低悬移质含沙量下的红外光学式自动测沙装置的测沙方法,包括以下步骤:
S1.调节红外测沙传感器与水面之间的距离;测量开始前先预热仪器,直到仪器测量前后的温度相差不超过0.5℃,达到温度平衡后再开始正式测量;
S2.数据采集与控制模块向红外测沙传感器发送测量指令,接收并处理红外测沙传感器返回的浊度数据,根据标准偏差的大小,判定是否需要重测;
S3.建立浊度数据与含沙量的关系:
Y=aX,其中Y为含沙量,X为浊度,a为系数;
S4.建立含沙量与国家标准方法测量的含沙量数据建立数学模型;
S5.将测得的浊度数据代入S4的数学模型,求得实际含沙量。
红外测沙传感器所测为浊度,浊度的定义是1浊度(NTU)为1L水含1mg的二氧化硅颗粒,水文上的单位为0.001kg/m3。a为0.01。
步骤S4中所述数学模型为:
Y’=a’Y+b或Y’=a’Y2+bY+c
其中,Y’为国家标准方法测量的含沙量数据,a、b、c为系数。
步骤S1中红外测沙传感器与水面之间的距离为0.5~1m。
使用红外测沙传感器的后散射或侧散射数据分别按一元一次方程或一元二次方程,与国家标准方法测得的数据建立关系,根据回归系数,选用越接近1的回归系数的关系式,作为含沙量模型的关系式。
示例如下:
表1为红外测沙传感器的后散射或侧散射数据,以及《河流悬移质泥沙测验规范》(GB/T 50159-2015)国家标准方法测得的数据(人工测沙数据)。
测沙仪数据-后散射 测沙仪数据-侧散射 人工测沙数据
11.1 16.6 0.021
13.3 19.9 0.022
13.6 20.4 0.022
20.0 16.1 0.014
25.0 37.5 0.012
9.3 14.0 0.011
7.3 11.0 0.006
9.2 13.8 0.016
8.3 12.5 0.036
11.1 16.6 0.034
29.1 43.7 0.038
26.2 39.3 0.063
40.3 60.4 0.09
49.3 73.9 0.141
100.0 123.5 0.224
179.0 198.6 0.299
67.1 100.6 0.189
90.0 59.0 0.072
54.7 82.0 0.085
50.4 75.6 0.116
77.0 80.0 0.129
98.7 148.0 0.207
148.7 223.0 0.364
401.1 601.7 0.77
400.1 600.2 0.73
342.0 513.0 0.697
233.3 350.0 0.521
如图2所示,红外测沙传感器的后散射与国家标准方法测得的数据(人工测沙数据)建立的数学模型为:Y=0.0019X+0.0013,R2=0.9734
如图3所示,红外测沙传感器的侧散射与国家标准方法测得的数据(人工测沙数据)建立的数学模型为:Y=0.0014X+0.011,R2=0.9821
含沙量模型建立后,测沙仪数据可用于计算含沙量并在显示界面显示,使用中心线平滑处理以及精简摘录后,示例如图4(符合SL 247-2012水文资料整编规范中,4.7.2悬移质泥沙资料整编数据的要求)。
显然,上述实施例仅仅是为清楚地说明本发明的技术方案所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种在低悬移质含沙量下的红外光学式自动测沙装置,其特征在于,包括导轨、设置于导轨上并沿导轨运动的滑轮装置,以及由滑轮装置直接或间接带动沿导轨上下运动的高度调节装置、红外测沙传感器和数据采集与控制模块;所述高度调节装置使得红外测沙传感器与水面保持距离;所述数据采集与控制模块用以数据处理和通信。
