CN107958954B - 磁性隧道结的参考层的制备方法、磁性隧道结的制备方法 - Google Patents

磁性隧道结的参考层的制备方法、磁性隧道结的制备方法 Download PDF

Info

Publication number
CN107958954B
CN107958954B CN201610898458.2A CN201610898458A CN107958954B CN 107958954 B CN107958954 B CN 107958954B CN 201610898458 A CN201610898458 A CN 201610898458A CN 107958954 B CN107958954 B CN 107958954B
Authority
CN
China
Prior art keywords
layer
ferromagnetic pinned
pinned layer
depositing
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610898458.2A
Other languages
English (en)
Other versions
CN107958954A (zh
Inventor
刘鲁萍
简红
蒋信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETHIK Group Ltd
Hikstor Technology Co Ltd
Original Assignee
CETHIK Group Ltd
Hikstor Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETHIK Group Ltd, Hikstor Technology Co Ltd filed Critical CETHIK Group Ltd
Priority to CN201610898458.2A priority Critical patent/CN107958954B/zh
Publication of CN107958954A publication Critical patent/CN107958954A/zh
Application granted granted Critical
Publication of CN107958954B publication Critical patent/CN107958954B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

本发明提供了一种磁性隧道结的参考层的制备方法、磁性隧道结的制备方法。该磁性隧道结的参考层的制备方法包括采用沉积工艺设置参考层的各膜层,采用等离子体处理各膜层中的一层或多层,以及对等离子体处理后的各膜层中的一层或多层进行退火处理。利用退火处理对等离子体处理之后的一层或多层膜层进行原位热处理,进而减少或者消除等离子体处理可能造成的损伤或缺陷,改善参考层的表面特性,进而提高具有该参考层的磁性隧道结的综合性能,比如提高磁性隧道结的TMR值,降低其RA值。

Description

磁性隧道结的参考层的制备方法、磁性隧道结的制备方法
技术领域
本发明涉及自旋传输扭矩磁性随机存储器(spin transfer torque magneticrandom access memory,STT-MRAM)领域,具体而言,涉及一种磁性隧道结的参考层的制备方法、磁性隧道结的制备方法。
背景技术
STT-MRAM是一种潜在的、革命性的通用存储技术,可直接利用自旋极化电流驱动纳米磁体磁矩反转,完成信息写入。它集成了DRAM的高存储密度、SRAM的快速读写能力、Flash的非易失性和低功耗以及高稳定性等优越性能,此外,它具有无限次使用的优势;与传统MRAM相比,有着更好的扩展性、更低的写信息电流,特别是,它与最先进的半导体工艺兼容。
STT-MRAM中的核心器件为磁性隧道结(MTJ),它主要包括自由层40(比如磁性自由层)、参考层20以及二者之间超薄的隧穿势垒层30,具体可参考图1。该磁性隧道结主要包括磁性参考层20、自由层40以及二者之间的超薄隧穿势垒层30,此外,还包括最底层的缓冲层10,以及最顶层的保护层50。参考层20的磁化方向是固定的,而自由层40的磁化方向可以自由转动,当自由层40的磁化方向与参考层20的磁化方向平行时,磁性隧道结呈现低阻态RP,当自由层40的磁化方向与参考层20的磁化方向反平行时,磁性隧道结呈现高阻态RAP。将磁性隧道结应用到STT-MRAM时,其高低阻态可代表不同的逻辑状态“1”和“0”。极化电流60可以从垂直薄膜平面的方式通过磁性隧道结,完成STT-MRAM不同逻辑状态“1”和“0”的写入。
具体地,MTJ的TMR(隧道磁电阻)定义为(RAP/RP-1)×100%,一个MTJ单元可作为STT-MRAM的一个数据存储位,其高、低电阻态可分别代表位元中不同的逻辑状态“0”和“1”。在信息读取的时候,将MTJ的电阻态与参考信号进行对比,判断出位元不同的逻辑状态,完成“读”操作。电流流过磁性层时,电流将被极化,形成自旋极化电流。自旋电子将自旋动量传递给自由层40的磁矩,使自旋磁性层的磁矩获得自旋动量后改变方向,这个过程称为自旋传输矩(Spin transfer torque,STT),利用自旋转移力矩效应可以使得MTJ的自由层40磁矩与参考层20磁矩平行或反平行排列,从而实现“写”操作。
参考层20对获得良好的MTJ性能如TMR、开关电流、可靠性等起着非常关键的作用。目前常规设计的参考层20一般由多层超薄的薄膜组成,薄膜间尤其是参考层20的界面特性如粗糙度、缺陷、晶体结构等会对MTJ器件的性能产生明显的影响。例如,参考层20与隧穿势垒层30之间的界面自旋极化会对MTJ的TMR产生很大的影响,参考层20的内部界面电子状态直接影响参考层20的钉扎强度,进而影响MTJ器件的稳定性。因此,一种可优化参考层20薄膜间性能的MTJ制备方法是非常重要的。提高参考层20的表面特性的一种方法是在薄膜沉积之后对其进行一次或多次温和的等离子体处理。等离子体处理会改善薄膜表面的应力状态以及晶化结构,降低界面的粗糙度,从而获得高的TMR以及更好的数据保持能力。但同时,等离子体处理过程也会在薄膜的表面引入新的损伤及缺陷,使薄膜的表面特性变差。
发明内容
本发明的主要目的在于提供一种磁性隧道结的参考层的制备方法、磁性隧道结的制备方法,以解决现有技术中采用等离子体处理的参考层表面出现的损伤及缺陷的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种磁性隧道结的参考层的制备方法,包括采用沉积工艺设置参考层的各膜层,采用等离子体处理各膜层中的一层或多层,以及对等离子体处理后的各膜层中的一层或多层进行退火处理。
进一步地,上述退火处理的保温温度为120~400℃。
进一步地,上述退火处理的保温时间为5s~1h。
进一步地,上述退火处理的升温速率为0.1~1℃/s,优选为0.3℃/s,降温速率为0.1~1℃/s,优选为0.3℃/s。
进一步地,上述参考层的各膜层包括反铁磁钉扎层和铁磁被钉扎层,制备方法包括:沉积反铁磁钉扎层;在反铁磁钉扎层之上沉积铁磁被钉扎层;对铁磁被钉扎层进行等离子体处理;以及在磁场中,对等离子体处理后的铁磁被钉扎层进行退火处理。
进一步地,上述参考层的各膜层包括第一铁磁被钉扎层、非磁性中间层和第二铁磁被钉扎层,制备方法包括:沉积第一铁磁被钉扎层;可选的,对第一铁磁被钉扎层进行等离子体处理;可选的,对等离子体处理后的第一铁磁被钉扎层进行退火处理;在第一铁磁被钉扎层上沉积非磁性中间层;在非磁性中间层上沉积第二铁磁被钉扎层;可选的,对第二铁磁被钉扎层进行等离子体处理;以及可选的,对等离子体处理后的第二铁磁被钉扎层进行退火处理。
进一步地,上述参考层的各膜层包括反铁磁钉扎层、第一铁磁被钉扎层、非磁性中间层和第二铁磁被钉扎层,制备方法包括:沉积反铁磁钉扎层;在反铁磁钉扎层上沉积第一铁磁被钉扎层;可选的,对第一铁磁被钉扎层进行等离子体处理;可选的,在磁场中,对等离子体处理后的第一铁磁被钉扎层进行退火处理;在第一铁磁被钉扎层上沉积非磁性中间层;在非磁性中间层上沉积第二铁磁被钉扎层;可选的,对第二铁磁被钉扎层进行等离子体处理;以及可选的,在磁场中,对等离子体处理后的第二铁磁被钉扎层进行退火处理。
进一步地,上述参考层的各膜层包括第一铁磁被钉扎层、非磁性中间层、第二铁磁被钉扎层、非磁性耦合层、磁性界面层,制备方法包括:沉积第一铁磁被钉扎层;可选的,对第一铁磁被钉扎层进行等离子体处理;可选的,对等离子体处理后的第一铁磁被钉扎层进行退火处理;在第一铁磁被钉扎层上沉积非磁性中间层;在非磁性中间层上沉积第二铁磁被钉扎层;可选的,对第二铁磁被钉扎层进行等离子体处理;可选的,对等离子体处理后的第二铁磁被钉扎层进行退火处理;在第二铁磁被钉扎层上沉积非磁性耦合层;在非磁性耦合层上沉积磁性界面层;可选的,对磁性界面层进行等离子体处理;以及可选的,对等离子体处理后的磁性界面层进行退火处理。
进一步地,上述参考层的各膜层还包括反铁磁钉扎层,制备方法还包括在沉积第一铁磁被钉扎层之前沉积反铁磁钉扎层,且第一铁磁被钉扎层沉积在设置在反铁磁钉扎层上,当对等离子体处理后的第一铁磁被钉扎层或第二铁磁被钉扎层进行退火处理时,在磁场中进行退火处理。
进一步地,上述磁场的磁场强度为1000Oe~10000Oe。
进一步地,上述等离子体处理过程中对膜层的刻蚀速率小于0.02nm/s,优选等离子体处理刻蚀去除的材料厚度为0.01~1nm。
根据本申请的另一方面,提供了一种磁性隧道结的制备方法,制备方法包括参考层的制作过程,该参考层的制作过程采用上述任一种制备方法实施。
进一步地,上述制备方法包括:在缓冲层上采用上述任一种制备方法设置参考层;在参考层上设置隧穿势垒层;在隧穿势垒层上设置自由层;以及在自由层上设置保护层。
进一步地,上述缓冲层采用等离子体处理和/或退火处理。
应用本发明的技术方案,利用退火处理对等离子体处理之后的一层或多层膜层进行原位热处理,进而减少或者消除等离子体处理可能造成的损伤或缺陷,改善参考层的表面特性,进而提高具有该参考层的磁性隧道结的综合性能,比如提高磁性隧道结的TMR值,降低其RA值。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据现有技术的磁隧道结的截面结构示意图;以及
图2示出了根据本申请实施例A提供的磁隧道结的截面结构示意图;
图3示出了实施例A所示的磁隧道结的制备方法流程示意图;
图4示出了根据本申请实施例B提供的磁隧道结的截面结构示意图;
图5示出了本申请优选的一种实施例B所示的磁隧道结的制备方法流程示意图;
图6示出了根据本申请实施例C提供的磁隧道结的截面结构示意图;
图7示出了本申请优选的一种实施例C所示的磁隧道结的制备方法流程示意图;
图8示出了根据本申请实施例D提供的磁隧道结的截面结构示意图;
图9示出了本申请优选的一种实施例D所示的磁隧道结的制备方法流程示意图;
图10示出了根据本申请实施例E提供的磁隧道结的截面结构示意图;以及
图11示出了本申请优选的一种实施例E所示的磁隧道结的制备方法流程示意图。
其中,上述附图包括以下附图标记:
10、缓冲层;20、参考层;30、隧穿势垒层;40、自由层;50、保护层;21、反铁磁钉扎层;22、铁磁被钉扎层;221、第一铁磁被钉扎层;23、非磁性中间层;222、第二铁磁被钉扎层;24、非磁性耦合层;25、磁性界面层;60、极化电流。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如背景技术所分析的,现有技术中由于采用等离子体处理,使得参考层表面特性较差。为了解决该问题,本申请提供了一种参考层的制备方法及磁性隧道结的制备方法。
在本申请一种典型的实施方式中,提供了一种磁性隧道结的参考层的制备方法,该制备方法包括采用沉积工艺设置参考层的各膜层,采用等离子体处理各膜层中的一层或多层,以及对等离子体处理后的各膜层中的一层或多层进行退火处理。其中的多层可以指其中的几个膜层,也可以指所有的膜层。
利用退火处理对等离子体处理之后的一层或多层膜层进行原位热处理,进而减少或者消除等离子体处理可能造成的损伤或缺陷,改善参考层的表面特性,进而提高具有该参考层的磁性隧道结的综合性能,比如提高磁性隧道结的TMR值,降低其RA值。
在退火处理中,为了在保证热处理效果的前提下避免对其它不需要热处理的膜层造成负面影响,优选上述退火处理的保温温度为120~400℃。进一步优选上述退火处理的保温时间为5s~1h。
此外,为了避免退火处理对参考层所在结构产生负面物理影响,优选上述退火处理的升温速率为0.1~1℃/s,进一步优选为0.3℃/s,降温速率为0.1~1℃/s,进一步优选为0.3℃/s。
本申请为了避免等离子体处理对已经形成的膜层表面造成过多的损伤,优选上述等离子体处理过程中对膜层的刻蚀速率小于0.02nm/s,更优选等离子体处理刻蚀去除的材料厚度为0.01~1nm。
在本申请另一种典型的实施方式中,提供了一种磁性隧道结的制备方法,该制备方法包括参考层20的制作过程,该参考层20的制作过程采用上述任一种参考层的制备方法实施。
优选上述磁性隧道结的制备方法包括:在缓冲层10上采用上述任一种的制备方法设置参考层20;在参考层20上设置隧穿势垒层30;在隧穿势垒层30上设置自由层40;以及在自由层40上设置保护层。所设置的缓冲层10能促进生长在其上的参考层20形成比较好的晶体织构,保护层50可保护整个磁性隧道结的功能结构免受水汽污染和氧化。
上述缓冲层10和保护层50均可采用沉积的方式设置,比如磁控溅射方法,具体设置条件可以参考现有技术,在此不再赘述。优选形成上述缓冲层10的材料包括Ta、Ti、TaN、TiN、Cu、Ag、Au、Al、Ir、Ru、Rh、Zr、Hf、MgO、Pt、Pd、NiCr合金、NiAl合金和NiTa合金组成的组中的一种或几种,更优选缓冲层10采用等离子体处理和/或退火处理。以改善其表面特性,从而使其能够和参考层20形成更好地界面接触性能。
形成上述自由层40的铁磁材料也可选自现有技术常规材料,优选Co、Ni、Fe、CoFe、CoNi、NiFe、CoFeNi、CoB、FeB、CoFeB、NiFeB、Pt、Pd、PtPd、Ir、Re、Rh、B、Zr、V、Nb、Ta、Mo、W、Hf等材料中的一种或几种。
另外,该隧穿势垒层30也可以采用现有技术常用的沉积方式设置,具体设置条件可以参考现有技术,在此不再赘述。优选形成上述隧穿势垒层30的材料选自MgO、AlOx、MgAlOx、TiOx、TaOx、GaOx和FeOx组成的组中的一种或几种,优选隧穿势垒层30的厚度为0.2~2nm。
上述参考层20结构可以采用现有技术中多种常规设计,以下将结合磁性隧道结的结构和参考层20的各膜层结构的不同,对参考层20制备方法进行描述。
在优选的实施例A中,如图2所示,磁性隧道结包括依次设置的缓冲层10、磁性参考层20、隧穿势垒层30、自由层40以及保护层50。其中,磁性参考层20进一步包括设置在缓冲层10之上的反铁磁钉扎层21和设置在反铁磁钉扎层21之上的铁磁被钉扎层22。铁磁被钉扎层22在反铁磁钉扎层21的作用下形成交换偏置。自由层40和铁磁被钉扎层22的磁化方向平行于薄膜的平面,极化电流60穿过磁性隧道结进行逻辑状态的写入。如图3所示,该参考层20的制备方法包括:在缓冲层10上沉积反铁磁钉扎层21;在反铁磁钉扎层21之上沉积铁磁被钉扎层22;对铁磁被钉扎层22进行等离子体处理;以及在磁场中,对等离子体处理后的铁磁被钉扎层22进行退火处理。当然,本申请也包括对反铁磁钉扎层21进行等离子体处理和退火处理的情况,此时也能起到改善参考层表面性能的效果。
形成上述反铁磁钉扎层21可以为PtMn、IrMn、RhMn等材料中的一种或几种,其厚度为10~20nm。形成上述铁磁被钉扎层22的材料可以为Co、Ni、Fe、CoFe、CoNi、NiFe、CoFeNi、CoB、FeB、CoFeB、NiFeB、Pt、Pd、PtPd、Ir、Re、Rh、B、Zr、V、Nb、Ta、Mo、W、Hf等材料中的一种或几种。铁磁被钉扎层22在沉积之后进行等离子体处理,其中,等离子体处理所采用的气源、气体流速、等离子体功率和温度等条件均可参考现有技术,比如等离子体气源可为Ar、Kr、Xe、He、N2、H2、或O2等气体中的一种或几种。同时,通过控制等离子体处理条件,控制等离子体刻蚀的速率,最好小于0.02nm/s,并且控制铁磁被钉扎层22表面被除去的薄膜厚度在0.01~1nm之间。上述等离子体处理过程可以在薄膜沉积腔中进行,也可在另外单独的溅射腔体中完成,优选在单独的溅射腔中进行。在对铁磁被钉扎层22表面进行等离子体处理之后,进一步对其进行退火处理,该退火处理过程可以通过快速热退火或传统的电阻丝加热的方式实现。
在优选的实施例B中,如图4所示,磁性隧道结包括依次设置的缓冲层10、磁性参考层20、隧穿势垒层30、自由层40以及保护层50。其中,参考层20的各膜层包括第一铁磁被钉扎层221、非磁性中间层23和第二铁磁被钉扎层222,第一铁磁被钉扎层221和第二铁磁被钉扎层222通过非磁性中间层23形成人工反铁磁,第一铁磁被钉扎层221与第二铁磁被钉扎层222之间为反铁磁耦合。通过极化电流60可以完成对磁性隧道结逻辑状态的写入。
如图5所示,该参考层20的制备方法包括:沉积第一铁磁被钉扎层221;可选的,对第一铁磁被钉扎层221进行等离子体处理;可选的,对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;可选的,对第二铁磁被钉扎层222进行等离子体处理;以及可选的,对等离子体处理后的第二铁磁被钉扎层222进行退火处理。
上述过程中,可以仅对第一铁磁被钉扎层221进行等离子体处理和退火处理,也可以仅对第二铁磁被钉扎层222进行等离子体处理和退火处理,也可以对第一铁磁被钉扎层221和第二铁磁被钉扎层222均进行等离子体处理和退火处理。等离子体处理工艺和条件和退火处理工艺和条件均可参考实施例A。上述制备方法包括以下几种实施方式:
实施方式一:沉积第一铁磁被钉扎层221;对第一铁磁被钉扎层221进行等离子体处理;对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;以及在非磁性中间层23上沉积第二铁磁被钉扎层222。
实施方式二:沉积第一铁磁被钉扎层221;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理;以及对等离子体处理后的第二铁磁被钉扎层222进行退火处理。
实施方式三:沉积第一铁磁被钉扎层221;对第一铁磁被钉扎层221进行等离子体处理;对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理;以及对等离子体处理后的第二铁磁被钉扎层222进行退火处理。
其中,形成上述第一铁磁被钉扎层221和第二铁磁被钉扎层222的材料可各自独立地包括Co、Ni、Fe、CoFe、CoNi、NiFe、CoFeNi、CoB、FeB、CoFeB、NiFeB、Pt、Pd、PtPd、Ir、Re、Rh、B、Zr、V、Nb、Ta、Mo、W和Hf组成的组一种或几种,优选第一铁磁被钉扎层221和第二铁磁被钉扎层222的厚度各自独立地为0.4~3nm。形成上述非磁性中间层23的材料可包括Ru、Rh、Ir、Re、Cu、Ag、Au、Cr和CrMo组成的组中的一种或几种,优选非磁性中间层23的厚度为0.2~1.2nm。
由于非磁性耦合层24和非磁性中间层23的厚度较小,对其进行等离子体处理,如果条件控制的不好可能会产生不利影响,但如果严格控制等离子体处理条件仍然可以实现较好的条件,因此,本申请也包括对非磁性耦合层24和非磁性中间层23进行等离子体处理和退火处理的方案。
在优选的实施例C中,如图6所示,磁性隧道结包括依次设置的缓冲层10、磁性参考层20、隧穿势垒层30、自由层40以及保护层50。其中,参考层20的各膜层包括反铁磁钉扎层21、第一铁磁被钉扎层221、非磁性中间层23和第二铁磁被钉扎层222,反铁磁钉扎层21和第一铁磁被钉扎层221之间形成反铁磁耦合,第一铁磁被钉扎层221与第二铁磁被钉扎层222通过非磁性中间层23形成人工反铁磁。通过极化电流60可以完成对磁性隧道结逻辑状态的写入。
如图7所示,该参考层20的制备方法包括:沉积反铁磁钉扎层21;在反铁磁钉扎层21上沉积第一铁磁被钉扎层221;可选的,对第一铁磁被钉扎层221进行等离子体处理;可选的,对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;可选的,对第二铁磁被钉扎层222进行等离子体处理;以及可选的,对等离子体处理后的第二铁磁被钉扎层222进行退火处理。上述过程中,可以仅对第一铁磁被钉扎层221进行等离子体处理和退火处理,也可以仅对第二铁磁被钉扎层222进行等离子体处理和退火处理,也可以对第一铁磁被钉扎层221和第二铁磁被钉扎层222均进行等离子体处理和退火处理。等离子体处理工艺和条件和退火处理工艺和条件均可参考实施例A。上述制备方法包括以下几种实施方式:
实施方式四:沉积反铁磁钉扎层21;在反铁磁钉扎层21上沉积第一铁磁被钉扎层221;对第一铁磁被钉扎层221进行等离子体处理;在磁场中对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;以及在非磁性耦合层24上沉积第二铁磁被钉扎层222。
实施方式五:沉积反铁磁钉扎层21;在反铁磁钉扎层21上沉积第一铁磁被钉扎层221;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理;以及在磁场中对等离子体处理后的第二铁磁被钉扎层222进行退火处理。
实施方式六:沉积反铁磁钉扎层21;在反铁磁钉扎层21上沉积第一铁磁被钉扎层221;对第一铁磁被钉扎层221进行等离子体处理;在磁场中对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理;以及在磁场中对等离子体处理后的第二铁磁被钉扎层222进行退火处理。
其中,形成上述第一铁磁被钉扎层221和第二铁磁被钉扎层222的材料和厚度可参考实施例B,形成上述反铁磁钉扎层21的材料可参考实施例A。
在优选的实施例D中,如图8所示,磁性隧道结包括依次设置的缓冲层10、磁性参考层20、隧穿势垒层30、自由层40以及保护层50。其中,参考层20的各膜层包括第一铁磁被钉扎层221、非磁性中间层23、第二铁磁被钉扎层222、非磁性耦合层24、磁性界面层25,第一铁磁被钉扎层221与第二铁磁被钉扎层222通过非磁性中间层23形成人工反铁磁,第二铁磁被钉扎层222与磁性界面层25之间通过非磁性耦合层24形成铁磁耦合。通过极化电流60可以完成对磁性隧道结逻辑状态的写入。
如图9所示,该参考层20的制备方法包括:沉积第一铁磁被钉扎层221;可选的,对第一铁磁被钉扎层221进行等离子体处理;可选的,对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;可选的,对第二铁磁被钉扎层222进行等离子体处理;可选的,对等离子体处理后的第二铁磁被钉扎层222进行退火处理;在第二铁磁被钉扎层222上沉积非磁性耦合层24;在非磁性耦合层24上沉积磁性界面层25;可选的,对磁性界面层25进行等离子体处理;以及可选的,对等离子体处理后的磁性界面层25进行退火处理。上述过程中,可以仅对第一铁磁被钉扎层221进行等离子体处理和退火处理,也可以仅对第二铁磁被钉扎层222进行等离子体处理和退火处理,也可以仅对磁性界面层25进行等离子体处理和退火处理,也可以对第一铁磁被钉扎层221、第二铁磁被钉扎层222和磁性界面层25均进行等离子体处理和退火处理。等离子体处理工艺和条件和退火处理工艺和条件均可参考实施例A。上述制备方法包括以下几种实施方式:
实施方式八:沉积第一铁磁被钉扎层221;对第一铁磁被钉扎层221进行等离子体处理;对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;在第二铁磁被钉扎层222上沉积非磁性耦合层24;以及在非磁性耦合层24上沉积磁性界面层25。
实施方式九:沉积第一铁磁被钉扎层221;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理;对等离子体处理后的第二铁磁被钉扎层222进行退火处理;在第二铁磁被钉扎层222上沉积非磁性耦合层24;以及在非磁性耦合层24上沉积磁性界面层25。
实施方式十:沉积第一铁磁被钉扎层221;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;在第二铁磁被钉扎层222上沉积非磁性耦合层24;在非磁性耦合层24上沉积磁性界面层25;对磁性界面层25进行等离子体处理;以及对等离子体处理后的磁性界面层25进行退火处理。
实施方式十一:沉积第一铁磁被钉扎层221;对第一铁磁被钉扎层221进行等离子体处理;对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理;对等离子体处理后的第二铁磁被钉扎层222进行退火处理;在第二铁磁被钉扎层222上沉积非磁性耦合层24;以及在非磁性耦合层24上沉积磁性界面层25。
实施方式十二:沉积第一铁磁被钉扎层221;对第一铁磁被钉扎层221进行等离子体处理;对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;在第二铁磁被钉扎层222上沉积非磁性耦合层24;在非磁性耦合层24上沉积磁性界面层25;对磁性界面层25进行等离子体处理;以及对等离子体处理后的磁性界面层25进行退火处理。
实施方式十三:沉积第一铁磁被钉扎层221;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理;对等离子体处理后的第二铁磁被钉扎层222进行退火处理;在第二铁磁被钉扎层222上沉积非磁性耦合层24;在非磁性耦合层24上沉积磁性界面层25;对磁性界面层25进行等离子体处理;以及对等离子体处理后的磁性界面层25进行退火处理。
实施方式十四:沉积第一铁磁被钉扎层221;对第一铁磁被钉扎层221进行等离子体处理;对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理;对等离子体处理后的第二铁磁被钉扎层222进行退火处理;在第二铁磁被钉扎层222上沉积非磁性耦合层24;在非磁性耦合层24上沉积磁性界面层25;对磁性界面层25进行等离子体处理;以及对等离子体处理后的磁性界面层25进行退火处理。其中,形成上述第一铁磁被钉扎层221和第二铁磁被钉扎层222的材料和厚度可参考实施例B。形成非磁性耦合层24的材料包括Mo、W、Ta、Nb、V、B、Hf、Zr、Ti和Cr组成的组中的一种或几种,优选非磁性耦合层24的厚度为0.05~0.8nm。形成磁性界面层25的材料包括Fe、Co、CoFe、FeB、CoB、CoFeB、CoFeAl、CoFeAlB、CoFeSi、CoFeSiB、CoFeMn、CoFeMnSi和CoFeMnB组成的组中的一种或几种,优选磁性界面层25的厚度约为0.1~2nm。
在优选的实施例E中,如图10所示,磁性隧道结包括依次设置的缓冲层10、磁性参考层20、隧穿势垒层30、自由层40以及保护层50。其中,参考层20的各膜层包括反铁磁钉扎层21、第一铁磁被钉扎层221、非磁性中间层23、第二铁磁被钉扎层222、非磁性耦合层24、磁性界面层25,第一铁磁被钉扎层221和第二铁磁被钉扎层222通过非磁性中间层23组成人工反铁磁,即形成反铁磁耦合,第二铁磁被钉扎层222与磁性界面层25通过非磁耦合层形成铁磁耦合。通过极化电流60可以完成对磁性隧道结逻辑状态的写入。
如图11所示,该参考层20的制备方法包括:沉积反铁磁钉扎层21;在反铁磁钉扎层21上沉积第一铁磁被钉扎层221;可选的,对第一铁磁被钉扎层221进行等离子体处理;可选的,对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;可选的,对第二铁磁被钉扎层222进行等离子体处理;可选的,对等离子体处理后的第二铁磁被钉扎层222进行退火处理;在第二铁磁被钉扎层222上沉积非磁性耦合层24;在非磁性耦合层24上沉积磁性界面层25;可选的,对磁性界面层25进行等离子体处理;以及可选的,对等离子体处理后的磁性界面层25进行退火处理。上述过程中,可以仅对第一铁磁被钉扎层221进行等离子体处理和退火处理,也可以仅对第二铁磁被钉扎层222进行等离子体处理和退火处理,也可以仅对磁性界面层25进行等离子体处理和退火处理,也可以对第一铁磁被钉扎层221、第二铁磁被钉扎层222和磁性界面层25均进行等离子体处理和退火处理。等离子体处理工艺和条件和退火处理工艺和条件均可参考实施例A。
上述制备方法包括以下几种实施方式:
实施方式十五:沉积反铁磁钉扎层21;在反铁磁钉扎层21上沉积第一铁磁被钉扎层221对第一铁磁被钉扎层221进行等离子体处理;对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;在第二铁磁被钉扎层222上沉积非磁性耦合层24;以及在非磁性耦合层24上沉积磁性界面层25。
实施方式十六:沉积反铁磁钉扎层21;在反铁磁钉扎层21上沉积第一铁磁被钉扎层221;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理;对等离子体处理后的第二铁磁被钉扎层222进行退火处理;在第二铁磁被钉扎层222上沉积非磁性耦合层24;以及在非磁性耦合层24上沉积磁性界面层25。
实施方式十七:沉积反铁磁钉扎层21;在反铁磁钉扎层21上沉积第一铁磁被钉扎层221;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;在第二铁磁被钉扎层222上沉积非磁性耦合层24;在非磁性耦合层24上沉积磁性界面层25;对磁性界面层25进行等离子体处理;以及对等离子体处理后的磁性界面层25进行退火处理。
实施方式十八:沉积反铁磁钉扎层21;在反铁磁钉扎层21上沉积第一铁磁被钉扎层221;对第一铁磁被钉扎层221进行等离子体处理;对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理;对等离子体处理后的第二铁磁被钉扎层222进行退火处理;在第二铁磁被钉扎层222上沉积非磁性耦合层24;以及在非磁性耦合层24上沉积磁性界面层25。
实施方式十九:沉积反铁磁钉扎层21;在反铁磁钉扎层21上沉积第一铁磁被钉扎层221;对第一铁磁被钉扎层221进行等离子体处理;对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;在第二铁磁被钉扎层222上沉积非磁性耦合层24;在非磁性耦合层24上沉积磁性界面层25;对磁性界面层25进行等离子体处理;以及对等离子体处理后的磁性界面层25进行退火处理。
实施方式二十:沉积反铁磁钉扎层21;在反铁磁钉扎层21上沉积第一铁磁被钉扎层221;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理;对等离子体处理后的第二铁磁被钉扎层222进行退火处理;在第二铁磁被钉扎层222上沉积非磁性耦合层24;在非磁性耦合层24上沉积磁性界面层25;对磁性界面层25进行等离子体处理;以及对等离子体处理后的磁性界面层25进行退火处理。
实施方式二十一:沉积反铁磁钉扎层21;在反铁磁钉扎层21上沉积第一铁磁被钉扎层221;对第一铁磁被钉扎层221进行等离子体处理;对等离子体处理后的第一铁磁被钉扎层221进行退火处理;在第一铁磁被钉扎层221上沉积非磁性中间层23;在非磁性中间层23上沉积第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理;对等离子体处理后的第二铁磁被钉扎层222进行退火处理;在第二铁磁被钉扎层222上沉积非磁性耦合层24;在非磁性耦合层24上沉积磁性界面层25;对磁性界面层25进行等离子体处理;以及对等离子体处理后的磁性界面层25进行退火处理。形成上述反铁磁钉扎层21的材料可参考实施例A,形成上述第一铁磁被钉扎层221、第二铁磁被钉扎层222的材料和厚度可参考实施例B,形成非磁性耦合层24和磁性界面层25的材料和厚度可参考实施例D。
上述各在磁场中进行的退火处理,其中磁场的磁场强度为1000Oe~10000Oe,使反铁磁钉扎层和相应的铁磁被钉扎层形成交换偏置。
以下将结合具体实施例,进一步说明本申请的退火处理效果。
实施例1
采用以下方法制作图2所示的磁性隧道结。
在缓冲层10(厚度为10nm的Ta层)之上沉积PtMn材料形成厚度为15nm的反铁磁钉扎层21,在反铁磁钉扎层21之上的沉积CoFeB形成厚度为3nm的铁磁被钉扎层22,对铁磁被钉扎层22进行等离子体处理,其中,等离子体处理的刻蚀速率为0.02nm/s,处理时间为30s,对等离子体处理完成的铁磁被钉扎层22进行磁场退火处理,其中退火处理的升温速率为0.3℃/s,保温温度为250℃,保温时间为30min,降温速率为0.3℃/s,在退火处理后的铁磁被钉扎层22上沉积MgO形成厚度为1nm的隧穿势垒层30,在隧穿势垒层30上沉积自由层40,在自由层40上沉积Ta形成厚度为10nm的保护层50。上述各沉积采用的方法为磁控溅射,沉积温度室温。其中自由层40由隧穿势垒层30之上的CoFeB(2nm)/Ta(0.08nm)/CoFeB(2nm)组成。
实施例2
与实施例1不同之处在于,退火处理的升温速率为0.1℃/s,保温温度为250℃,保温时间为30min,降温速率为0.1℃/s。
实施例3
与实施例1不同之处在于,退火处理的升温速率为1℃/s,保温温度为250℃,保温时间为30min,降温速率为1℃/s。
实施例4
与实施例1不同之处在于,退火处理的升温速率为0.3℃/s,保温温度为400℃,保温时间为30min,降温速率为0.3℃/s。
实施例5
与实施例1不同之处在于,退火处理的升温速率为0.3℃/s,保温温度为400℃,保温时间为5s,降温速率为0.3℃/s。
实施例6
采用以下方法制作图4所示的磁性隧道结。
