CN107960112A - 用于从低温蒸汽产生电力的系统 - Google Patents

用于从低温蒸汽产生电力的系统 Download PDF

Info

Publication number
CN107960112A
CN107960112A CN201680024639.0A CN201680024639A CN107960112A CN 107960112 A CN107960112 A CN 107960112A CN 201680024639 A CN201680024639 A CN 201680024639A CN 107960112 A CN107960112 A CN 107960112A
Authority
CN
China
Prior art keywords
water
steam
pipe
tank
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680024639.0A
Other languages
English (en)
Other versions
CN107960112B (zh
Inventor
罗杰·戴维斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intex Holdings Pty Ltd
Original Assignee
Intex Holdings Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2015901526A external-priority patent/AU2015901526A0/en
Application filed by Intex Holdings Pty Ltd filed Critical Intex Holdings Pty Ltd
Publication of CN107960112A publication Critical patent/CN107960112A/zh
Application granted granted Critical
Publication of CN107960112B publication Critical patent/CN107960112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/18Final actuators arranged in stator parts varying effective number of nozzles or guide conduits, e.g. sequentially operable valves for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/064Devices for producing mechanical power from solar energy with solar energy concentrating means having a gas turbine cycle, i.e. compressor and gas turbine combination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B27/00Instantaneous or flash steam boilers
    • F22B27/16Instantaneous or flash steam boilers involving spray nozzles for sprinkling or injecting water particles on to or into hot heat-exchange elements, e.g. into tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/04Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B3/00Condensers in which the steam or vapour comes into direct contact with the cooling medium
    • F28B3/04Condensers in which the steam or vapour comes into direct contact with the cooling medium by injecting cooling liquid into the steam or vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/165Controlling means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种使用太阳能收集器产生电力的系统,该太阳能收集器使用太阳能来加热水。加热的水储存在第一罐中。容器通过管连接到第一罐,并且包括顶部空间,加热的水在该顶部空间内喷射,以由此产生蒸汽。顶部空间压力低于大气压力,并且未转化成蒸汽的水被收集在容器的底部处的池中,以供给回到第一罐中。蒸汽被供给到部分进汽式涡轮机,该部分进汽式涡轮机驱动电发生器。

Description

用于从低温蒸汽产生电力的系统
发明领域
本发明总体上涉及使用部分进汽式轴流涡轮机(partial admission axial flowturbine)从低温蒸汽产生电力的系统。
背景
电力是现代社会的基本需求之一。虽然电可以以许多方式(包括光伏电池、风力涡轮机或水力发电)产生,但是大部分发电是使用蒸汽涡轮机完成的,以确保稳定地连续生产电力。为了产生蒸汽,大量的锅炉用于通过燃烧化石燃料或核裂变产生的热量来使水沸腾。
现有的蒸汽涡轮机通常很大,发电100kW+来克服损失并在经济上是可行的。蒸汽的膨胀(expansion)需要在多级轴向和径向设计中增加流动面积,然而高压、温度和旋转速度限制材料选择。大尺寸和大致水平的配置要求轴沿轴向方向被支撑。旋转叶片排(转子)必须由固定的喷嘴排(定子)分离,这增加了组装的复杂性。
多年以来使用蒸汽作为动力流体的发电装置的发展主要集中在降低每兆瓦时发电量的货币成本上。为了实现这个目的,蒸汽涡轮机技术中的改进已经集中在增加输出、蒸汽/炉内温度、单元可靠性/有效性或这些的组合上。这些改进通常增加了单元成本,需要增加功率输出以保持财政上的可行性。
已知的是太阳能加热的水用于产生蒸汽并用作辅助能量输入来驱动包括固定的翼型排(通常被称为“喷嘴”、“定子”或“轮叶(vanes)”)的轴流式涡轮机,该固定的翼型排加速并引导流体流动以冲击旋转的翼型形状的排(通常被称为“铲斗(buckets)”,“转子”或“叶片(blades)”),该旋转的翼型形状的排连接到轴,用于将功率输出传递到连接的设备。
当涡轮机入口处的流体密度非常高时,然后通常的做法是以“部分进汽”设计多级涡轮机的第一级(并且可能是前几级)。部分进汽是指喷嘴通道仅设置为360度圆周的一部分(即,区段)的一种级设计(stage design)。在常规设计中使用的部分进汽的主要优点是能够使用较大的喷嘴和叶片通道高度(即,径向长度),由于损失减少而促使较好的效率。这在部分进汽式涡轮机叶片高度可能相当小的情况下对于高密度流动特别重要。
在常规涡轮机中,特别是在蒸汽涡轮机中,部分进汽仅应用于以高密度流体操作的第一级(或前几级)。后续级不能使用部分进汽,因为它们的操作压力和密度已经显著降低。因此,需要喷嘴和叶片通道面积的较大增加来补偿随着蒸汽从入口到排气口的膨胀而发生的较高体积流动速率。对于这些较高体积流动级,通常需要完全进汽(360度),以便在使叶片高度保持在合理的机械应力极限内的同时实现较大的通道面积。
当蒸汽通过所有级时,任何剩余的蒸汽需要被冷凝,因此蒸汽可以作为水从涡轮机的底部去除。通常,冷凝水可以在蒸汽发生器中重复使用。
本发明的目的是提供一种用于与部分进汽式蒸汽涡轮机一起使用的从低温蒸汽产生电力的系统。对于单独部件的细节,请读者参考题为如下的共同未决的申请:
(a)A method and apparatus for generating low temperature steam fromhot water for use with a multi-stage axial flow turbine adapted to operate atlow steam temperatures(用于与适合于在低蒸汽温度下操作的多级轴流涡轮机一起使用的用于从热水产生低温蒸汽的方法和装置)。
(b)A multi-stage axial flow turbine adapted to operate at low steamtemperatures(适合于在低蒸汽温度下操作的多级轴流涡轮机)。
(c)A shaft for use with a multi-stage axial flow turbine adapted tooperate at low steam temperatures(与适合于在低蒸汽温度下操作的多级轴流涡轮机一起使用的轴)。
(d)A condenser system for use with a multi-stage axial flow turbineadapted to operate at low steam temperatures(用于与适合于在低蒸汽温度下操作的多级轴流涡轮机一起使用的冷凝器系统)。
发明概述
因此,在本发明的一种形式中,提出了一种用于产生电力的系统,该系统包括:
太阳能收集器,其用于使用太阳能加热水,加热的水储存在第一罐中;
容器,其通过第一管连接到第一罐,并且具有顶部空间,加热的水在顶部空间内被喷射,以由此产生蒸汽,顶部空间压力低于大气压力,没有转化成蒸汽的水收集在容器的底部处的池中;
第一泵,其将水从池穿过第二管泵送并且泵送到第一罐中;
第三管,将所述蒸汽用管输送到部分进汽式涡轮机;
冷凝器,其位于涡轮机的底部处,包括多于一个出水口,以将水从第二罐喷射到冷凝器中,从而将剩余的蒸汽冷却成水;
第二泵,其将来自涡轮机底部的水穿过第四管泵送到第二罐中;并且其中,蒸汽驱动部分进汽式涡轮机,部分进汽式涡轮机驱动电发生器。
优选地,穿过每个管的流动速率由管的尺寸确定。
优选地,穿过每个管的流动速率由单独的阀控制。
优选地,穿过第一管的流体的流动速率至少初始小于穿过第二管的流动速率,从而致使顶部空间中的压力降低。
优选地,顶部空间中的操作压力为约-14psig。
优选地,系统还包括连接到第二罐以适应任何溢流的出口管。
附图简述
本发明的优选特征、实施方案和变体可以从以下详细描述中被辨别,详细描述为本领域技术人员提供足够的信息来执行本发明。详细描述不以任何方式被视为限制本发明的前述概述的范围。详细描述将参考如下的若干附图。
现在将仅作为示例参考附图。
图1是根据本发明的实施方案的用于产生电力的系统的示意图。
附图部件
附图包括标记如下的项目:
12 太阳能
10 发电系统
14 水
16 加热面板
18 储存罐
20 管
22 隔热物
24 管
26 密封室
28 顶部空间
30 花洒头
32 池
34 泵
36 管
38 阀
40 蒸汽管
42 部分进汽式涡轮机
44 发生器
46 涡轮机的底部
48 冷凝管
50 泵
52 管
54 罐
56 管
58 耦合管
60 溢流管
发明的详细描述
以下参考附图详细描述本发明的优选的实施方案。在任何可能的情况下,在整个附图和以下描述中将使用相同的附图标记来指代相同和相似的部件。如本文所使用的,表明绝对定向(例如“顶”、“底”、“前”、“后”、“水平”等)的术语的任何使用是为了说明的方便,并且指代示出在特定附图中的定向。然而,这样的术语不应被解释为限制性的意义,因为可设想的是,各种部件实际上可以在与所描述或示出的定向相同或不同的定向中使用。为了清楚或说明的目的,附图中所示的某些部分的尺寸可能已被修改和/或夸大。
现在转向图示了用于产生电力的发电系统10的附图,发电系统10在最简单的解释中包括加热水的装置、从该热水产生蒸汽的装置以及使用电动涡轮机中的蒸汽来生成电力的装置。
在该实施方案中,太阳能12用于使用太阳能加热面板16加热水14,加热的水储存在储存罐18中。水通过管20在罐18和太阳能面板16之间循环。为了最小化热损失,罐包括隔热物22。
来自罐18的水14经由管24供给到密封室26中。水使用通常沿其长度具有多于一个孔(未示出)的花洒头30喷射在顶部空间28中。喷射的水收集在室26的底部处的池32中,其中泵34将水通过管36供回储存罐18中。阀38可以用于控制穿过管24和36的水的流动。
通过控制管24和36的尺寸或者通过操作阀38,穿过管36的流动速率初始大于穿过管24的流动速率,从而增加了室中的顶部空间28的尺寸,并且因此导致在顶部空间28中产生真空。在大气压力约为14.7psia的情况下,实际上压力可以降低至-14psig。顶部空间28中的真空致使喷射的水在比100摄氏度低得多的温度下变成蒸汽。
然后,蒸汽经由蒸汽管40供给到部分进汽式涡轮机42中,蒸汽促使涡轮机旋转并且使发生器44自旋以产生电力。一旦蒸汽到达涡轮机的底部46,就用数股冷却的水进行喷淋,以确保所有的蒸汽都被冷凝,并且然后使用泵50使水穿过冷凝管48抽出并通过管52供给到罐54中。然后,罐中的水穿过管56再循环回到底部46中,穿过管48和管56的流动速率被选择或控制,使得涡轮机中的真空也保持在约-14psig。
读者现在应理解,密封室26和涡轮机42在密封环境和真空下操作,这致使水在比大气压下的水沸点温度低的温度下蒸发成蒸汽,并且还有助于部分进汽式涡轮机的操作。
储存罐18和罐54可以通过耦合管58流体耦合在一起,其中罐54还具有溢流管60。
虽然以上参考使用了由太阳加热的热水,但是也可以使用其他热水的源,例如地热水或通过其它方式加热的水,并且真空还可以通过除水泵之外的其它方式形成。
此外,尽管该系统用于驱动电发生器,但是其也可用于提供旋转动力的源。
在不偏离其范围的情况下,可以非常好地对本发明作出进一步的利用和改进。尽管在被认为是最实际和优选的实施方案中已经显示和描述了本发明,但是应当认识到,可以在本发明的范围和精神内进行偏离,不限于本文公开的细节而是要符合权利要求的全部范围,以便包含任何和所有等同的设备和装置。在整个说明书中对现有技术的任何讨论决不应被视为承认这样的现有技术是广为人知的或形成该领域的公知常识的一部分。
在本说明书和权利要求(如果有的话)中,词语“包括(comprising)”及其衍生词(包括“包括(comprises)”和“包括(comprise)”)包括所述整体中的每一个,但不排除包含一个或更多个另外的整体。

Claims (6)

1.一种用于产生电力的系统,包括:
太阳能收集器,其用于使用太阳能加热水,加热的水储存在第一罐中;
容器,其通过第一管连接到所述第一罐,并且具有顶部空间,所述加热的水在所述顶部空间内被喷射,以由此产生蒸汽,所述顶部空间的压力低于大气压力,没有转化成蒸汽的水收集在所述容器的底部处的池中;
第一泵,其将水从所述池穿过第二管泵送并且泵送到所述第一罐中;
第三管,将所述蒸汽用管输送到部分进汽式涡轮机;
冷凝器,其位于所述涡轮机的底部处,包括多于一个出水口,以将水从第二罐喷射到所述冷凝器中,从而将剩余的蒸汽冷凝成水;
第二泵,其将来自所述涡轮机的所述底部的水通过第四管泵送到所述第二罐中;
其中,蒸汽驱动所述部分进汽式涡轮机,所述部分进汽式涡轮机驱动电发生器。
2.根据权利要求1所述的系统,其中,穿过每个管的流动速率由所述管的尺寸确定。
3.根据权利要求1所述的系统,其中,穿过每个管的流动速率由各个阀控制。
4.根据权利要求2或3所述的系统,其中,穿过所述第一管的流体的流动速率至少初始小于穿过所述第二管的流动速率,由此致使所述顶部空间中的压力降低。
5.根据权利要求1所述的系统,其中,所述顶部空间中的操作压力为约-14psig。
6.根据权利要求1所述的系统,包括连接到所述第二罐以适应任何溢流的出口管。
CN201680024639.0A 2015-04-29 2016-04-28 用于从低温蒸汽产生电力的系统 Active CN107960112B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2015901526A AU2015901526A0 (en) 2015-04-29 A system for generating electrical power from low temperature steam
AU2015901526 2015-04-29
PCT/AU2016/000152 WO2016172761A1 (en) 2015-04-29 2016-04-28 A system for generating electrical power from low temperature steam

Publications (2)

Publication Number Publication Date
CN107960112A true CN107960112A (zh) 2018-04-24
CN107960112B CN107960112B (zh) 2019-09-24

Family

ID=57197976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680024639.0A Active CN107960112B (zh) 2015-04-29 2016-04-28 用于从低温蒸汽产生电力的系统

Country Status (8)

Country Link
US (1) US10228125B2 (zh)
EP (1) EP3289216B1 (zh)
JP (1) JP6837993B2 (zh)
CN (1) CN107960112B (zh)
AU (1) AU2016222342B2 (zh)
CA (1) CA2984158C (zh)
ES (1) ES2773880T3 (zh)
WO (1) WO2016172761A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016277549B2 (en) 2016-10-24 2018-10-18 Intex Holdings Pty Ltd A multi-stage axial flow turbine adapted to operate at low steam temperatures
CN109958593B (zh) * 2019-03-11 2020-06-02 西安交通大学 一种太阳能燃煤耦合灵活发电系统及运行方法
NL1043535B1 (nl) * 2020-01-07 2022-06-24 Mim Patrick Walthie Drs De vacuümverdamper.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US991161A (en) * 1909-06-02 1911-05-02 Edwin H Mchenry Solar-heat motor.
US4189924A (en) * 1978-06-22 1980-02-26 Westinghouse Electric Corp. Ocean thermal energy conversion system and method for operation
CN1288138A (zh) * 2000-10-16 2001-03-21 李培荣 太阳能多形式利用、储存、再利用的方法和装置
CN1869540A (zh) * 2006-06-27 2006-11-29 戴文育 太阳热能热能利用装置
WO2008154427A3 (en) * 2007-06-06 2009-05-28 Ausra Inc Convective/radiative cooling of condenser coolant
US20090199557A1 (en) * 2008-02-12 2009-08-13 Lawrence Livermore National Security, Llc Solar Thermal Power System
CN101994667A (zh) * 2009-08-09 2011-03-30 姜德雄 太阳能蒸汽发动机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002031A (en) * 1975-07-07 1977-01-11 Varian Associates, Inc. Solar energy converter with waste heat engine
US4050445A (en) * 1976-07-23 1977-09-27 Atlantic Fluidics, Inc. Solar energy collection system
FR2417728A1 (fr) * 1978-02-20 1979-09-14 Saunier Duval Chauffe-eau a accumulation alimente en fluide chauffe par panneau solaire
US4213303A (en) * 1978-04-21 1980-07-22 Lane William E Sun tracking solar energy boiler
US4314545A (en) * 1979-05-09 1982-02-09 Bowman Charles W Solar hot water generator
US4280328A (en) * 1979-09-28 1981-07-28 Falconer Claude J Utilization of solar energy
US4423599A (en) * 1980-08-01 1984-01-03 Veale Charles C Solar energy utilization apparatus and method
US4388916A (en) * 1981-10-01 1983-06-21 Murdock Albert L Steam generation apparatus
JPS59107144A (ja) 1982-12-10 1984-06-21 Agency Of Ind Science & Technol 太陽熱利用プラント
IL101193A (en) * 1987-12-04 1999-03-12 Solmat Syst Direct contact heat exchanger and method to create it
US9428403B2 (en) * 2010-10-11 2016-08-30 H2O Global Llc Large scale insulated desalination system
WO2012123967A2 (en) * 2011-03-14 2012-09-20 Valagam Rajagopal Raghunathan Hermitically sealed solar water heater system and operation method for generation of electricity from thermal power plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US991161A (en) * 1909-06-02 1911-05-02 Edwin H Mchenry Solar-heat motor.
US4189924A (en) * 1978-06-22 1980-02-26 Westinghouse Electric Corp. Ocean thermal energy conversion system and method for operation
CN1288138A (zh) * 2000-10-16 2001-03-21 李培荣 太阳能多形式利用、储存、再利用的方法和装置
CN1869540A (zh) * 2006-06-27 2006-11-29 戴文育 太阳热能热能利用装置
WO2008154427A3 (en) * 2007-06-06 2009-05-28 Ausra Inc Convective/radiative cooling of condenser coolant
US20090199557A1 (en) * 2008-02-12 2009-08-13 Lawrence Livermore National Security, Llc Solar Thermal Power System
CN101994667A (zh) * 2009-08-09 2011-03-30 姜德雄 太阳能蒸汽发动机

Also Published As

Publication number Publication date
CA2984158A1 (en) 2016-11-03
EP3289216A1 (en) 2018-03-07
JP2018521257A (ja) 2018-08-02
US20180356091A1 (en) 2018-12-13
CA2984158C (en) 2023-10-03
CN107960112B (zh) 2019-09-24
EP3289216B1 (en) 2020-02-05
JP6837993B2 (ja) 2021-03-03
US10228125B2 (en) 2019-03-12
WO2016172761A1 (en) 2016-11-03
AU2016222342B2 (en) 2017-12-14
AU2016222342A1 (en) 2016-11-17
EP3289216A4 (en) 2018-11-07
ES2773880T3 (es) 2020-07-15

Similar Documents

Publication Publication Date Title
US8739533B2 (en) Solar augmented wind turbine for stable and dispatchable utility scale power generation
US6295803B1 (en) Gas turbine cooling system
Cha et al. Operation results of a closed supercritical CO2 simple Brayton cycle
Medica-Viola et al. Comparison of conventional and heat balance based energy analyses of steam turbine
EP2846008B1 (en) Steam turbine plant
JP5479192B2 (ja) 蒸気タービンプラント
CN107960112B (zh) 用于从低温蒸汽产生电力的系统
US20210180471A1 (en) Power Generation Method and System Using Working Fluid with Buoyancy Engine
CN101769222A (zh) 热力水轮机发电装置
US4537032A (en) Parallel-stage modular Rankine cycle turbine with improved control
Bianchi et al. Design of a single-shaft compressor, generator, turbine for small-scale supercritical CO2 systems for waste heat to power conversion applications
CN106337789B (zh) 一种集光放大太阳能光热发电系统及发电方法
CN206942815U (zh) 汽轮机组连接结构
CN109555571A (zh) 一种一体式余热集成发电系统的发电方法
JP5818557B2 (ja) 蒸気タービンプラント
CN102213118B (zh) 汽轮机机组
Arivazhagan et al. Performance analysis of steam generators in thermal power plant
Bambang Teguh et al. Design of n-butane radial inflow turbine for 100 kw binary cycle power plant
US8869532B2 (en) Steam turbine utilizing IP extraction flow for inner shell cooling
US20140075946A1 (en) Hydroelectric Power Generation Device
Filippov et al. Ways for Improving Efficiency and Reliability of Steam Turbines at Nuclear Power Stations
Kruglikov et al. Selecting the basic schematic solutions for a coal-fired power unit designed to operate at ultrasupercritical steam conditions
CN113790087A (zh) 燃煤发电机组回热系统凝结水能量利用装置
as an Alternative Analysis of Geothermal Wells with High Non-Condensable Gas (NCG) Content as an Alternative Energy Source to Reduce House Load on Indonesia‟ s Geothermal Power Plant
González-Almenara et al. Innovative desalination system driven by a solar micro gas turbine for off-grid applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant