CN107968125A - 一种黑磷取向二极管及其制备方法 - Google Patents

一种黑磷取向二极管及其制备方法 Download PDF

Info

Publication number
CN107968125A
CN107968125A CN201711074580.9A CN201711074580A CN107968125A CN 107968125 A CN107968125 A CN 107968125A CN 201711074580 A CN201711074580 A CN 201711074580A CN 107968125 A CN107968125 A CN 107968125A
Authority
CN
China
Prior art keywords
black phosphorus
diode
crystal orientation
orientation
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711074580.9A
Other languages
English (en)
Inventor
刘智波
辛巍
田建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201711074580.9A priority Critical patent/CN107968125A/zh
Publication of CN107968125A publication Critical patent/CN107968125A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种基于黑磷取向二极管,属于二维材料和半导体器件技术领域。取向二极管是一种利用二维材料黑磷晶体各向异性所实现的一种新型电子器件,其单向传输的整流效应主要依赖于载流子输运中所沿晶体取向的变化,电流方向从黑磷的扶手型AC方向向锯齿型ZZ方向转变时是导通的,反之从ZZ向AC方向电流是禁止的。本发明的黑磷取向二极管的制备方法包括:1)黑磷样品制备;2)黑磷晶向的测定;3)角度控制两层黑磷的叠加;4)电极的加工。该方法可以最大程度的实现黑磷中载流子输运中的晶向改变,实现具有整流效应的二极管功能。

