CN107973375A - 一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法 - Google Patents

一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法 Download PDF

Info

Publication number
CN107973375A
CN107973375A CN201610916549.4A CN201610916549A CN107973375A CN 107973375 A CN107973375 A CN 107973375A CN 201610916549 A CN201610916549 A CN 201610916549A CN 107973375 A CN107973375 A CN 107973375A
Authority
CN
China
Prior art keywords
tio
nanotube
dimensional
nano wires
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610916549.4A
Other languages
English (en)
Inventor
徐伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Han Li New Material Co Ltd
Original Assignee
Suzhou Han Li New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Han Li New Material Co Ltd filed Critical Suzhou Han Li New Material Co Ltd
Priority to CN201610916549.4A priority Critical patent/CN107973375A/zh
Publication of CN107973375A publication Critical patent/CN107973375A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法,包括:S1、将TiO2纳米粒子与1‑10M的NaOH溶液混合,搅拌以形成悬浊液,并注入反应釜中,在50~100℃条件下热反应10~50h,制得钛酸盐纳米管;S2、将钛酸盐纳米管与水混合,并注入反应釜中,在50~100℃条件下热反应10~3h,得到TiO2纳米管;S3、将TiO2纳米管放置于AgNO3溶液中,采用脉冲沉积在TiO2纳米管上沉积一维Ag2O纳米线;S4、将沉积有一维Ag2O纳米线的TiO2纳米管放置于K2S2O8和NaOH溶液中进行热氧化反应,然后使用去离子水清洗并烘干,得到一维Ag2O纳米线修饰的TiO2纳米管电极。本发明制备工艺简单,生产成本低,Ag2O纳米线和TiO2纳米管能同时传输光电载流子,提高了TiO2纳米线的光催化性能。

Description

一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法
技术领域
本发明涉及半导体光催化剂技术领域,特别是涉及一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法。
背景技术
随着经济的发展,水污染情况越发严重,光催化技术是近年来发展起来的废水处理技术。光催化剂是光照射下引起催化反应的物质,通过光催化反应,产生具有强氧化能力的羟基自由基和超级氧离子,来降解分解有机污染物质。
二氧化钛(TiO2)是一种最广泛和深入的半导体光催化剂,广泛用于光催化领域。但TiO2带隙较宽,只能在波长小于378nm的紫外区显示光化学活性,同时其光电子和空穴容易发生复合,从而降低光催化效率。
TiO2纳米材料如纳米线、纳米管,比普通纳米颗粒有更高的表面积和体积比,可以提供相对较高的活性位点密度,有利于表面反应发生和敏化剂负载,而一维特性又使其在光生载流子分离和传递器件应用中拥有更快速的电荷载流子传输速率。也正因为这些优势,纳米TiO2的合成获得了持续不断的关注与突破,这也直接推动了TiO2材料的广泛应用。然而现有技术中TiO2纳米管电极的光催化效率仍然较低。
因此,针对上述问题,有必要提出一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法。
发明内容
有鉴于此,本发明提供了一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法。
为了实现上述发明目的,本发明提供一种一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法,所述制备方法包括:
S1、将TiO2纳米粒子与1-10M的NaOH溶液混合,搅拌以形成悬浊液,并注入反应釜中,在50~100℃条件下热反应10~50h,制得钛酸盐纳米管;
S2、将钛酸盐纳米管与水混合,并注入反应釜中,在50~100℃条件下热反应10~3h,得到TiO2纳米管;
S3、将TiO2纳米管放置于AgNO3溶液中,采用脉冲沉积在TiO2纳米管上沉积一维Ag2O纳米线;
S4、将沉积有一维Ag2O纳米线的TiO2纳米管放置于K2S2O8和NaOH溶液中进行热氧化反应,然后使用去离子水清洗并烘干,得到一维Ag2O纳米线修饰的TiO2纳米管电极。
作为本发明的进一步改进,所述步骤S3中脉冲沉积的电压通断比2V/0V。
作为本发明的进一步改进,所述步骤S3中脉冲沉积的时间通断比0.5s/2s。
作为本发明的进一步改进,所述步骤S4中热氧化反应的温度为300~500℃,反应时间为5~10min。
与现有技术相比,本发明的有益效果是:
本发明制备工艺简单,生产成本低,Ag2O纳米线和TiO2纳米管能同时传输光电载流子,提高了TiO2纳米线的光催化性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法的流程示意图。
具体实施方式
下面将对本发明实施例中的技术方案进行详细的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
参图1所示,本发明中一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法。
为了实现上述发明目的,本发明提供一种一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法,包括:
S1、将TiO2纳米粒子与1-10M的NaOH溶液混合,搅拌以形成悬浊液,并注入反应釜中,在50~100℃条件下热反应10~50h,制得钛酸盐纳米管;
S2、将钛酸盐纳米管与水混合,并注入反应釜中,在50~100℃条件下热反应10~3h,得到TiO2纳米管;
S3、将TiO2纳米管放置于AgNO3溶液中,采用脉冲沉积在TiO2纳米管上沉积一维Ag2O纳米线;
S4、将沉积有一维Ag2O纳米线的TiO2纳米管放置于K2S2O8和NaOH溶液中进行热氧化反应,然后使用去离子水清洗并烘干,得到一维Ag2O纳米线修饰的TiO2纳米管电极。
具体地,本发明一优选实施方式中一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法包括:
S1、将TiO2纳米粒子与1-10M的NaOH溶液混合,搅拌以形成悬浊液,并注入反应釜中,在50~100℃条件下热反应10~50h,制得钛酸盐纳米管;
S2、将钛酸盐纳米管与水混合,并注入反应釜中,在50~100℃条件下热反应10~3h,得到TiO2纳米管;
S3、将TiO2纳米管放置于AgNO3溶液中,采用脉冲沉积在TiO2纳米管上沉积一维Ag2O纳米线,其中,脉冲沉积的电压通断比2V/0V,时间通断比0.5s/2s;
S4、将沉积有一维Ag2O纳米线的TiO2纳米管放置于K2S2O8和NaOH溶液中进行热氧化反应,热氧化反应的温度为300~500℃,反应时间为5~10min,然后使用去离子水清洗并烘干,得到一维Ag2O纳米线修饰的TiO2纳米管电极。
由以上技术方案可以看出,本发明制备工艺简单,生产成本低,Ag2O纳米线和TiO2纳米管能同时传输光电载流子,提高了TiO2纳米线的光催化性能。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当合,形成本领域技术人员可以理解的其他实施方式。

Claims (4)

1.一种一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法,其特征在于,所述制备方法包括:
S1、将TiO2纳米粒子与1-10M的NaOH溶液混合,搅拌以形成悬浊液,并注入反应釜中,在50~100℃条件下热反应10~50h,制得钛酸盐纳米管;
S2、将钛酸盐纳米管与水混合,并注入反应釜中,在50~100℃条件下热反应10~3h,得到TiO2纳米管;
S3、将TiO2纳米管放置于AgNO3溶液中,采用脉冲沉积在TiO2纳米管上沉积一维Ag2O纳米线;
S4、将沉积有一维Ag2O纳米线的TiO2纳米管放置于K2S2O8和NaOH溶液中进行热氧化反应,然后使用去离子水清洗并烘干,得到一维Ag2O纳米线修饰的TiO2纳米管电极。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤S3中脉冲沉积的电压通断比2V/0V。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤S3中脉冲沉积的时间通断比0.5s/2s。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤S4中热氧化反应的温度为300~500℃,反应时间为5~10min。
CN201610916549.4A 2016-10-21 2016-10-21 一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法 Pending CN107973375A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610916549.4A CN107973375A (zh) 2016-10-21 2016-10-21 一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610916549.4A CN107973375A (zh) 2016-10-21 2016-10-21 一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法

Publications (1)

Publication Number Publication Date
CN107973375A true CN107973375A (zh) 2018-05-01

Family

ID=62004403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610916549.4A Pending CN107973375A (zh) 2016-10-21 2016-10-21 一维Ag2O纳米线修饰的TiO2纳米管电极的制备方法

Country Status (1)

Country Link
CN (1) CN107973375A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175587A (ja) * 2002-11-25 2004-06-24 Fujikura Ltd 酸化チタンナノチューブの製造方法
CN1528672A (zh) * 2003-09-26 2004-09-15 清华大学 一种钛氧化物纳米管及其制备方法
CN102249183A (zh) * 2011-05-18 2011-11-23 湖南大学 一种CuO/TiO2纳米管阵列及其制备和应用方法
CN104084205A (zh) * 2014-07-24 2014-10-08 哈尔滨工业大学 一种具有催化氧化活性的铁负载的二氧化钛纳米管的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175587A (ja) * 2002-11-25 2004-06-24 Fujikura Ltd 酸化チタンナノチューブの製造方法
CN1528672A (zh) * 2003-09-26 2004-09-15 清华大学 一种钛氧化物纳米管及其制备方法
CN102249183A (zh) * 2011-05-18 2011-11-23 湖南大学 一种CuO/TiO2纳米管阵列及其制备和应用方法
CN104084205A (zh) * 2014-07-24 2014-10-08 哈尔滨工业大学 一种具有催化氧化活性的铁负载的二氧化钛纳米管的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈瑶: "功能化TiO2纳米管阵列的制备与光催化应用", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Wang et al. Inorganic metal‐oxide photocatalyst for H2O2 production
Qiu et al. Hollow cubic Cu2-xS/Fe-POMs/AgVO3 dual Z-scheme heterojunctions with wide-spectrum response and enhanced photothermal and photocatalytic-fenton performance
Ratanatawanate et al. Fabrication of PbS quantum dot doped TiO2 nanotubes
Wu et al. Design principles and strategies of photocatalytic H2O2 production from O2 reduction
Che et al. The construction of pn heterojunction for enhancing photocatalytic performance in environmental application: A review
Tak et al. Solution-based synthesis of a CdS nanoparticle/ZnO nanowire heterostructure array
Tian et al. Recent progress in design, synthesis, and applications of one-dimensional TiO 2 nanostructured surface heterostructures: a review
Zhang et al. Bi2WO6 micro/nano-structures: synthesis, modifications and visible-light-driven photocatalytic applications
Hung et al. Enhanced photocatalytic water splitting by plasmonic TiO2–Fe2O3 cocatalyst under visible light irradiation
Ge et al. Recent progress in Ag3PO4-based all-solid-state Z-scheme photocatalytic systems
Wei et al. Hierarchical heterostructure of CdS nanoparticles sensitized electrospun TiO2 nanofibers with enhanced photocatalytic activity
CN105521809B (zh) 一种Cu:ZnO/N:rGO复合光催化剂的制备方法
Shao et al. In-situ irradiated XPS investigation on 2D/1D Cd0. 5Zn0. 5S/Nb2O5 S-scheme heterojunction photocatalysts for simultaneous promotion of antibiotics removal and hydrogen evolution
Fang et al. Effect of surface self-heterojunction existed in Bi x Y1–x VO4 on photocatalytic overall water splitting
CN103721700B (zh) 一种高活性SnO2-TiO2复合光催化剂的制备方法
CN100448540C (zh) 金属纳米光催化剂复合材料及其制法
Yi et al. Heterostructure-induced light absorption and charge-transfer optimization of a TiO2 photoanode for photoelectrochemical water splitting
Zhang et al. Construction of a Bismuthene/CsPbBr3 quantum dot S-scheme heterojunction and enhanced photocatalytic CO2 reduction
Shen et al. Fabrication of porous graphitic carbon nitride-titanium dioxide heterojunctions with enhanced photo-energy conversion activity
Liu et al. Facile synthesis of F-doped g-C3N4/Bi2Fe4O9 heterostructure with Z-scheme for enhanced photocatalytic performance in NO oxidation
Liu et al. K+-doped ZnO/g-C3N4 heterojunction: controllable preparation, efficient charge separation, and excellent photocatalytic VOC degradation performance
Saeed et al. Enhanced PEC Water Splitting Performance of Silver Nanoparticle-Coated CdS Nanowire Photoanodes: The Role of Silver Deposition
CN103721713B (zh) 一种高效降解染料的三相复合可见光催化剂
Fu et al. Enhanced photocatalytic activity based on composite structure with downconversion material and graphene
CN105126873A (zh) 光催化剂纳米CdS/高岭土复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180501

WD01 Invention patent application deemed withdrawn after publication