2.根据权利要求1所述在低悬移质含沙量下的红外光学式自动测沙装置,其特征在于,所述红外测沙传感器设置在高度调节装置上,所述高度调节装置为浮筒或浮球;优选地,所述浮筒的浮力大小为确保红外测沙传感器保持在水下0.5~1m之间的水深处。
3.根据权利要求1所述在低悬移质含沙量下的红外光学式自动测沙装置,其特征在于,所述高度调节装置上设有用于安装数据采集与控制模块的支架,所述支架的长度为大于高度调节装置与水面之间的距离。
4.根据权利要求1所述在低悬移质含沙量下的红外光学式自动测沙装置,其特征在于,所述滑轮装置包括至少两个滑轮和安装支架,所述滑轮设置于安装支架上;所述滑轮与导轨上的凹槽或凸起相配合;所述安装支架与浮筒连接。
5.根据权利要求1所述在低悬移质含沙量下的红外光学式自动测沙装置,其特征在于,所述滑轮装置设有网罩来罩住;优选地,所述红外测沙传感器的朝向与水面相平行。
6.根据权利要求2所述在低悬移质含沙量下的红外光学式自动测沙装置,其特征在于,所述高度调节装置上设有用于调节方位的云台,所述红外测沙传感器设置在云台上。
7.根据权利要求1所述在低悬移质含沙量下的红外光学式自动测沙装置,其特征在于,所述红外测沙传感器上设有方位检测传感器;所述方位检测传感器与数据采集与控制模块连接。
8.一种根据权利要求1~7任意一项所述在低悬移质含沙量下的红外光学式自动测沙装置的测沙方法,其特征在于,包括以下步骤:
S1.调节红外测沙传感器与水面之间的距离;测量开始前先预热仪器,直到仪器测量前后的温度相差不超过0.5℃,达到温度平衡后再开始正式测量;
S2.数据采集与控制模块向红外测沙传感器发送测量指令,接收并处理红外测沙传感器返回的浊度数据,根据标准偏差的大小,判定是否需要重测;
S3.建立浊度数据与含沙量的关系:
Y=aX,其中Y为含沙量,X为浊度,a为系数;
S4.建立含沙量与国家标准方法测量的含沙量数据建立数学模型,求得实际含沙量。
9.根据权利要求8所述在低悬移质含沙量下的红外光学式自动测沙方法,其特征在于,步骤S4中所述数学模型为:
Y’=a’Y+b或Y’=a’Y2+bY+c
其中,Y’为国家标准方法测量的含沙量数据,a、b、c为系数。
10.根据权利要求8所述在低悬移质含沙量下的红外光学式自动测沙方法,其特征在于,步骤S1中红外测沙传感器与水面之间的距离为0.5~1m。
CN201711463031.0A 2017-12-29 2017-12-29 在低悬移质含沙量下的红外光学式自动测沙装置和方法 Active CN107991262B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711463031.0A CN107991262B (zh) 2017-12-29 2017-12-29 在低悬移质含沙量下的红外光学式自动测沙装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711463031.0A CN107991262B (zh) 2017-12-29 2017-12-29 在低悬移质含沙量下的红外光学式自动测沙装置和方法