在缓冲层10(厚度为10的Ta层)之上沉积CoFeB形成厚度为2nm的第一铁磁被钉扎层221,对第一铁磁被钉扎层221进行等离子体处理,其中,等离子体处理的速率为0.02nm/s,处理时间为30s,对等离子体处理完成的第一铁磁被钉扎层221进行退火处理,其中退火处理的升温速率为0.3℃/s,保温温度为250℃,保温时间为30min,降温速率为0.3℃/s,在退火处理后的第一铁磁被钉扎层221沉积Ru形成厚度为1nm的非磁性中间层23;在非磁性中间层23上沉积CoFeB形成厚度为2nm的第二铁磁被钉扎层222,对第二铁磁被钉扎层222进行等离子体处理,其中,等离子体处理的速率为0.02nm/s,处理时间为30s,对等离子体处理完成的第二铁磁被钉扎层222进行退火处理,其中退火处理的升温速率为0.3℃/s,保温温度为250℃,保温时间为30min,降温速率为0.3℃/s。在退火处理后的第二铁磁被钉扎层222上沉积MgO形成厚度为1nm的隧穿势垒层30,在隧穿势垒层30上沉积自由层40,在自由层40上沉积Ta形成厚度为10nm的保护层50。上述各沉积采用的方法为磁控溅射,沉积温度为室温。其中自由层40由隧穿势垒层30之上的CoFeB(2nm)/Ta(0.08nm)/CoFeB(2nm)组成。
实施例7
采用以下方法制作图6所示的磁性隧道结。
在缓冲层10(厚度为10的Ta层)之上沉积PtMn材料形成厚度为15nm的反铁磁钉扎层21,在反铁磁钉扎层21之上的沉积CoFeB形成厚度为2nm的第一铁磁被钉扎层221,对第一铁磁被钉扎层221进行等离子体处理,其中,等离子体处理的速率为0.02nm/s,处理时间为30s,对等离子体处理完成的第一铁磁被钉扎层221进行磁场退火处理,其中退火处理的升温速率为0.3℃/s,保温温度为250℃,保温时间为30min,降温速率为0.3℃/s,在退火处理后的第一铁磁被钉扎层221上沉积Ru形成厚度为1nm的非磁性中间层23;在非磁性中间层23上沉积CoFeB形成厚度为2nm的第二铁磁被钉扎层222,对第二铁磁被钉扎层222进行等离子体处理,其中,等离子体处理的速率为0.02nm/s,处理时间为30s,对等离子体处理完成的第二铁磁被钉扎层222进行磁场退火处理,其中退火处理的升温速率为0.3℃/s,保温温度为250℃,保温时间为30min,降温速率为0.3℃/s,在退火处理后的第二铁磁被钉扎层222上沉积MgO形成厚度为1nm的隧穿势垒层30,在隧穿势垒层30上沉积自由层40,在自由层40上沉积Ta形成厚度为10nm的保护层50。上述各沉积采用的方法为磁控溅射,沉积温度为室温。其中自由层40由隧穿势垒层30之上的CoFeB(2nm)/Ta(0.08nm)/CoFeB(2nm)组成。
实施例8
采用以下方法制作图8所示的磁性隧道结。
在缓冲层10(厚度为10nm的Ta层)之上沉积CoFeB形成厚度为2nm的第一铁磁被钉扎层221;对第一铁磁被钉扎层221进行等离子体处理,其中,等离子体处理的速率为0.02nm/s,处理时间为30s,对等离子体处理完成第一铁磁被钉扎层221进行退火处理,其中退火处理的升温速率为0.3℃/s,保温温度为250℃,保温时间为30min,降温速率为0.3℃/s;在退火处理后的第一铁磁被钉扎层221上沉积Ru形成厚度为1nm的非磁性中间层23;在非磁性中间层23之上的沉积CoFeB形成厚度为2nm的第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理,其中,等离子体处理的速率为0.02nm/s,处理时间为30s,对等离子体处理完成第二铁磁被钉扎层222进行退火处理,其中退火处理的升温速率为0.3℃/s,保温温度为250℃,保温时间为30min,降温速率为0.3℃/s;在退火处理后的第二铁磁被钉扎层222上沉积Ta形成厚度为0.08nm的非磁性耦合层24;在非磁性耦合层24上沉积CoFeB形成厚度为1nm的磁性界面层25;对磁性界面层25进行等离子体处理,其中,等离子体处理的速率为0.02nm/s,处理时间为30s,对等离子体处理完成磁性界面层25进行退火处理,其中退火处理的升温速率为0.3℃/s,保温温度为250℃,保温时间为30min,降温速率为0.3℃/s;在退火处理后的磁性界面层25沉积MgO形成厚度为1nm的隧穿势垒层30;在隧穿势垒层30上沉积自由层40,在自由层40上沉积Ta形成厚度为10nm的保护层50。上述各沉积采用的方法为磁控溅射,沉积温度为室温。其中自由层40由隧穿势垒层30之上的CoFeB(2nm)/Ta(0.08nm)/CoFeB(2nm)组成。
实施例9
采用以下方法制作图10所示的磁性隧道结。
在缓冲层10(厚度为10nm的Ta层)之上沉积PtMn材料形成厚度为15nm的反铁磁钉扎层21,在反铁磁钉扎层21之上的沉积CoFeB形成厚度为2nm的第一铁磁被钉扎层221;对第一铁磁被钉扎层221进行等离子体处理,其中,等离子体处理的速率为0.02nm/s,处理时间为30s,对等离子体处理完成第一铁磁被钉扎层221进行磁场退火处理,其中退火处理的升温速率为0.3℃/s,保温温度为250℃,保温时间为30min,降温速率为0.3℃/s;在退火处理后的第一铁磁被钉扎层221上沉积Ru形成厚度为1nm的非磁中间层;在非磁中间层之上的沉积CoFeB形成厚度为2nm的第二铁磁被钉扎层222;对第二铁磁被钉扎层222进行等离子体处理,其中,等离子体处理的速率为0.02nm/s,处理时间为30s,对等离子体处理完成第二铁磁被钉扎层222进行磁场退火处理,其中退火处理的升温速率为0.3℃/s,保温温度为250℃,保温时间为30min,降温速率为0.3℃/s;在退火处理后的第二铁磁被钉扎层222上沉积Ta形成厚度为0.08nm的非磁性耦合层24;在非磁性耦合层24上沉积CoFeB形成厚度为1nm的磁性界面层25;对磁性界面层25进行等离子体处理,其中,等离子体处理的速率为0.02nm/s,处理时间为30s,对等离子体处理完成磁性界面层25进行退火处理,其中退火处理的升温速率为0.3℃/s,保温温度为250℃,保温时间为30min,降温速率为0.3℃/s;在退火处理后的磁性界面层25沉积MgO形成厚度为1nm的隧穿势垒层30;在隧穿势垒层30上沉积自由层40,在自由层40上沉积Ta形成厚度为10nm的保护层50。上述各沉积采用的方法为磁控溅射,沉积温度为室温。其中自由层40由隧穿势垒层30之上的CoFeB(2nm)/Ta(0.08nm)/CoFeB(2nm)组成。
对比例1
与实施例1不同之处在没有对等离子体处理完成的铁磁被钉扎层22进行退火处理。
对比例2
与实施例6不同之处在于没有对等离子体处理完成的第一铁磁被钉扎层221和第二铁磁被钉扎层222进行退火处理。
对比例3
与实施例7不同之处在于没有对等离子体处理完成的第一铁磁被钉扎层221和第二铁磁被钉扎层222进行退火处理。
对比例4
与实施例8不同之处在于没有对等离子体处理完成的第一铁磁被钉扎层221、第二铁磁被钉扎层222和磁性界面层25进行退火处理。
对比例5
与实施例9不同之处在于没有对等离子体处理完成的第一铁磁被钉扎层221、第二铁磁被钉扎层222和磁性界面层25进行退火处理。
对实施例1至9以及对比例1至5的磁性隧道结的隧道磁电阻(TMR)和RA(Resistance-area product value)进行检测,检测结果见表1。
表1
Figure BDA0001131403660000141
Figure BDA0001131403660000151
与对比例相比较,在对参考层中的薄膜增加了退火处理之后,其TMR值可提高5%左右,说明退火处理后的界面处粗糙度降低;同时由于界面处粗糙度的降低,其RA值也有一定幅度的降低,也说明了界面处粗糙度存在一定程度的降低。通过实施例1与实施例2至5相比较,可以看出,高温且适当延长退火时间下的退火对TMR的增加作用相对更明显,但需注意在退火过程中,升温及降温速率应慎重选择,升降温的速率过快会增加薄膜内部的应力,不利于磁隧道结的性能提升。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
利用退火处理对等离子体处理之后的一层或多层膜层进行原位热处理,进而减少或者消除等离子体处理可能造成的损伤或缺陷,改善参考层的表面特性,进而提高具有该参考层的磁性隧道结的综合性能,比如提高磁性隧道结的TMR值,降低其RA值。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

1.一种磁性隧道结的参考层的制备方法,其特征在于,包括采用沉积工艺设置所述参考层的各膜层,采用等离子体处理各所述膜层中的一层或多层,以及对等离子体处理后的各所述膜层中的一层或多层进行退火处理,所述退火处理的保温温度为120~400℃,所述退火处理的保温时间为5s~1h,所述退火处理的升温速率为0.1~1℃/s,降温速率为0.1~1℃/s, 所述等离子体处理为等离子体刻蚀,所述等离子体处理过程中对所述膜层的刻蚀速率小于0.02 nm/s,所述等离子体处理刻蚀去除的材料厚度为0.01~1 nm。
2.根据权利要求1所述的制备方法,其特征在于,所述退火处理的升温速率为0.3℃/s,降温速率为0.3℃/s。
3.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括反铁磁钉扎层(21)和铁磁被钉扎层(22),所述制备方法包括:
沉积反铁磁钉扎层(21);
在所述反铁磁钉扎层(21)之上沉积铁磁被钉扎层(22);
对所述铁磁被钉扎层(22)进行等离子体处理;以及
在磁场中,对等离子体处理后的所述铁磁被钉扎层(22)进行退火处理。
4.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括第一铁磁被钉扎层(221)、非磁性中间层(23)和第二铁磁被钉扎层(222),所述制备方法包括:
沉积所述第一铁磁被钉扎层(221);
对所述第一铁磁被钉扎层(221)进行等离子体处理;
对等离子体处理后的所述第一铁磁被钉扎层(221)进行退火处理;
在所述第一铁磁被钉扎层(221)上沉积非磁性中间层(23);
在所述非磁性中间层(23)上沉积所述第二铁磁被钉扎层(222)。
5.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括第一铁磁被钉扎层(221)、非磁性中间层(23)和第二铁磁被钉扎层(222),所述制备方法包括:
沉积所述第一铁磁被钉扎层(221);
在所述第一铁磁被钉扎层(221)上沉积非磁性中间层(23);
在所述非磁性中间层(23)上沉积所述第二铁磁被钉扎层(222);
对所述第二铁磁被钉扎层(222)进行等离子体处理;以及
对等离子体处理后的所述第二铁磁被钉扎层(222)进行退火处理。
6.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括第一铁磁被钉扎层(221)、非磁性中间层(23)和第二铁磁被钉扎层(222),所述制备方法包括:
沉积所述第一铁磁被钉扎层(221);
对所述第一铁磁被钉扎层(221)进行等离子体处理;
对等离子体处理后的所述第一铁磁被钉扎层(221)进行退火处理;
在所述第一铁磁被钉扎层(221)上沉积非磁性中间层(23);
在所述非磁性中间层(23)上沉积所述第二铁磁被钉扎层(222);
对所述第二铁磁被钉扎层(222)进行等离子体处理;以及
对等离子体处理后的所述第二铁磁被钉扎层(222)进行退火处理。
7.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括反铁磁钉扎层(21)、第一铁磁被钉扎层(221)、非磁性中间层(23)和第二铁磁被钉扎层(222),所述制备方法包括:
沉积所述反铁磁钉扎层(21);
在所述反铁磁钉扎层(21)上沉积所述第一铁磁被钉扎层(221);
对所述第一铁磁被钉扎层(221)进行等离子体处理;
在磁场中,对等离子体处理后的所述第一铁磁被钉扎层(221)进行退火处理;
在所述第一铁磁被钉扎层(221)上沉积非磁性中间层(23);
在所述非磁性中间层(23)上沉积所述第二铁磁被钉扎层(222)。
8.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括反铁磁钉扎层(21)、第一铁磁被钉扎层(221)、非磁性中间层(23)和第二铁磁被钉扎层(222),所述制备方法包括:
沉积所述反铁磁钉扎层(21);
在所述反铁磁钉扎层(21)上沉积所述第一铁磁被钉扎层(221);
在所述第一铁磁被钉扎层(221)上沉积非磁性中间层(23);
在所述非磁性中间层(23)上沉积所述第二铁磁被钉扎层(222);
对所述第二铁磁被钉扎层(222)进行等离子体处理;以及
在磁场中,对等离子体处理后的所述第二铁磁被钉扎层(222)进行退火处理。
9.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括反铁磁钉扎层(21)、第一铁磁被钉扎层(221)、非磁性中间层(23)和第二铁磁被钉扎层(222),所述制备方法包括:
沉积所述反铁磁钉扎层(21);
在所述反铁磁钉扎层(21)上沉积所述第一铁磁被钉扎层(221);
对所述第一铁磁被钉扎层(221)进行等离子体处理;
在磁场中,对等离子体处理后的所述第一铁磁被钉扎层(221)进行退火处理;
在所述第一铁磁被钉扎层(221)上沉积非磁性中间层(23);
在所述非磁性中间层(23)上沉积所述第二铁磁被钉扎层(222);
对所述第二铁磁被钉扎层(222)进行等离子体处理;以及
在磁场中,对等离子体处理后的所述第二铁磁被钉扎层(222)进行退火处理。
10.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括第一铁磁被钉扎层(221)、非磁性中间层(23)、第二铁磁被钉扎层(222)、非磁性耦合层(24)、磁性界面层(25),所述制备方法包括:
沉积所述第一铁磁被钉扎层(221);
对所述第一铁磁被钉扎层(221)进行等离子体处理;
对等离子体处理后的所述第一铁磁被钉扎层(221)进行退火处理;
在所述第一铁磁被钉扎层(221)上沉积非磁性中间层(23);
在所述非磁性中间层(23)上沉积所述第二铁磁被钉扎层(222);
在所述第二铁磁被钉扎层(222)上沉积非磁性耦合层(24);
在所述非磁性耦合层(24)上沉积磁性界面层(25)。
11.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括第一铁磁被钉扎层(221)、非磁性中间层(23)、第二铁磁被钉扎层(222)、非磁性耦合层(24)、磁性界面层(25),所述制备方法包括:
沉积所述第一铁磁被钉扎层(221);
在所述第一铁磁被钉扎层(221)上沉积非磁性中间层(23);
在所述非磁性中间层(23)上沉积所述第二铁磁被钉扎层(222);
对所述第二铁磁被钉扎层(222)进行等离子体处理;
对等离子体处理后的所述第二铁磁被钉扎层(222)进行退火处理;
在所述第二铁磁被钉扎层(222)上沉积非磁性耦合层(24);
在所述非磁性耦合层(24)上沉积磁性界面层(25)。
12.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括第一铁磁被钉扎层(221)、非磁性中间层(23)、第二铁磁被钉扎层(222)、非磁性耦合层(24)、磁性界面层(25),所述制备方法包括:
沉积所述第一铁磁被钉扎层(221);
在所述第一铁磁被钉扎层(221)上沉积非磁性中间层(23);
在所述非磁性中间层(23)上沉积所述第二铁磁被钉扎层(222);
在所述第二铁磁被钉扎层(222)上沉积非磁性耦合层(24);
在所述非磁性耦合层(24)上沉积磁性界面层(25);
对所述磁性界面层(25)进行等离子体处理;以及
对等离子体处理后的所述磁性界面层(25)进行退火处理。
13.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括第一铁磁被钉扎层(221)、非磁性中间层(23)、第二铁磁被钉扎层(222)、非磁性耦合层(24)、磁性界面层(25),所述制备方法包括:
沉积所述第一铁磁被钉扎层(221);
对所述第一铁磁被钉扎层(221)进行等离子体处理;
对等离子体处理后的所述第一铁磁被钉扎层(221)进行退火处理;
在所述第一铁磁被钉扎层(221)上沉积非磁性中间层(23);
在所述非磁性中间层(23)上沉积所述第二铁磁被钉扎层(222);
对所述第二铁磁被钉扎层(222)进行等离子体处理;
对等离子体处理后的所述第二铁磁被钉扎层(222)进行退火处理;
在所述第二铁磁被钉扎层(222)上沉积非磁性耦合层(24);
在所述非磁性耦合层(24)上沉积磁性界面层(25)。
14.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括第一铁磁被钉扎层(221)、非磁性中间层(23)、第二铁磁被钉扎层(222)、非磁性耦合层(24)、磁性界面层(25),所述制备方法包括:
沉积所述第一铁磁被钉扎层(221);
对所述第一铁磁被钉扎层(221)进行等离子体处理;
对等离子体处理后的所述第一铁磁被钉扎层(221)进行退火处理;
在所述第一铁磁被钉扎层(221)上沉积非磁性中间层(23);
在所述非磁性中间层(23)上沉积所述第二铁磁被钉扎层(222);
在所述第二铁磁被钉扎层(222)上沉积非磁性耦合层(24);
在所述非磁性耦合层(24)上沉积磁性界面层(25);
对所述磁性界面层(25)进行等离子体处理;以及
对等离子体处理后的所述磁性界面层(25)进行退火处理。
15.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括第一铁磁被钉扎层(221)、非磁性中间层(23)、第二铁磁被钉扎层(222)、非磁性耦合层(24)、磁性界面层(25),所述制备方法包括:
沉积所述第一铁磁被钉扎层(221);
在所述第一铁磁被钉扎层(221)上沉积非磁性中间层(23);
在所述非磁性中间层(23)上沉积所述第二铁磁被钉扎层(222);
对所述第二铁磁被钉扎层(222)进行等离子体处理;
对等离子体处理后的所述第二铁磁被钉扎层(222)进行退火处理;
在所述第二铁磁被钉扎层(222)上沉积非磁性耦合层(24);
在所述非磁性耦合层(24)上沉积磁性界面层(25);
对所述磁性界面层(25)进行等离子体处理;以及
对等离子体处理后的所述磁性界面层(25)进行退火处理。
16.根据权利要求1所述的制备方法,其特征在于,所述参考层的各膜层包括第一铁磁被钉扎层(221)、非磁性中间层(23)、第二铁磁被钉扎层(222)、非磁性耦合层(24)、磁性界面层(25),所述制备方法包括:
沉积所述第一铁磁被钉扎层(221);
对所述第一铁磁被钉扎层(221)进行等离子体处理;
对等离子体处理后的所述第一铁磁被钉扎层(221)进行退火处理;
在所述第一铁磁被钉扎层(221)上沉积非磁性中间层(23);
在所述非磁性中间层(23)上沉积所述第二铁磁被钉扎层(222);
所述第二铁磁被钉扎层(222)进行等离子体处理;
对等离子体处理后的所述第二铁磁被钉扎层(222)进行退火处理;
在所述第二铁磁被钉扎层(222)上沉积非磁性耦合层(24);
在所述非磁性耦合层(24)上沉积磁性界面层(25);
对所述磁性界面层(25)进行等离子体处理;以及
对等离子体处理后的所述磁性界面层(25)进行退火处理。
17.根据权利要求10至16中任一项所述的制备方法,其特征在于,所述参考层的各膜层还包括反铁磁钉扎层(21),所述制备方法还包括在沉积所述第一铁磁被钉扎层(221)之前沉积所述反铁磁钉扎层(21),且所述第一铁磁被钉扎层(221)沉积在设置在所述反铁磁钉扎层(21)上,当对等离子体处理后的所述第一铁磁被钉扎层(221)或所述第二铁磁被钉扎层(222)进行退火处理时,在磁场中进行所述退火处理。
18.根据权利要求3、7至9中任一项所述的制备方法,其特征在于,所述磁场的磁场强度为1000Oe ~10000 Oe。
19.根据权利要求17所述的制备方法,其特征在于,所述磁场的磁场强度为1000Oe ~10000 Oe。
20.一种磁性隧道结的制备方法,所述制备方法包括参考层(20)的制作过程,其特征在于,所述参考层(20)的制作过程采用权利要求1至19中任一项所述的制备方法实施。
21.根据权利要求20所述的制备方法,其特征在于,所述制备方法包括:
在缓冲层(10)上采用权利要求1至19中任一项所述的制备方法设置参考层(20);
在所述参考层(20)上设置隧穿势垒层(30);
在所述隧穿势垒层(30)上设置自由层(40);以及
在所述自由层(40)上设置保护层(50)。
22.根据权利要求21所述的制备方法,其特征在于,所述缓冲层(10)采用等离子体处理和/或退火处理。
CN201610898458.2A 2016-10-14 2016-10-14 磁性隧道结的参考层的制备方法、磁性隧道结的制备方法 Active CN107958954B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610898458.2A CN107958954B (zh) 2016-10-14 2016-10-14 磁性隧道结的参考层的制备方法、磁性隧道结的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610898458.2A CN107958954B (zh) 2016-10-14 2016-10-14 磁性隧道结的参考层的制备方法、磁性隧道结的制备方法

Publications (2)

Publication Number Publication Date
CN107958954A CN107958954A (zh) 2018-04-24
CN107958954B true CN107958954B (zh) 2021-07-13

Family

ID=61954312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610898458.2A Active CN107958954B (zh) 2016-10-14 2016-10-14 磁性隧道结的参考层的制备方法、磁性隧道结的制备方法

Country Status (1)

Country Link
CN (1) CN107958954B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109243512B (zh) * 2018-09-12 2021-08-20 山东大学 一种控制反铁磁层及钉扎层磁畴结构在磁性隧道结中实现多态数据存储的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1501523A (zh) * 2002-11-15 2004-06-02 ���ǵ�����ʽ���� 磁性隧道结器件及其制造方法
CN101331568A (zh) * 2005-12-21 2008-12-24 株式会社东芝 磁阻效应元件及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7377025B2 (en) * 2004-10-29 2008-05-27 Headway Technologies, Inc. Method of forming an improved AP1 layer for a TMR device
US7750421B2 (en) * 2007-07-23 2010-07-06 Magic Technologies, Inc. High performance MTJ element for STT-RAM and method for making the same
CN102568743A (zh) * 2010-12-09 2012-07-11 中国科学院物理研究所 一种垂直磁各向异性薄膜及其制备方法
US8772845B2 (en) * 2011-09-22 2014-07-08 Taiwan Semiconductor Manufacturing Company, Ltd. Technique for smoothing an interface between layers of a semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1501523A (zh) * 2002-11-15 2004-06-02 ���ǵ�����ʽ���� 磁性隧道结器件及其制造方法
CN101331568A (zh) * 2005-12-21 2008-12-24 株式会社东芝 磁阻效应元件及其制造方法

Also Published As

Publication number Publication date
CN107958954A (zh) 2018-04-24

Similar Documents

Publication Publication Date Title
US20210234092A1 (en) Reduction of Barrier Resistance X Area (RA) Product and Protection of Perpendicular Magnetic Anisotropy (PMA) for Magnetic Device Applications
KR102441710B1 (ko) 수직 자기 접합 들에서 붕소-프리 자성층을 제공하는 방법 및 시스템
US8736004B2 (en) Magnetic tunnel junction for MRAM applications
US7760474B1 (en) Magnetic element utilizing free layer engineering
US7663848B1 (en) Magnetic memories utilizing a magnetic element having an engineered free layer
US10431275B2 (en) Method and system for providing magnetic junctions having hybrid oxide and noble metal capping layers
US20060211198A1 (en) Novel structure and method to fabricate high performance MTJ devices for MRAM applications
CN111613720B (zh) 一种磁性随机存储器存储单元及磁性随机存储器
CN107958953B (zh) 磁性隧道结的自由层的制备方法及磁性隧道结的制备方法
US9917249B2 (en) Method and system for providing a magnetic junction usable in spin transfer torque applications and including a magnetic barrier layer
US10553642B2 (en) Method and system for providing magnetic junctions utilizing metal oxide layer(s)
US20180013059A1 (en) Mtj structure having vertical magnetic anisotropy and magnetic element including the same
CN107958954B (zh) 磁性隧道结的参考层的制备方法、磁性隧道结的制备方法
Tomczak et al. Influence of the reference layer composition on the back-end-of-line compatibility of Co/Ni-based perpendicular magnetic tunnel junction stacks
US10438638B2 (en) Method and system for providing a magnetic layer in a magnetic junction usable in spin transfer or spin orbit torque applications using a sacrificial oxide layer
US9966528B2 (en) Method and system for providing a magnetic layer in a magnetic junction usable in spin transfer torque applications using a sacrificial oxide layer
CN113140670A (zh) 一种磁性隧道结垂直反铁磁层及随机存储器
CN107958950B (zh) Mtj器件的制作方法、mtj器件及stt-mram
US9806253B2 (en) Method for providing a high perpendicular magnetic anisotropy layer in a magnetic junction usable in spin transfer torque magnetic devices using multiple anneals
CN113013322B (zh) 一种具垂直各向异性场增强层的磁性隧道结单元结构
CN112928204B (zh) 提升磁性隧道结自由层垂直各向异性的覆盖层结构单元
KR20170107612A (ko) 수직자기이방성 박막 및 mtj 구조 제조방법
CN112951980A (zh) 一种磁性隧道结垂直各向异性场增强层及随机存储器
CN111816762A (zh) 一种磁性随机存储器磁性存储单元及其形成方法
CN112750946A (zh) 一种磁性随机存储器势垒层和自由层结构单元及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210628

Address after: 311121 room 311, building 1, No. 1500, Wenyi West Road, Yuhang District, Hangzhou City, Zhejiang Province

Applicant after: CETHIK GROUP Co.,Ltd.

Applicant after: HIKSTOR TECHNOLOGY Co.,Ltd.

Address before: No. 998, Wenyi West Road, Yuhang District, Hangzhou City, Zhejiang Province

Applicant before: CETHIK GROUP Co.,Ltd.

GR01 Patent grant
GR01 Patent grant