CN107959025A - 一种柔性自支撑锂硫电池正极材料的制造方法 - Google Patents

一种柔性自支撑锂硫电池正极材料的制造方法 Download PDF

Info

Publication number
CN107959025A
CN107959025A CN201610898560.2A CN201610898560A CN107959025A CN 107959025 A CN107959025 A CN 107959025A CN 201610898560 A CN201610898560 A CN 201610898560A CN 107959025 A CN107959025 A CN 107959025A
Authority
CN
China
Prior art keywords
self
supporting
cnt
kocide
mof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610898560.2A
Other languages
English (en)
Inventor
黎军
刘培杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Feng Yu New Mstar Technology Ltd
Original Assignee
Ningbo Feng Yu New Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Feng Yu New Mstar Technology Ltd filed Critical Ningbo Feng Yu New Mstar Technology Ltd
Priority to CN201610898560.2A priority Critical patent/CN107959025A/zh
Publication of CN107959025A publication Critical patent/CN107959025A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种自支撑锂硫电池正极材料。采用MOF/CNT自支撑复合膜为活性物质硫的导电基质,利用MOF丰富的孔结构,将活性物质硫有效束缚与MOF孔内,缓解其溶解损失,抑制电池穿梭效应。同时CNT为电极提供良好的导电性,保证活性物质电化学动力学性质,同时为电极提供强韧的机械稳定性和自支撑性能。通过MOF材料和CNT的协同作用,获得了高容量,高循环稳定性的电池性能。本发明方法简单,成本低廉,利于推广,具有明显的效果和良好的实用性,有望在新一代高能量柔性电池中得到广泛应用。

Description

一种柔性自支撑锂硫电池正极材料的制造方法
技术领域
本发明涉及锂硫二次电池,尤其涉及一种柔性自支撑锂硫电池正极材料。
技术背景
随着能源和环境问题的不断突出,以及电子电动设备的不断发展,人们对于储能体系提出了更高的要求。传统锂离子电池具有循环寿命长、安全性好等优点而被广泛应用于市场化电子电动设备,但是受到其相对较低的理论比容量限制,已经逐渐难以满足社会发展对于电池高比能量的需求。锂硫电池是以单质硫为正极,金属锂为负极的电池体系,其理论比容量高达2600Wh kg-1,同时正极活性物质硫的来源广泛,价格低廉,环境友好。因此,锂硫电池被认为是最有前景的高能电池体系之一(Rosenman A,et al.,Adv.EnergyMater.2015,5,1500212)。然而,锂硫电池中活性物质导电性差,充放电过程电极体积变化大,中间产物在电解液中的具有溶解性以及伴随的“穿梭效应”等,导致锂硫电池的循环寿命较差,阻碍其商业化发展(Manthiram A,Account of Chemical Research.2013,46,1125-1134)。
近年来,研发人员对硫正极通过各种方法进行改进,有效提高了锂硫电池的电化学性能。其中,金属有机框架(MOF)材料在锂硫电池中的应用受到了广泛关注。MOF具有丰富的孔结构和较高的孔径可控性,对锂硫电池中间产物聚硫离子的具有良好的物理吸附效应,同时其中路易斯酸的金属离子和路易斯碱的聚硫离子间的化学络合效应提供良好的化学吸附能力(Zhou JW,et al.,Energy Environ.Sci.,2014,7,2715-2724;Wang ZQ,etal.,Cryst.Growth Des.2013,13,5116-5120)通过在正极中引入MOF材料可有效提高电池的循环性能。此外,纳米碳材料的引入可提高材料的导电性,同时其丰富的孔结构可容纳活性物质硫并缓冲其在充放电过程中的体积变化,通过其维纳尺度的孔洞结构抑制多硫化物的迁移和穿梭、提高电池的容量和效率(Yang Y,et al.,Chem.Soc.Rev.,2013,42,3018-3032)。碳纳米管(carbon nanotube,CNT)具有由石墨烯卷曲形成的一维管状纳米结构。其中以sp2杂化方式键合的碳原子使得CNT具有很高的杨氏模量,具有较高的断裂强度,极佳的韧性以及化学可调的表面,容易加工形成自支撑的柔性电极材料。而自支撑电极在制备过程中不需要添加粘结剂和导电剂,而是直接将活性材料负载在导电基质上,制作过程方便简单,同时减少了电极材料的死体积,增加了活性材料的表面积,增强了整个电极材料的导电性,避免了电极材料在充放电过程中粉体现象的发生,从而提高了活性物质利用率及电极循环稳定性。可以预知,自支撑复合材料电极在未来生活的各个领域具有非常大的应用价值。
发明内容
本发明的目的在于针对目前锂硫电池的存在问题与应用需求,提出一种简单有效的方法,获得基于柔性骨架的导电网络,对活性物质提供良好的物理、化学支持,并且具有自支撑性质的正极材料,并发展其制备技术,从而获得高性能的柔性锂硫电池用电极材料。
本发明的技术方案如下:
金属硝酸盐浸泡在氨基乙醇在溶液中2天获得金属氢氧化物纳米线。
将所得金属氢氧化物纳米线和单壁纳米碳管在溶液中均匀混合,在直径2cm的在多孔基质上抽滤,干燥得到自支撑的MHNs/CNT复合膜。
将所得MHNs/CNT复合在有机酸的水和乙醇的混合溶液中于室温下浸泡反应1h,抽滤,干燥,获得MHNs/CNT复合膜。并裁成直径14mm的圆片,称重待用。
将升华硫在加热搅拌下溶于CS2中得到S/CS2溶液。将所得溶液按一定质量比滴入复合膜中,缓慢蒸干,并于140℃下热处理8h获得自支撑的正极材料MOF/CNTS。
在Ar气氛手套箱中,以所得极片为正极,Celgard 2400聚丙烯多孔膜为隔膜,金属锂箔为负极,组装成CR2025扣式电池。电解液为1M LiTFSI/DME+DOL(v:v=1:1)的混合溶液,其中含有1wt.%的硝酸锂添加剂。
本发明的制备方法和结构设计同时适用于多种MOF材料(HKUST-1,ZIF-5,ZIF-5)。
本发明中的另一技术特征在活性物质均匀分散MOF材料的孔洞中,MOF材料的孔径为0.34~1.5nm。
本发明中技术特征还在于所得极片厚度为15~75μm。
本发明相比现有技术,具有如下有点与突出效果:本发明采用简单易行的溶液法制备了自支撑MOF/CNT复合膜,并作为硫正极的导电骨架获得了自支撑的锂硫电池正极材料。通过MOF丰富的孔结构,将活性物质硫有效束缚与MOF孔内,缓解其溶解损失,抑制电池穿梭效应。同时CNT为电极提供良好的导电性,保证活性物质电化学动力学性质,同时为电极提供强韧的机械稳定性和自支撑性能。通过MOF材料和CNT的协同作用,获得了高容量,高循环稳定性的电池性能。本发明方法简单,成本低廉,利于推广,具有明显的效果和良好的实用性,有望在新一代高能量柔性电池中得到广泛应用。
附图说明
图1为实施例1中所得自支撑极片的弯曲示意图。图中显示所得HKUST-1/CNTS电极具有良好的机械柔韧性。
图2为实施例1中所得自支撑HKUST-1/CNT复合膜的截面扫描电镜图。图中先说所得复合膜具有均匀的层状结构,碳管网络穿插于整个电极中,MOF晶体大小较为均一,且均匀分布于电极中。
图3为实施例1~3所得基于不同MOF的电极的循环性能。
具体实施方式
本发明提供一种用于锂硫电池的自支撑MOF/CNTS正极材料,其特征在于结合MOF材料对活性物质的物理、化学吸附作用和CNT材料对导电性和机械性能的支持,获得具有稳定结构和优异性能的锂硫电池。
下面举出几个具体实施例,以进一步理解本发明,但本发明不仅局限于以下实施例。
实施例1
将硝酸铜和氨基乙醇在溶液中混合均匀,浸泡2天后获得氢氧化铜纳米线分散液。将单壁纳米碳管在硝酸中与80℃下加热氧化1天得到表面带负电荷的纳米碳管。将所得1mg氢氧化铜纳米线和2mg纳米碳管按一定质量比在水中分散混合均匀,在直径2cm的在多孔基质上抽滤、干燥获得自支撑的氢氧化铜/碳纳米管复合膜。将所得氢氧化铜/CNT复合膜浸泡在20mM的均苯三甲酸的水/乙醇混合溶液中,溶剂体积比为1:1。在室温下浸泡反应1h后得到自支撑的HKUST-1/CNT复合膜。将升华硫在室温搅拌下溶于CS2中得到S/CS2溶液。将所得溶液按一定质量比加入所得HKUST-1/CNT复合膜中,室温下缓慢干燥后,于140℃下热处理8h获得自支撑的正极材料HKUST-1/CNTS,作为电池正极材料。其中极片上硫载量为1mgcm-2
实施例2
将硝酸锌和氨基乙醇在溶液中混合均匀,浸泡2天后获得氢氧化锌纳米线分散液。将单壁纳米碳管在硝酸中与80℃下加热氧化1天得到表面带负电荷的纳米碳管。将所得1mg氢氧化锌纳米线和2mg纳米碳管在水中分散混合均匀,在直径2cm的多孔基质上抽滤、干燥获得自支撑的氢氧化锌/碳纳米管复合膜。将所得氢氧化锌/CNT复合膜浸泡在25mM的2-甲基咪唑的水/乙醇混合溶液中,溶剂体积比为4:1。在室温下浸泡反应24h后得到自支撑的ZIF-8/CNT复合膜。将升华硫在室温搅拌下溶于CS2中得到S/CS2溶液。将所得溶液按一定质量比加入所得ZIF-8/CNT复合膜中,室温下缓慢干燥后,于140℃下热处理8h获得自支撑的正极材料ZIF-8/CNTS,作为电池正极材料。其中极片上硫载量为1mg cm-2
实施例3
将硝酸锌和氨基乙醇在溶液中混合均匀,浸泡2天后获得氢氧化锌纳米线分散液。将单壁纳米碳管在硝酸中与80℃下加热氧化1天得到表面带负电荷的纳米碳管。将所得1mg氢氧化锌纳米线和2mg纳米碳管在水中分散混合均匀,在直径2cm的多孔基质上抽滤、干燥获得自支撑的氢氧化锌/碳纳米管复合膜。将所得氢氧化锌/CNT复合膜浸泡在20mM的对苯二甲酸的水/乙醇混合溶液中,溶剂体积比为4:1。在120℃下浸泡反应12h后得到自支撑的ZIF-5/CNT复合膜。将升华硫在室温搅拌下溶于CS2中得到S/CS2溶液。将所得溶液按一定质量比加入所得ZIF-5/CNT复合膜中,室温下缓慢干燥后,于140℃下热处理8h获得自支撑的正极材料ZIF-5/CNTS,作为电池正极材料。其中极片上硫载量为1mg cm-2
实施例4
将硝酸铜和氨基乙醇在溶液中混合均匀,浸泡2天后获得氢氧化铜纳米线分散液。将单壁纳米碳管在硝酸中与80℃下加热氧化1天得到表面带负电荷的纳米碳管。将所得2mg氢氧化铜纳米线和4mg纳米碳管按一定质量比在水中分散混合均匀,在直径2cm的在多孔基质上抽滤、干燥获得自支撑的氢氧化铜/碳纳米管复合膜。将所得氢氧化铜/CNT复合膜浸泡在20mM的均苯三甲酸的水/乙醇混合溶液中,溶剂体积比为1:1。在室温下浸泡反应1h后获得厚度为实施例1中的2倍的自支撑的HKUST-1/CNT复合膜。
实施例5
将硝酸铜和氨基乙醇在溶液中混合均匀,浸泡2天后获得氢氧化铜纳米线分散液。将单壁纳米碳管在硝酸中与80℃下加热氧化1天得到表面带负电荷的纳米碳管。将所得3mg氢氧化铜纳米线和6mg纳米碳管按一定质量比在水中分散混合均匀,在直径2cm的在多孔基质上抽滤、干燥获得自支撑的氢氧化铜/碳纳米管复合膜。将所得氢氧化铜/CNT复合膜浸泡在20mM的均苯三甲酸的水/乙醇混合溶液中,溶剂体积比为1:1。在室温下浸泡反应1h后获得厚度为实施例1中的3倍的自支撑的HKUST-1/CNT复合膜。
实施例6
将硝酸铜和氨基乙醇在溶液中混合均匀,浸泡2天后获得氢氧化铜纳米线分散液。将单壁纳米碳管在硝酸中与80℃下加热氧化1天得到表面带负电荷的纳米碳管。将所得4mg氢氧化铜纳米线和8mg纳米碳管按一定质量比在水中分散混合均匀,在直径2cm的在多孔基质上抽滤、干燥获得自支撑的氢氧化铜/碳纳米管复合膜。将所得氢氧化铜/CNT复合膜浸泡在20mM的均苯三甲酸的水/乙醇混合溶液中,溶剂体积比为1:1。在室温下浸泡反应1h后获得厚度为实施例1中的4倍的自支撑的HKUST-1/CNT复合膜。
实施例7
将硝酸铜和氨基乙醇在溶液中混合均匀,浸泡2天后获得氢氧化铜纳米线分散液。将单壁纳米碳管在硝酸中与80℃下加热氧化1天得到表面带负电荷的纳米碳管。将所得5mg氢氧化铜纳米线和10mg纳米碳管按一定质量比在水中分散混合均匀,在直径2cm的在多孔基质上抽滤、干燥获得自支撑的氢氧化铜/碳纳米管复合膜。将所得氢氧化铜/CNT复合膜浸泡在20mM的均苯三甲酸的水/乙醇混合溶液中,溶剂体积比为1:1。在室温下浸泡反应1h后获得厚度为实施例1中的5倍的自支撑的HKUST-1/CNT复合膜。

Claims (1)

1.一种制造自支撑锂硫电池正极材料的方法,包括如下步骤:
第一步:将硝酸铜和氨基乙醇在溶液中混合均匀并浸泡老化2天得到氢氧化铜纳米线分散液;
第二步:将单壁纳米碳管在硝酸中与80℃下加热氧化1天得到表面带负电荷的纳米碳管;将所得3mg氢氧化铜纳米线和6mg纳米碳管按一定质量比在水中分散混合均匀,在直径2cm的在多孔基质上抽滤、干燥获得自支撑的氢氧化铜/碳纳米管复合膜;
第三步:将所得氢氧化铜/CNT复合膜浸泡在20mM的均苯三甲酸的水/乙醇混合溶液中,溶剂体积比为1:1;在室温下浸泡反应1h后获得自支撑的HKUST-1/CNT复合膜;
第四步:将升华硫在室温搅拌下溶于CS2中得到S/CS2溶液。将所得溶液按一定质量比加入所得ZIF-5/CNT复合膜中,室温下缓慢干燥后,于140℃下热处理8h获得自支撑的正极材料HKUST-1/CNT,作为电池正极材料;其中极片上硫载量为1mg cm-2
CN201610898560.2A 2016-10-15 2016-10-15 一种柔性自支撑锂硫电池正极材料的制造方法 Pending CN107959025A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610898560.2A CN107959025A (zh) 2016-10-15 2016-10-15 一种柔性自支撑锂硫电池正极材料的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610898560.2A CN107959025A (zh) 2016-10-15 2016-10-15 一种柔性自支撑锂硫电池正极材料的制造方法

Publications (1)

Publication Number Publication Date
CN107959025A true CN107959025A (zh) 2018-04-24

Family

ID=61953170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610898560.2A Pending CN107959025A (zh) 2016-10-15 2016-10-15 一种柔性自支撑锂硫电池正极材料的制造方法

Country Status (1)

Country Link
CN (1) CN107959025A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461903A (zh) * 2018-09-29 2019-03-12 昆明理工大学 一种锂硫电池复合正极材料的制备方法
CN111333855A (zh) * 2020-04-03 2020-06-26 华南师范大学 一种1,5-二羟基蒽醌铜配位聚合物/石墨烯复合物及制备与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461903A (zh) * 2018-09-29 2019-03-12 昆明理工大学 一种锂硫电池复合正极材料的制备方法
CN111333855A (zh) * 2020-04-03 2020-06-26 华南师范大学 一种1,5-二羟基蒽醌铜配位聚合物/石墨烯复合物及制备与应用

Similar Documents

Publication Publication Date Title
Yan et al. Rational design of flower-like FeCo2S4/reduced graphene oxide films: Novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor
Wang et al. Rational design of hierarchical SnO2/1T-MoS2 nanoarray electrode for ultralong-life Li–S batteries
Chen et al. Construction of core–shell NiMoO4@ Ni-Co-S nanorods as advanced electrodes for high-performance asymmetric supercapacitors
Liu et al. Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries
Zhao et al. Metal organic frameworks for energy storage and conversion
Cheng et al. Enhancing adsorption and reaction kinetics of polysulfides using CoP-coated N-doped mesoporous carbon for high-energy-density lithium–sulfur batteries
Mondal et al. Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability
Wang et al. Co3O4@ MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors
Sui et al. Metal–organic framework-derived metal oxide embedded in nitrogen-doped graphene network for high-performance lithium-ion batteries
Liu et al. Realizing superior electrochemical performance of asymmetric capacitors through tailoring electrode architectures
Zhang et al. Inorganic & organic materials for rechargeable Li batteries with multi-electron reaction
Javed et al. High energy density hybrid supercapacitor based on 3D mesoporous cuboidal Mn2O3 and MOF-derived porous carbon polyhedrons
Jiang et al. High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam
Huang et al. Sewable and cuttable flexible zinc-ion hybrid supercapacitor using a polydopamine/carbon cloth-based cathode
Xu et al. Straightforward synthesis of hierarchical Co3O4@ CoWO4/rGO core–shell arrays on Ni as hybrid electrodes for asymmetric supercapacitors
Wan et al. Nanostructured (Co, Ni)-based compounds coated on a highly conductive three dimensional hollow carbon nanorod array (HCNA) scaffold for high performance pseudocapacitors
CN104934610B (zh) 一种锂离子电池用自支撑柔性复合电极材料制备方法
Gu et al. Highly reversible Li–Se batteries with ultra-lightweight N, S-codoped graphene blocking layer
Wang et al. Self-assembled sandwich-like vanadium oxide/graphene mesoporous composite as high-capacity anode material for lithium ion batteries
Huang et al. A pinecone-inspired hierarchical vertically aligned nanosheet array electrode for high-performance asymmetric supercapacitors
Shen et al. Recent progress in binder‐free electrodes synthesis for electrochemical energy storage application
Dai et al. Ni foam substrates modified with a ZnCo2O4 nanowire-coated Ni (OH) 2 nanosheet electrode for hybrid capacitors and electrocatalysts
CN107742707B (zh) 一种纳米氧化镧/石墨烯/硫复合材料的制备方法
Meng et al. Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction
Liu et al. Carbon nanotube-connected yolk–shell carbon nanopolyhedras with cobalt and nitrogen doping as sulfur immobilizers for high-performance lithium–sulfur batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180424