Description

一种黑磷取向二极管及其制备方法
技术领域
本发明属于二维材料和半导体器件技术领域,涉及一种利用载流子输运中晶向突变所形成的黑磷取向二极管及其制备方法。
背景技术
二维层状黑磷是磷原子由sp3杂化而成的具有周期性“波浪”形貌的材料,兼具直接带隙和高载流子迁移率的特点。此外,黑磷具备其他二维材料少有的平面内各向异性光电子性能。载流子(无论是电子还是空穴)沿着黑磷的扶手椅(Armchair,AC)方向和锯齿(Zigzag,ZZ)方向的迁移率是不同的。对于少层黑磷来说,其扶手椅方向的迁移率大约是锯齿方向的2-4倍;而对于单层来说,电子在扶手椅方向的迁移率是锯齿方向的15倍以上,而空穴又表现出相反的性质,即扶手椅方向比锯齿方向小20倍。因此,对于单层黑磷,我们几乎可以认为电子和空穴是沿着两个垂直方向运动的。载流子的分离给了人们很大的创造空间,人们可以利用单层黑磷制备出非比寻常的光电器件。除了载流子迁移率,在其他方面,如光学(傅里叶光谱、拉曼光谱、光吸收、光致发光、光电响应等)、热学(热导率等)等,人们在实验和理论上同样发现了各向异性。
二极管为电子元件当中,一种具有两个电极的装置,只允许电流由单一方向流过,许多的使用是应用其整流的功能。目前多为p型半导体和n半导体组成的pn结结构,或半导体与金属接触形成的肖特基接触来获得二极管。二维材料异质结非常重要的一个领域就是利用此结构制备原子级别厚度的pn结和肖脱基结。由于黑磷具有强的平面内各向异性,其两个晶向AC和ZZ上的载流子有效质量、迁移率等将有着明显的不同,当载流子在输运过程中被迫发生晶向突变时,将形成类似pn中的势垒,在该势垒的作用下将实现二极管的单向导通性能。这种新型的取向二极管是各向异性二维半导体材料所独有,在二维材料光电器件中将有着独特的应用。
发明内容
本发明提供了一种黑磷取向二极管(图1)及其制备方法,这是一种不同于现有pn结二极管和肖特基二极管的一种新型二极管。
本发明的技术方案为:
1)黑磷取向二极管
两层黑磷材料通过范德华力叠加形成异质结构时,二维材料黑磷中载流子输运过程中发生晶向上的突变,当电流方向从扶手椅晶向(AC)转向锯齿晶向(ZZ)时为导通状态,当电流方向从ZZ方向转向AC方向时为不导通状态,从而实现整流效应,获得黑磷取向二极管。
其中载流子发生晶向突变的实现方法有两种结构:
(1)载流子输运发生晶向突变的方法为两层叠加的黑磷材料晶向相同,形成十字结构,电极分别加在上下层的相邻端,从而实现载流子输运过程的晶向突变。(图2)
(2)载流子输运发生晶向突变的方法为两层叠加的黑磷材料晶向垂直,形成平行结构,电极分别加在两层黑磷的两端,从而实现载流子输运过程的晶向突变。(图3)
2)一种黑磷取向二极管的制备方法,包括如下步骤
(1)黑磷材料的制备,用机械剥离的方法在硅基上制备黑磷,获得两块黑磷;
(2)黑磷材料的晶向判断,通过拉曼光谱或光学反射方法测定黑磷的AC方向和ZZ方向;
(3)两块黑磷材料的叠加,在显微镜下控制角度将两块黑磷叠加在一起,形成十字结构或平行结构;
(4)电极的制备,在上下两层黑磷上分别制备上电极。
所述的黑磷通过机械剥离法制备;
所述的黑磷为少层的、横向尺寸大于10微米;
本发明的有益效果为:
本发明实现了一种不同于pn结二极管和肖特基二极管的新型的取向二极管,该二极管为具有平面内各向异性的黑磷中载流子输运发生晶向突变所实现。本发明的制备方法简单有效的实现了黑磷中载流子在AC和ZZ晶向之间的突变,获得了黑磷取向二极管。
附图说明
图1黑磷取向二极管示意图;
图2两层黑磷叠加形成的十字结构,上下两层黑磷的晶向相同,相邻电极的连接可以有效地实现载流子从AC方向突变为ZZ方向,从而获得黑磷取向二极管;
图3两层黑磷的一端叠加形成的平行结构,上下两层的黑磷晶向垂直,在两层黑磷上分别加上电极后,载流子输运时发生从AC到ZZ的突变,获得黑磷取向二极管;
图4两层黑磷叠加过程示意图,TBP为上层黑磷,BBP为下层黑磷,PMMA为聚甲基丙烯酸甲酯聚合物;
图5通过叠加制备的两层黑磷十字结构示意图和显微图像,以及拉曼光谱测定的晶向;
图6两层黑磷十字结构所形成的取向二极管整流曲线;
图7通过叠加制备的两层黑磷平行结构示意图和显微图像,以及拉曼光谱测定的晶向;
图8两层黑磷平行结构所形成的取向二极管整流曲线。
具体实施方式
为了进一步说明本发明,下面以附图的方式并结合实例对本发明提供的黑磷取向二极管及其制备方法进行详细描述,但不能将其理解为对本发明保护范围的限定。以下实施例中所采用的材料和仪器均为市售。此外,任何与所记载内容相似或均等的方法及材料都可应用于本发明方法中。
下面结合实施的实例以作进一步说明。
实施例1
黑磷取向二极管的制备
如图4所示,首先用机械剥离的方法在硅基上制备少层黑磷,然后利用拉曼光谱表征黑磷的晶向表,再通过自制的二维材料堆叠系统将上下黑磷堆叠在一起,最后利用飞秒定点光刻和磁控溅射的方式制备电极。少层黑磷堆叠样品制备完成后,自上而下的物质分别为上层黑磷、下层黑磷、薄层二氧化硅(285nm)和硅基底。其中,氧化磷是在样品制备过程中通过氧离子刻蚀处理得到的,此氧化层可有效推迟黑磷样品腐坏的时间。此时,在样品表面甩一层厚度约为2μm的光刻胶(3000r,30s),经加热板100℃下加热两分钟以固化光刻胶膜薄。然后将样品置于显微镜操作平移台上(Coherent),将中心波长为800nm、脉宽35fs、重复频率1kHz、功率10mW的飞秒激光经100倍物镜放大后照射到光刻胶表面,完成对光刻胶的曝光。此光斑大小为1×1μm2,光刻图形化过程可由Labview软件全程控制,可精确操控光刻尺度和形貌。曝光操作完成后,将样品置于显影液中显影45s,显影后样品边界斜面宽度小于2μm。随后对光刻好的样品进行磁控溅射,制备金属电极(JZCK-465 of Sky TechnologyDevelopment,5/50nm Ti/Au)。
实施例2
图5所示为通过叠加制备的两层黑磷十字结构示意图和显微图像,以及拉曼光谱测定的晶向。十字结构制备完成后,就可以按照图5所示连接电路。这里,将连接下层黑磷样品的电极分别命名为“B1”和“B2”,上层黑磷的电极命名为“T1”和“T2”。在电学实验的测量过程中,我们首先将T1和B2电极分别视为漏极和源极,与传统黑磷器件电学性能不同,十字结构堆叠黑磷表现出了完美的电学整流特性。源漏电压从-2V变化至2V的过程中,源漏电流接近e指数形式,器件整流比高达22。其源漏电压-源漏电流在线性和指数坐标系下的数值关系如图6所示。
实施例3
图7所示为通过叠加制备的两层黑磷平行结构示意图和显微图像,以及拉曼光谱测定的晶向。平行结构制备完成后,上层黑磷作为源级(S),下层黑磷作为漏极(D)。在电学实验的测量过程中,平行结构堆叠黑磷表现出了完美的电学整流特性。源漏电压从-2V变化至2V的过程中,源漏电流接近e指数形式,器件整流比高达110。其源漏电压-源漏电流和门电压关系如图8所示。

Claims (7)

1.一种黑磷取向二极管,其特征在于:两层黑磷材料通过范德华力叠加形成异质结构时,二维材料黑磷中载流子输运过程中发生晶向上的突变,当电流方向从扶手椅晶向(AC)转向锯齿晶向(ZZ)时为导通状态,当电流方向从ZZ方向转向AC方向时为不导通状态,从而实现整流效应,获得黑磷取向二极管。
2.如权利1要求所述的一种黑磷取向二极管,其特征在于:载流子输运发生晶向突变的方法为两层叠加的黑磷材料晶向相同,形成十字结构,电极分别加在上下层的相邻端,从而实现载流子输运过程的晶向突变。
3.如权利1要求所述的一种黑磷取向二极管,其特征在于:载流子输运发生晶向突变的方法为两层叠加的黑磷材料晶向垂直,形成平行结构,电极分别加在两层黑磷的两端,从而实现载流子输运过程的晶向突变。
4.一种黑磷取向二极管的制备方法,其特征在于:包括如下步骤
1)黑磷材料的制备,用机械剥离的方法在硅基上制备黑磷,获得两块黑磷;
2)黑磷材料的晶向判断,通过拉曼光谱或光学反射方法测定黑磷的AC方向和ZZ方向;
3)两块黑磷材料的叠加,在显微镜下控制角度将两块黑磷叠加在一起,形成十字结构或平行结构;
4)电极的制备,在上下两层黑磷上分别制备上电极。
5.如权利4要求所述的一种黑磷取向二极管的制备方法,其特征在于:步骤1)中所述黑磷的横向尺寸大于10微米;
6.如权利4要求所述的一种黑磷取向二极管的制备方法,其特征在于:步骤3)中所述十字结构为两块黑磷中间部分的交叠所形成的结构;
7.如权利4要求所述的一种黑磷取向二极管的制备方法,其特征在于:步骤3)中所述平行结构为两块黑磷的一端相互交叠所形成的结构。
CN201711074580.9A 2017-11-02 2017-11-02 一种黑磷取向二极管及其制备方法 Pending CN107968125A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711074580.9A CN107968125A (zh) 2017-11-02 2017-11-02 一种黑磷取向二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711074580.9A CN107968125A (zh) 2017-11-02 2017-11-02 一种黑磷取向二极管及其制备方法

Publications (1)

Publication Number Publication Date
CN107968125A true CN107968125A (zh) 2018-04-27

Family

ID=62000020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711074580.9A Pending CN107968125A (zh) 2017-11-02 2017-11-02 一种黑磷取向二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN107968125A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109342325A (zh) * 2018-10-30 2019-02-15 南开大学 一种低维材料各向异性显微的成像方法和装置
CN110082297A (zh) * 2019-03-12 2019-08-02 国家纳米科学中心 二维层状材料异质结堆叠序列的检测方法及光谱测量系统
WO2021114905A1 (zh) * 2019-12-13 2021-06-17 深圳瀚光科技有限公司 一种各向异性器件及其制备方法和应用
CN116825878A (zh) * 2023-08-31 2023-09-29 湖南大学 一种面外p-n结面内自发电极化二维体光伏材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160043270A1 (en) * 2014-08-05 2016-02-11 Massachusetts Institute Of Technology Engineered band gaps
CN105702775A (zh) * 2016-03-18 2016-06-22 电子科技大学 一种基于黑磷/二硫化钼异质结能量带隙可调的光探测器
CN106024861A (zh) * 2016-05-31 2016-10-12 天津理工大学 二维黑磷/过渡金属硫族化合物异质结器件及其制备方法
US20170162654A1 (en) * 2015-12-02 2017-06-08 Samsung Electronics Co., Ltd. Field effect transistor and semiconductor device including the same
US20170175258A1 (en) * 2015-12-21 2017-06-22 The Penn State Research Foundation Facile Route to Templated Growth of Two-Dimensional Layered Materials
CN107221732A (zh) * 2017-06-28 2017-09-29 桂林电子科技大学 一种基于黑磷的超宽带极化可重构圆极化器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160043270A1 (en) * 2014-08-05 2016-02-11 Massachusetts Institute Of Technology Engineered band gaps
US20170162654A1 (en) * 2015-12-02 2017-06-08 Samsung Electronics Co., Ltd. Field effect transistor and semiconductor device including the same
US20170175258A1 (en) * 2015-12-21 2017-06-22 The Penn State Research Foundation Facile Route to Templated Growth of Two-Dimensional Layered Materials
CN105702775A (zh) * 2016-03-18 2016-06-22 电子科技大学 一种基于黑磷/二硫化钼异质结能量带隙可调的光探测器
CN106024861A (zh) * 2016-05-31 2016-10-12 天津理工大学 二维黑磷/过渡金属硫族化合物异质结器件及其制备方法
CN107221732A (zh) * 2017-06-28 2017-09-29 桂林电子科技大学 一种基于黑磷的超宽带极化可重构圆极化器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109342325A (zh) * 2018-10-30 2019-02-15 南开大学 一种低维材料各向异性显微的成像方法和装置
CN109342325B (zh) * 2018-10-30 2023-12-19 南开大学 一种低维材料各向异性显微的成像方法和装置
CN110082297A (zh) * 2019-03-12 2019-08-02 国家纳米科学中心 二维层状材料异质结堆叠序列的检测方法及光谱测量系统
CN110082297B (zh) * 2019-03-12 2021-04-13 国家纳米科学中心 二维层状材料异质结堆叠序列的检测方法及光谱测量系统
WO2021114905A1 (zh) * 2019-12-13 2021-06-17 深圳瀚光科技有限公司 一种各向异性器件及其制备方法和应用
CN116825878A (zh) * 2023-08-31 2023-09-29 湖南大学 一种面外p-n结面内自发电极化二维体光伏材料及其制备方法和应用
CN116825878B (zh) * 2023-08-31 2023-11-24 湖南大学 一种面外p-n结面内自发电极化二维体光伏材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN107968125A (zh) 一种黑磷取向二极管及其制备方法
Yuan et al. Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes
Zhang et al. Tribotronic phototransistor for enhanced photodetection and hybrid energy harvesting
CN102067307B (zh) 单元件太阳能电池装置及体系
Hoppe et al. Optimal geometric design of monolithic thin-film solar modules: Architecture of polymer solar cells
Smith et al. Introduction to semiconductor processing: Fabrication and characterization of pn junction silicon solar cells
Feng et al. Giant persistent photoconductivity in rough silicon nanomembranes
Cho et al. Effects of photon recycling and scattering in high-performance perovskite solar cells
Peña-Camargo et al. Revealing the doping density in perovskite solar cells and its impact on device performance
Dang et al. The fabrication and characterization of flexible single-crystalline silicon and germanium p-intrinsic-n photodetectors on plastic substrates
Lamers et al. Perovskite-compatible electron-beam-lithography process based on nonpolar solvents for single-nanowire devices
Chen et al. Dynamics of charge carriers in silicon nanowire photoconductors revealed by photo Hall effect measurements
Kim et al. Channel-length-modulated avalanche multiplication in ambipolar WSe2 field-effect transistors
Li et al. Lateral WSe2 homojunction through metal contact doping: Excellent self‐powered photovoltaic photodetector
Yoshiba et al. Single crystalline silicon solar cells with rib structure
Chang et al. Controllable Switching between Highly Rectifying Schottky and p–n Junctions in an Ionic MoS2 Device
Liang et al. Multifunctional high-performance position sensitive detector based on a Sb 2 Se 3-nanorod/CdS core-shell heterojunction
Cheng et al. A Universal Microscopic Patterned Doping Method for Perovskite Enables Ultrafast, Self‐Powered, Ultrasmall Perovskite Photodiodes
Monastyrskii et al. Photosensitive structures of conjugated polymer-porous silicon
Dusza et al. Significance of light-soaking effect in proper analysis of degradation dynamics of organic solar cells
Yasunaga et al. Densely Arrayed Active Antennas Embedded in Vertical Nanoholes for Backside‐Illuminated Silicon‐Based Broadband Infrared Photodetection
He et al. Analytical transient responses and gain–bandwidth products of low-dimensional high-gain photodetectors
Oh et al. The silicon Schottky diode on flexible substrates by transfer method
Korner et al. Combined optical/electrical simulation of CCD cell structures by means of the finite-difference time-domain method
Verley et al. A new time-dependent analytic compact model for radiation-induced photocurrent in epitaxial structures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180427