Publications (2)

Publication Number Publication Date
CN107991262A true CN107991262A (zh) 2018-05-04
CN107991262B CN107991262B (zh) 2023-08-29

Family

ID=62042097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711463031.0A Active CN107991262B (zh) 2017-12-29 2017-12-29 在低悬移质含沙量下的红外光学式自动测沙装置和方法

Country Status (1)

Country Link
CN (1) CN107991262B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060448A (zh) * 2018-09-14 2018-12-21 中国水利水电科学研究院 一种可获取实时相对位置的悬移质取样装置及其使用方法
CN115372219A (zh) * 2022-10-24 2022-11-22 北京易科立德生态环境科技有限责任公司 一种河道含沙量测量装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037054B (zh) * 2017-12-29 2024-02-02 广州和时通电子科技有限公司 一种设有方位检测传感器的自动测沙装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261873A (ja) * 2008-06-02 2008-10-30 Kansai Electric Power Co Inc:The 水の濁度の連続観測装置
JP2008304267A (ja) * 2007-06-06 2008-12-18 Tokyo Univ Of Science 懸濁物質濃度の分布解析装置及びプログラム
CN205317768U (zh) * 2016-01-12 2016-06-15 福建正扬科技有限公司 一种水环境检测装置
CN105825043A (zh) * 2016-03-10 2016-08-03 南宁市水文水资源局 一种建立浊度与单沙关系模型的方法
CN107478792A (zh) * 2017-08-07 2017-12-15 北京美科华仪科技有限公司 浊度传感式在线测沙方法
CN208847652U (zh) * 2017-12-29 2019-05-10 广州和时通电子科技有限公司 一种在低悬移质含沙量下的红外光学式自动测沙装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304267A (ja) * 2007-06-06 2008-12-18 Tokyo Univ Of Science 懸濁物質濃度の分布解析装置及びプログラム
JP2008261873A (ja) * 2008-06-02 2008-10-30 Kansai Electric Power Co Inc:The 水の濁度の連続観測装置
CN205317768U (zh) * 2016-01-12 2016-06-15 福建正扬科技有限公司 一种水环境检测装置
CN105825043A (zh) * 2016-03-10 2016-08-03 南宁市水文水资源局 一种建立浊度与单沙关系模型的方法
CN107478792A (zh) * 2017-08-07 2017-12-15 北京美科华仪科技有限公司 浊度传感式在线测沙方法
CN208847652U (zh) * 2017-12-29 2019-05-10 广州和时通电子科技有限公司 一种在低悬移质含沙量下的红外光学式自动测沙装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑庆涛;曾淳灏;常博;陈容;: "基于红外光技术的悬移质泥沙在线监测系统及应用" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060448A (zh) * 2018-09-14 2018-12-21 中国水利水电科学研究院 一种可获取实时相对位置的悬移质取样装置及其使用方法
CN109060448B (zh) * 2018-09-14 2023-10-20 中国水利水电科学研究院 一种可获取实时相对位置的悬移质取样装置及其使用方法
CN115372219A (zh) * 2022-10-24 2022-11-22 北京易科立德生态环境科技有限责任公司 一种河道含沙量测量装置及方法

Also Published As

Publication number Publication date
CN107991262B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
CN107894381A (zh) 一种南方河流用测沙装置和方法
CN111798386B (zh) 一种基于边缘识别与最大序列密度估计的河道流速测量方法
CN107991262A (zh) 一种在低悬移质含沙量下的红外光学式自动测沙装置和方法
CN108254032A (zh) 河流超声波时差法流量计算方法
CN101294917B (zh) 一种采用水下机器人对于输水道井内检测的方法
CN107356398A (zh) 一种风洞实验方法及装置
CN101533035A (zh) 河口海岸高浊度环境近底水沙观测方法
CN103134942A (zh) 一种含沙浓度和浑水流速垂线分布的同步实时测量装置
CN105403618B (zh) 埋地管道缺陷磁法检测方法
Cheng et al. Turbulent open-channel flow with upward seepage
TW201231938A (en) Monitoring system and method for riverbed scouring depth and stream speed silt concentration
CN208847652U (zh) 一种在低悬移质含沙量下的红外光学式自动测沙装置
CN108037051A (zh) 一种智能清洁式测沙装置和方法
CN109900331A (zh) 基于深度相机特征跟踪的河流流量在线检测方法
CN113155107A (zh) 一种不规则河道断面流量测量装置及方法
CN108037053A (zh) 一种智能水文测沙装置和方法
CN103868455B (zh) 一种视觉重建水槽内目标点空间坐标的方法
CN108037052A (zh) 一种水文站用红外光学式自动测沙装置和方法
CN108037054A (zh) 一种设有方位检测传感器的自动测沙装置和方法
CN110715632A (zh) 强潮河口海湾桥墩局部冲刷深度预测及预警的专用终端
CN204302152U (zh) 一种原位实时测量悬移质浓度和级配的装置
CN109253705A (zh) 一种模型试验中桥墩冲刷测量仪
Prodanović et al. „Flow measurement methodology for low head and short intake bulb turbines-Iron Gate 2 case “
CN103035011A (zh) 一种基于目标特征的运动矢量估计方法
CN104535462A (zh) 一种原位实时测量悬移质浓度和级配的装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant