CN107977642B - 一种核自适应均值判别分析的高分辨距离像目标识别方法 - Google Patents
一种核自适应均值判别分析的高分辨距离像目标识别方法 Download PDFInfo
- Publication number
- CN107977642B CN107977642B CN201711349636.7A CN201711349636A CN107977642B CN 107977642 B CN107977642 B CN 107977642B CN 201711349636 A CN201711349636 A CN 201711349636A CN 107977642 B CN107977642 B CN 107977642B
- Authority
- CN
- China
- Prior art keywords
- test
- sample
- training
- class
- feature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000004458 analytical method Methods 0.000 title claims abstract description 20
- 238000012549 training Methods 0.000 claims abstract description 59
- 239000011159 matrix material Substances 0.000 claims abstract description 35
- 239000006185 dispersion Substances 0.000 claims abstract description 32
- 238000001228 spectrum Methods 0.000 claims abstract description 29
- 230000003044 adaptive effect Effects 0.000 claims abstract description 16
- 238000013507 mapping Methods 0.000 claims abstract description 9
- 238000012360 testing method Methods 0.000 claims description 71
- 238000010606 normalization Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 15
- 238000007781 pre-processing Methods 0.000 claims description 12
- 239000013598 vector Substances 0.000 claims description 4
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 3
- 238000002790 cross-validation Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims 1
- 238000000605 extraction Methods 0.000 abstract description 13
- 230000005236 sound signal Effects 0.000 abstract description 2
- 238000009659 non-destructive testing Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/02—Preprocessing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Signal Processing (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种核自适应均值判别分析的高分辨距离像目标识别方法,包括获取原始HRRP信号训练集,进行l2范数归一化提取功率谱特征,得到预处理后的特征样本集;并采用核函数映射到高维特征空间;配置自适应离散度矩阵;求取最佳投影方向;获得新的非线性降维训练特征集;SVM分类器训练;对待测试原始HRRP信号进行SVM分类识别。本发明方法使核映射空间不仅利用了训练样本的全局信息,而且在信息提取中自适应融入了局部信息,能够获得比常用的特征提取和数据降维方法可分性更强的低维度特征,提高了识别精度。该方法同样适用于其他信号的特征提取和分类情况,如无损检测中利用漏磁信号对裂纹种类、大小的分类,音频信号分类等。
Description
技术领域
本发明涉及雷达目标识别技术,特别是涉及一种核自适应均值判别分析的高分辨距离像目标识别方法。
背景技术
雷达高分辨自动目标识别(RATR)按空间维度可划分成以下三大类:基于高分辨距离像(HRRP)样本的目标识别、二维成像(SAR图像和ISAR图像)目标识别和三维成像目标识别。其中由于HRRP是一维向量,具有计算复杂度低、运算速度快和数据存储资源占用率少等特点,HRRP在计算复杂度和数据空间存储度上所占资源少,并且HRRP能够准确反映目标本身物理结构信息及其在不同角度下散射点位置分布情况。因此,较另外两类方法,基于HRRP的目标识别在军事及民用领域等到了广泛的应用。
目前HRRP识别技术研究工作主要围绕HRRP的姿态敏感性、平移敏感性、强度敏感性和特征提取等技术难点展开。其中通过对原始HRRP信号进行l2范数归一化后提取功率谱特征可有效克服平移和强度敏感性。其次采用统计模型自适应划分方位角域抑制散射点越距离单元走动从而有效的克服姿态敏感性。
但是,如何有效去除HRRP特征中的冗余分量,提取目标信息中的有效可分性识别特征是实现基于HRRP的雷达自动目标识别技术的关键。近年来,核方法被广泛应用于解决特征提取问题,核线性判据分析(KLDA)作为常用的非线性特征提取方法之一,将数据从原始空间通过核函数映射到高维特征空间,随后在高维特征空间中对样本进行投影以达到更好的分类效果。其中KLDA在HRRP目标识别应用中取得了较好的识别效果,但是KLDA要求目标样本在核映射空间严格服从高斯分布,而HRRP数据经核映射后近似多模分布。所以寻找符合HRRP数据分布的投影方向成为HRRP特征提取和数据降维研究的又一关键问题。
为了降低KLDA对样本严格服从高斯分布的要求,采用核局部均值判别分析方法在高维特征空间中利用样本的局部信息适应HRRP多模分布特性,以提高目标可分性性能。该方法在训练样本充足的条件下识别效果优于KLDA,但是针对小样本条件如海面舰船目标,两种方法识别效果均不太理想。
发明内容
发明目的:为解决现有技术的不足,提供一种核自适应均值判别分析的高分辨距离像目标识别方法。
技术方案:本发明的一种核自适应均值判别分析的高分辨距离像目标识别方法,包括以下步骤:
(1)获取原始HRRP信号训练集,并对其进行l2范数归一化后提取功率谱特征的预处理,得到预处理后的特征样本集Y;
(2)把预处理后的特征样本集Y采用核函数映射到高维特征空间;
(3)配置自适应离散度矩阵;
(4)求取最佳投影方向V;
(5)获得新的非线性降维训练特征集;
根据步骤(4),对特征样本集Y实现向最佳投影方向V的变换,获得新的非线性降维训练特征集Z;
(6)SVM分类器训练;
输入步骤(5)中得到的非线性降维训练特征集进行SVM分类器训练,得到分类器最优匹配模型参数;
(7)对待测试原始HRRP信号进行SVM分类识别。
进一步的,所述步骤(1)包括:
(11)获取原始HRRP信号训练集
(12)对原始HRRP信号进行l2范数归一化后提取功率谱特征的预处理
按列依次对原始HRRP信号按照公式(1)进行l2范数归一化后求取功率谱特征fi p的预处理,选取功率谱前一半特征作为预处理后的特征样本集其中分别为第i类目标第p个原始HRRP信号和原始HRRP信号经预处理后的特征样本,T为目标总数,D为特征样本维度;功率谱特征fi p以及原始HRRP信号经预处理后的特征样本的计算公式如下:
进一步的,所述步骤(2)包括:
(21)确定核函数φ(y)
针对HRRP属于多模分布情况,选取径向基核函数作为合适的核函数φ(y),计算公式为:
进一步的,所述步骤(3)包括:
(31)设置最佳均值调节参数δ
根据训练样本个数是否满足采样要求采用5折交叉验证设置最佳的均值调节参数δ;
计算公式为:
进一步的,所述步骤(4)包括:
由于借助核技巧可推导出:
式中,V为φ(Y)的线性组合。KAB和KAW分别为核自适应类间和类内离差度矩阵,计算公式如下:
公式(17)利用瑞利熵得:Λ为(KAW)-1KAB的前d个最大广义特征值对应的特征向量组合,从而最优投影方向V=φ(Y)Λ。
进一步的,所述步骤(7)包括:
(71)获取待测试原始HRRP信号,并对其进行l2范数归一化后提取功率谱特征的预处理,得到预处理后的测试特征样本
对雷达高分辨距离像测试样本xtest=[xtest(1),xtest(2),…,xtest(2D)]T∈R2D按照公式(21)进行l2范数归一化后求取功率谱特征ftest的预处理,得到预处理后的测试特征样本ytest∈RD:
ytest=[ftest(1),ftest(2),…,ftest(D)]T (22);
(73)将步骤(72)中获取的测试特征样本的非线性降维测试特征ztest送入训练阶段得到的SVM最佳匹配模型中,根据相应判别函数输出值给出判别结果wtest。
有益效果:与现有技术相比,本发明的核自适应均值判别分析的高分辨距离像目标识别方法具有以下优点:
(1)本发明方法所引入的均值调节参数,使核映射空间不仅利用了训练样本的全局信息,而且在信息提取中自适应融入了局部信息。所以能够获得比常用的特征提取和数据降维方法可分性更强的低维度特征,从而可进一步提高识别精度。
(2)本发明提出的方法同样适用于其他信号的特征提取和分类情况,如:无损检测中利用漏磁信号对裂纹种类、大小的分类,音频信号分类等。
(3)本发明在小样本条件下,相比与传统的特征提取和数据降维方法,能自适应对全局和局部信息进行融合,更加有效地提取目标中具有分类效果的隐藏信息,进一步提高目标可分性。其中在小样本条件下,本发明的识别精度相较于核线性判别分析方法平均提高11个百分点,相较于核局部均值判别分析方法平均提高6个百分点。另外,在训练样本充足时,本发明提出的方法也优于传统方法。
附图说明
图1是本发明方法的流程图;
图2是原始HRRP信号、预处理后功率谱、半边功率谱的幅值示意图;
图3是经最佳投影后非线性降维特征前两维的特征值分布图。
具体实施方式
下面结合附图对本发明的技术方案进行详细的说明,以使本发明的目的、技术方案及优点更加清楚明确。
本发明提出一种核自适应均值判别分析的高分辨距离像目标识别方法来改善小样本情况下的目标识别性能。针对训练样本集是否充足,核自适应均值判别分析在核线性判别分析基础上,引入均值调节参数,自适应对样本的局部和全局信息进行融合,以获取最佳投影方向。对小样本条件下的海面舰船HRRP实测数据进行验证实验,结果表明核自适应均值判别分析方法提取的特征具有更好的可分性,因此采用该方法可进一步提高目标识别精度。
如图1所示为本发明提出的一种核自适应均值判别分析的高分辨距离像目标识别方法的总流程图。图2给出雷达实测某一型号飞机高分辨距离像的回波数据,图2中的2(a)描述原始雷达HRRP信号,原始雷达HRRP信号经l2范数归一化后获取的功率谱特征如图2中的2(b)所示。因为功率谱特征为对称的双边谱,为了降低数据处理的冗余性,所以图2中的2(c)显示的是功率谱特征右半部分的特征样本。由于在不同采集背景下,不同目标所能获取的训练样本个数差异很大,从而导致现有的识别算法不具备普适性。本发明主要解决小样本条件下高分辨距离像的识别分类问题,以下给出核自适应均值判别分析的高分辨距离像目标识别方法的详细训练和测试步骤。如图1所示,具体包括以下步骤:
训练阶段:
(1)获取原始HRRP信号训练集,并对其进行l2范数归一化后提取功率谱特征的预处理,得到预处理后的特征样本集
(11)获取原始HRRP信号训练集
(12)对原始HRRP信号进行l2范数归一化后提取功率谱特征的预处理
按列依次对原始HRRP信号按照公式(1)进行l2范数归一化后求取功率谱特征fi p的预处理,选取功率谱前一半特征作为预处理后的特征样本集其中分别为第i类目标第p个原始HRRP信号和原始HRRP信号经预处理后的特征样本,T为目标总数,D为特征样本维度;功率谱特征fi p以及原始HRRP信号经预处理后的特征样本的计算公式如下:
(2)把预处理后的特征样本集采用核函数φ(y)映射到高维特征空间
(21)确定核函数φ(y)
针对HRRP属于多模分布情况,选取径向基核函数作为合适的核函数φ(y),计算公式为:
(3)配置自适应离散度矩阵
(31)设置最佳均值调节参数δ
根据训练样本个数是否满足采样要求(当训练样本总数小于10倍的目标类别总数与样本维度之积,即N>10×D×T,则说明样本不满足采集要求),采用5折交叉验证设置最佳的均值调节参数δ。
计算公式为:
(4)求取最佳投影方向V
由于借助核技巧可推导出:
式中,V为φ(Y)的线性组合。KAB和KAW分别为核自适应类间和类内离差度矩阵,计算公式如下:
公式(17)利用瑞利熵得:Λ为(KAW)-1KAB的前d个最大广义特征值对应的特征向量组合,从而最优投影方向V=φ(Y)Λ。
图3绘出了三类目标经最佳投影后新的非线性降维前两维特征值的分布情况。从图中可以看出,三类不同目标样本经投影后实现了同类样本的密聚集和异类样本的高分离效果,进而验证了本发明提出的核自适应判别分析方法的有效性。
(6)SVM分类器训练
测试阶段:
(1)获取待测试原始HRRP信号,并对其进行l2范数归一化后提取功率谱特征的预处理,得到预处理后的测试特征样本
对雷达高分辨距离像测试样本xtest=[xtest(1),xtest(2),…,xtest(2D)]T∈R2D(待测试原始HRRP信号)按照公式(21)进行l2范数归一化后求取功率谱特征ftest的预处理,得到预处理后的测试特征样本ytest∈RD:
ytest=[ftest(1),ftest(2),…,ftest(D)]T (22);
(3)将步骤(2)中获取的测试特征样本的非线性降维测试特征ztest送入训练阶段得到的SVM最佳匹配模型中,根据相应判别函数输出值给出判别结果wtest。
本发明分别对样本充足的飞机目标和小样本条件下的海面舰船目标的实测HRRP信号进行训练和测试。安-26、雅克-42和奖状每类飞机目标的训练样本个数为26000个、测试样本个数为26000个。猎潜艇、护卫舰和邮轮每类海面舰船目标有200个训练样本和100个测试样本。同时表1和表2对比了在不同目标下本发明所提供方法和传统特征提取和数据降维相关方法的分类性能。
表1飞机目标下不同方法识别性能比较
识别率(%) | 安-26 | 雅克-42 | 奖状 | 平均 |
原始信号分类 | 71.77 | 81.73 | 99.81 | 84.43 |
核线性判别分类 | 98.04 | 98.99 | 97.23 | 98.09 |
核局部均值判别分类 | 97.98 | 99.36 | 96.10 | 97.81 |
本发明所提方法分类 | 99.80 | 99.00 | 98.34 | 98.80 |
表2舰船目标下不同方法识别性能比较
识别率取整(%) | 猎潜艇 | 护卫舰 | 邮轮 | 平均 |
原始信号分类 | 55 | 92 | 59 | 69 |
核线性判别分类 | 51 | 97 | 75 | 74 |
核局部均值判别分类 | 77 | 83 | 78 | 79 |
本发明所提方法分类 | 74 | 95 | 86 | 85 |
从表1中可以看出,当训练样本充足时,本发明所提的方法同其它两种方法在识别性能上基本保持良好的识别率。从表2可以看出,当训练样本不充足时,传统的特征提取和数据降维方法识别率骤降,然而本发明提出的方法较其他方法仍具有较高的识别精度。由此可知,与传统方法相比,核自适应判别分析方法具有更好的样本适用性。
Claims (1)
1.一种核自适应均值判别分析的高分辨距离像目标识别方法,其特征在于,包括以下步骤:
(1)获取原始HRRP信号训练集,并对其进行l2范数归一化后提取功率谱特征的预处理,得到预处理后的特征样本集Y;包括以下步骤:
(11)获取原始HRRP信号训练集;
(12)对原始HRRP信号进行l2范数归一化后提取功率谱特征的预处理;
按列依次对原始HRRP信号按照公式(1)进行l2范数归一化后求取功率谱特征fi p的预处理,选取功率谱前一半特征作为预处理后的特征样本集其中为第i类目标第p个原始HRRP信号经预处理后的特征样本;功率谱特征fi p以及原始HRRP信号经预处理后的特征样本的计算公式如下:
(2)把预处理后的特征样本集Y采用核函数映射到高维特征空间;包括以下步骤:
(21)确定核函数φ(y);
针对HRRP属于多模分布情况,选取径向基核函数作为合适的核函数φ(y),计算公式为:
(3)配置自适应离散度矩阵;包括:
(31)设置最佳均值调节参数δ;
根据训练样本个数是否满足采样要求采用5折交叉验证设置最佳的均值调节参数δ;
计算公式为:
(4)求取最佳投影方向V;包括:
借助核技巧推导出:
式中,V为φ(Y)的线性组合,KAB和KAW分别为核自适应类间和类内离差度矩阵,计算公式如下:
公式(17)利用瑞利熵得:Λ为(KAW)-1KAB的前d个最大广义特征值对应的特征向量组合,从而最优投影方向V=φ(Y)Λ;
(5)获得新的非线性降维训练特征集;
(6)SVM分类器训练;
输入步骤(5)中得到的非线性降维训练特征集进行SVM分类器训练,得到分类器最优匹配模型参数;
(7)对待测试原始HRRP信号进行SVM分类识别;包括以下步骤:
(71)获取待测试原始HRRP信号,并对其进行l2范数归一化后提取功率谱特征的预处理,得到预处理后的测试特征样本;
对雷达高分辨距离像测试样本xtest=[xtest(1),xtest(2),…,xtest(2D)]T∈R2D按照公式(21)进行l2范数归一化后求取功率谱特征ftest的预处理,得到预处理后的测试特征样本ytest∈RD:
ytest=[ftest(1),ftest(2),…,ftest(D)]T (22);
(73)将步骤(72)中获取的测试特征样本的非线性降维测试特征ztest送入训练阶段得到的SVM最佳匹配模型中,根据相应判别函数输出值给出判别结果wtest。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711349636.7A CN107977642B (zh) | 2017-12-15 | 2017-12-15 | 一种核自适应均值判别分析的高分辨距离像目标识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711349636.7A CN107977642B (zh) | 2017-12-15 | 2017-12-15 | 一种核自适应均值判别分析的高分辨距离像目标识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107977642A CN107977642A (zh) | 2018-05-01 |
CN107977642B true CN107977642B (zh) | 2021-10-22 |
Family
ID=62006334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711349636.7A Active CN107977642B (zh) | 2017-12-15 | 2017-12-15 | 一种核自适应均值判别分析的高分辨距离像目标识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107977642B (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108872863B (zh) * | 2018-05-02 | 2020-09-08 | 广东工业大学 | 一种优化分类的电动汽车充电状态监测方法 |
CN109343043B (zh) * | 2018-07-26 | 2022-07-26 | 南京航空航天大学 | 一种基于选择主成分分析的雷达hrrp目标识别方法 |
CN109840567B (zh) * | 2018-11-16 | 2021-12-17 | 中电科新型智慧城市研究院有限公司 | 一种基于最优协同表示的稳健判别特征提取方法 |
CN110018461B (zh) * | 2019-04-16 | 2023-03-24 | 西安电子工程研究所 | 基于高分辨距离像和单脉冲测角的群目标识别方法 |
CN110109110B (zh) * | 2019-04-26 | 2023-06-16 | 西安电子科技大学 | 基于先验最优变分自编码机的hrrp目标识别方法 |
CN110135372A (zh) * | 2019-05-20 | 2019-08-16 | 闽江学院 | Vr艺术媒体交互环境下基于线性判决和svm的动作识别方法 |
CN110765587A (zh) * | 2019-09-30 | 2020-02-07 | 北京化工大学 | 基于动态正则化判别局部保留投影的复杂石化过程故障诊断方法 |
CN111595584B (zh) * | 2020-06-11 | 2022-04-22 | 河海大学常州校区 | 一种基于1-dcnn联合特征提取的轴承故障在线检测方法 |
CN112835008B (zh) * | 2021-01-12 | 2022-03-04 | 西安电子科技大学 | 基于姿态自适应卷积网络的高分辨距离像目标识别方法 |
CN113489685B (zh) * | 2021-06-15 | 2023-03-21 | 江苏大学 | 一种基于核主成分分析的二次特征提取及恶意攻击识别方法 |
CN113759356B (zh) * | 2021-09-02 | 2023-10-20 | 中国人民解放军海军航空大学 | 基于角域特征优化的雷达目标hrrp识别方法 |
CN114266401B (zh) * | 2021-12-23 | 2022-08-05 | 北京石油化工学院 | 一种底盘发动机故障预测方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916376A (zh) * | 2010-07-06 | 2010-12-15 | 浙江大学 | 基于局部样条嵌入的正交半监督子空间图像分类方法 |
CN102609693A (zh) * | 2012-02-14 | 2012-07-25 | 南昌航空大学 | 基于模糊二维核主成分分析的人脸识别方法 |
CN103208010A (zh) * | 2013-04-22 | 2013-07-17 | 北京工业大学 | 一种基于视觉特征的交通状态量化识别方法 |
CN105334504A (zh) * | 2015-09-08 | 2016-02-17 | 西安电子科技大学 | 基于大边界的非线性判别投影模型的雷达目标识别方法 |
CN106597400A (zh) * | 2016-11-15 | 2017-04-26 | 北京无线电测量研究所 | 基于高分辨距离像的地面运动车辆目标分类识别方法及系统 |
CN106778473A (zh) * | 2016-11-20 | 2017-05-31 | 南宁市浩发科技有限公司 | 一种车型识别方法 |
-
2017
- 2017-12-15 CN CN201711349636.7A patent/CN107977642B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916376A (zh) * | 2010-07-06 | 2010-12-15 | 浙江大学 | 基于局部样条嵌入的正交半监督子空间图像分类方法 |
CN102609693A (zh) * | 2012-02-14 | 2012-07-25 | 南昌航空大学 | 基于模糊二维核主成分分析的人脸识别方法 |
CN103208010A (zh) * | 2013-04-22 | 2013-07-17 | 北京工业大学 | 一种基于视觉特征的交通状态量化识别方法 |
CN105334504A (zh) * | 2015-09-08 | 2016-02-17 | 西安电子科技大学 | 基于大边界的非线性判别投影模型的雷达目标识别方法 |
CN106597400A (zh) * | 2016-11-15 | 2017-04-26 | 北京无线电测量研究所 | 基于高分辨距离像的地面运动车辆目标分类识别方法及系统 |
CN106778473A (zh) * | 2016-11-20 | 2017-05-31 | 南宁市浩发科技有限公司 | 一种车型识别方法 |
Non-Patent Citations (2)
Title |
---|
"基于高分辨距离像的舰船目标识别研究";姚国伟;《中国优秀硕士学位论文全文数据库 信息科技辑》;20160215;全文 * |
"雷达高分辨距离像特征提取及识别算法研究";曹向海;《中国博士学位论文全文数据库 信息科技辑》;20081215;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN107977642A (zh) | 2018-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107977642B (zh) | 一种核自适应均值判别分析的高分辨距离像目标识别方法 | |
CN108133232A (zh) | 一种基于统计字典学习的雷达高分辨距离像目标识别方法 | |
CN101526995B (zh) | 基于对角子类判决分析的合成孔径雷达目标识别方法 | |
CN107194329B (zh) | 一种基于自适应局部稀疏保持投影的一维距离像识别方法 | |
CN109901130B (zh) | 一种基于Radon变换和改进2DPCA的旋翼无人机检测与识别方法 | |
CN107133648B (zh) | 基于自适应多尺度融合稀疏保持投影的一维距离像识别方法 | |
CN106951822B (zh) | 一种基于多尺度稀疏保持投影一维距离像融合识别方法 | |
CN108872982B (zh) | 雷达目标rcs近远场转换中多次散射特征的提取与校正处理方法 | |
CN110516525A (zh) | 基于gan和svm的sar图像目标识别方法 | |
CN102332084A (zh) | 基于掌纹和人脸特征提取的身份识别方法 | |
CN111798418A (zh) | 基于hog、lbp和glcm特征融合的吸波涂层散斑缺陷检测方法 | |
CN102662167A (zh) | 一种水下目标辐射噪声信号的特征提取方法 | |
CN112213697B (zh) | 一种基于贝叶斯决策理论用于雷达欺骗干扰识别的特征融合方法 | |
CN110865340B (zh) | 一种基于极化特性辅助的海面角反射器干扰对抗方法 | |
CN110109068B (zh) | 基于极化特征向量的箔条干扰识别方法 | |
CN106897730B (zh) | 基于融合类别信息与局部保持投影的sar目标型号识别方法 | |
CN111767803B (zh) | 合成极窄脉冲雷达抗目标姿态敏感的鉴别方法 | |
CN104200229B (zh) | 一种结合稀疏特征选择的sar目标鉴别方法 | |
Li et al. | Multi-scale ships detection in high-resolution remote sensing image via saliency-based region convolutional neural network | |
CN104021399B (zh) | 基于距离像时频图非负稀疏编码的sar目标识别方法 | |
CN108490414A (zh) | 一种基于时频分布瞬时频率边缘特征的雷达目标识别方法 | |
CN107678007B (zh) | 一种指数域紧密子空间的雷达真假目标一维距离像特征提取方法 | |
CN116311067A (zh) | 基于高维特征图谱的目标综合识别方法、装置及设备 | |
Shengqi et al. | Full-polarization HRRP recognition based on joint sparse representation | |
Hu et al. | Automatic target recognition based on SAR images and two-stage 2DPCA features |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |