CN107957560A - A kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit - Google Patents

A kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit Download PDF

Info

Publication number
CN107957560A
CN107957560A CN201711376573.4A CN201711376573A CN107957560A CN 107957560 A CN107957560 A CN 107957560A CN 201711376573 A CN201711376573 A CN 201711376573A CN 107957560 A CN107957560 A CN 107957560A
Authority
CN
China
Prior art keywords
mrow
msub
soc
mfrac
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711376573.4A
Other languages
Chinese (zh)
Other versions
CN107957560B (en
Inventor
方彦彦
唐玲
云凤玲
栗敬敬
崔义
王琳舒
黄倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Automotive Battery Research Institute Co Ltd
Original Assignee
China Automotive Battery Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Automotive Battery Research Institute Co Ltd filed Critical China Automotive Battery Research Institute Co Ltd
Priority to CN201711376573.4A priority Critical patent/CN107957560B/en
Publication of CN107957560A publication Critical patent/CN107957560A/en
Application granted granted Critical
Publication of CN107957560B publication Critical patent/CN107957560B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides a kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit, including step:S1, at different temperature, obtains open-circuit voltage UOCVWith the relation of SOC and temperature T, S2, establish equivalent-circuit model, obtains model parameter and the relation of SOC and temperature T, and S3, calculate SOC value under Current Temperatures T and time t, including simplifies voltage characteristic equation, and voltage characteristic equation is solved.The SOC methods of estimation of lithium ion battery provided by the invention, principle is simple, and estimated accuracy is high, is no more than 1% to the SOC estimated accuracies maximum deviation of lithium ion battery.

Description

A kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit
Technical field
The invention belongs to detection field, and in particular to a kind of evaluation method of charge states of lithium ion battery.
Background technology
In recent years, global automobile quantity drastically rises, also increasing to the demand of the energy, while dirty caused by environment Dye is also more serious.New-energy automobile, especially electric automobile have become the developing direction of future automobile, but its development speed is still Restricted by power battery and its application technology.How to extend battery service life, improve battery energy efficiency and can It is that electric vehicle industrialization must solve the problems, such as by property, therefore study battery management technique there is very great meaning.
Power battery charged state (State of Charge) abbreviation SOC.The remaining capacity of lithium ion battery is that battery exists One of most important performance parameter in operational process, the estimation of remaining capacity is a very important link.For electric car For, the SOC of battery is estimated exactly, can not only improve cruising ability, can also extend battery life, improves security.
The content of the invention
For shortcoming existing for this area, the invention discloses a kind of lithium ion battery SOC based on equivalent circuit Algorithm for estimating, to estimate the SOC of battery exactly.
Realize that above-mentioned purpose technical solution of the present invention is:
A kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit, including step:
S1, at different temperature, obtains open-circuit voltage UOCVWith the relation of SOC and temperature T,
S2, establish equivalent-circuit model, obtains the relation of the model parameter and the SOC and temperature T, and the step is specific For
S21, establish three rank equivalent-circuit models, and the Ohmic resistance R of series connection is included in equivalent circuit0With three RC units, Each RC units are made of resistance and capacitance in parallel;Determine the equivalent circuit terminal voltage U and open-circuit voltage UOCVCharacteristic close System;
Ohmic internal resistance R in S22, the acquisition equivalent-circuit model0With the relation of SOC and temperature T:Determine pulsed discharge Terminate the voltage characteristic of moment.
S222, obtain ohmic internal resistance R under temperature T0With the relation of SOC
S223, obtain ohmic internal resistance R at other temperature0With the relation of SOC
RC cell parameters R in S23, the acquisition equivalent-circuit model1, C1, R2, C2, R3, C3With the pass of SOC and temperature T System;
S231, the voltage U (t) for measuring the equivalent circuit after pulsed discharge terminates moment;
S232, obtain RC cell parameters R at identical temperature1, C1, R2, C2, R3, C3With the relation of SOC.
S233, the relation for obtaining parallel connection RC cell parameters R1, C1, R2, C2, R3, C3 and SOC at other temperature.
SOC value under the time t of S3, estimation Current Temperatures T and battery operation, including S31, simplified voltage characteristic equation, S32, solve voltage characteristic equation.
Wherein, in step S1, open-circuit voltage U under series of temperature T is obtainedOCVWith the relation of SOC, the temperature range of T for- 10~50 DEG C, SOC is at least nine value in the range of 0.1~0.9.
Further, the relation of open-circuit voltage UOCV and SOC under temperature T are expressed with five rank multinomials:
UOCV=a0+a1SOC+a2SOC2+a3SOC3+a4SOC4+a5SOC5
Wherein Uocv represents battery open circuit voltage, and a0~a5 is multinomial coefficient, and is constant, and SOC is the charged of battery State.
Alternatively, T one group of U of acquisition per 4-8 DEG C when less than 10 DEG COCVWith the relation of SOC, every 8-12 when T is more than 10 DEG C DEG C obtain one group of UOCVWith the relation of SOC.
Wherein, the step S21 is:
For three rank equivalent-circuit models, the characteristic equation of battery model is established:
Wherein, U0For the ohmic internal resistance R0The voltage at both ends, U1~U3For the voltage at three RC units both ends, I is Electric current;
Solution formula (1), the expression formula that can obtain equivalent circuit terminal voltage are:
Wherein, U1(0)、U2(0) and U3(0) when being respectively that pulsed discharge (HPPC) timing starts, three RC units both ends Voltage initial value.
In step S22, pulsed discharge (HPPC) is existing for existing test method, pulse discharge time, electric current etc. Specification (such as according to Freedom battery testings handbook).
According to the structure of Fig. 2, pulsed discharge terminates moment, and the change of voltage is entirely by ohmic internal resistance R0Produce. Therefore, ohmic internal resistance R0Obtained using following formula:
In formula, ULThe voltage jump terminated for pulsed discharge, I are impulse discharge current value.
Wherein, the step S22 is:
According to the voltage response curves that under temperature T, HPPC of the battery under different SOC is tested, calculated using formula (4) Obtain the ohmic internal resistance R under different SOC0And R0- SOC curves.The SOC value is at least nine numerical value in the range of 0.1~0.9. To R at this temperature0- SOC curves carry out multinomial fitting, and the fitting of a polynomial formula is:
R0=b0+b1SOC+b2SOC2+b3SOC3+b4SOC4+b5SOC5
Wherein R0Represent ohmic internal resistance, b0~b5For multinomial coefficient, and it is constant, SOC is the state-of-charge of battery.
Pulsed discharge terminates moment, electric current zero, and circuit structure shown in Fig. 2 is zero input response, its voltage characteristic equation For:
Further, the step S231 is specially:
From the circuit structure of Fig. 2, after pulsed discharge terminates moment, the voltage vanishing at ohmic internal resistance both ends, but three The voltage at a RC units both ends will not vanishing.Therefore formula (3) is changed into:
In principle, using the nonlinear fitting instrument of mathematical software, directly voltage response curves can be intended according to formula (4) Close, obtain the parameter value of three RC units.But due in formula (4) there are exponential function, and the number of the capacitance in Fig. 2 structures Value kF from tens to hundreds of is differed, and therefore, is directly fitted using formula (5), it is difficult to fit procedure is controlled, simultaneously because intending Close parameter and be in denominator position, each interative computation, can introduce truncated error.Obtained result stability is poor.So will Formula (5) can be written as:
Wherein, c1~c3And d1~d3For with the relevant constant of RC cell parameters.
Wherein, the voltage characteristic equation after pulsed discharge being terminated moment in step S231 is determined as
Wherein, tsIt is the time stood after pulsed discharge, c1~c3And d1~d3For with the relevant constant of RC cell parameters.
HPPC experiments include first carrying out pulsed discharge to battery, then stand.tsTime zero when being end-of-pulsing, i.e. arteries and veins Time after impulse electricity.
Wherein, step S232 is:
According to the voltage response curves that under temperature T, battery is stood after the HPPC test of pulse electric discharge under different SOC, adopt The c under different SOC is obtained by nonlinear fitting with (6) formula1~c3And d1~d3Value.The SOC value is in the range of 0.1~0.9 At least nine numerical value, the RC cell parameters values under different SOC are calculated further according to following formula:
According to Ri the and Ci values under obtained different SOC, to R1- SOC, R2- SOC, R3- SOC, C1- SOC, C2- SOC and C3- The parameter list of SOC carries out cubic spline interpolation, obtains encrypted R1- SOC, R2- SOC, R3- SOC, C1- SOC, C2- SOC and C3- The parameter list of SOC.
Wherein, for the step S233 specifically, changing temperature T, repetition S232, obtains encrypted R at other temperature1- SOC, R2- SOC, R3- SOC, C1- SOC, C2- SOC and C3-The parameter list of SOC, establishes R1、R2、R3、C1、C2And C3With SOC and temperature Two-dimensional parameter network
Further, mathematical software is not used directly in the SOC value under calculating Current Temperatures T and time t in step S32 Solving Nonlinear Equation instrument solve the obtained nonlinearity equation of equivalent-circuit model, and by the way of program is write Solve, including:
I) SOC initial values are set as 0.9, calculate the terminal voltage value U of battery;
Ii the relative deviation of battery terminal voltage the value U* and U under current t) are calculated
Δ=| U-U* |/U;
Iii) if Δ >=0.001, make SOC value reduce 0.001, repeat i)~ii);If Δ<0.001, then export this SOC Value, is the SOC value under Current Temperatures T and time t.
Due to having been obtained for formula (2) Uocv、R0、R1、R2、R3、C1、C2And C3Value under different SOC and temperature T, because This, step S31 is:
The expression formula of equivalent circuit terminal voltage is written as:
For Current Temperatures T and time t, then the U (t), U in formula (8)1(0)、U2(0) and U3(0) and I is known quantity, And Uocv、R0、R1、R2、R3、C1、C2And C3Only related to SOC, then formula (8) can be write
Formula (9) is solved, you can obtain the SOC value under Current Temperatures T and time t.
The beneficial effects of the present invention are:
The present invention provides a kind of SOC methods of estimation of lithium ion battery.The principle of this method is simple, and estimated accuracy is high.Tool Body includes:
1st, SOC methods of estimation provided by the invention are no more than 1% to the SOC estimated accuracies maximum deviation of lithium ion battery.
2nd, SOC methods of estimation provided by the invention carry out nonlinear fitting in the RC cell parameters to equivalent-circuit model When, the parametric form of fitting is changed, the stability and speed of fitting can be effectively improved.
3rd, SOC methods of estimation provided by the invention obtain equivalent-circuit model RC cell parameters and SOC relation when, Polynomial fitting method is not used, and parameter list is established using Technique of Cubic Spline Interpolation, can effectively avoid fitting of a polynomial The deviation brought.
4th, the present invention provides SOC methods of estimation when solving equivalent circuit voltage characteristic equation, and direct solution is not non-linear Equation, is solved using the method for writing program, effectively improves solving precision, reduced and solve the time.
Brief description of the drawings
Fig. 1 is the flow chart of the method for estimation of the battery SOC of the invention based on equivalent circuit;
Fig. 2 is the circuit structure of equivalent circuit;
Fig. 3 solves the flow chart of formula (9) by the way of program is write.
Fig. 4 is the open-circuit voltage that fitting obtains and the relation of SOC.
Fig. 5 is the ohmic internal resistance that fitting obtains and the relation of SOC.
Fig. 6 to Figure 11 is respectively the parameter list of R1-SOC, R2-SOC, R3-SOC, C1-SOC, C2-SOC and C3-SOC.
Figure 12 contrasts for obtained SOC estimation and experiment value,
The deviation situation of Figure 13 estimation results.
Embodiment
Illustrate the present invention below by most preferred embodiment.Those skilled in the art institute it should be understood that, embodiment is only used for Illustrate rather than for limiting the scope of the invention.
In embodiment, unless otherwise instructed, means used are the means of this area routine.
Embodiment 1
The present embodiment combines the battery that a positive electrode is ternary material, exemplified by T=25 DEG C, using estimated below side Method, estimates its SOC.
Detailed process comprises the following steps:
S1, obtain the open-circuit voltage UOCVWith the relation of the SOC and temperature T
Open-circuit voltage U of the battery obtained according to constant-current discharge at 25 DEG C of temperature under different SOCocv, the SOC value is At least nine numerical value in the range of 0.1~0.9.To the U at 25 DEG Cocv- SOC curves carry out multinomial and intend fitting.
The fitting polynomial formulas is:
UOCV=a0+a1SOC+a2SOC2+a3SOC3+a4SOC4+a5SOC5
Wherein UocvRepresent battery open circuit voltage, a0~a5For multinomial coefficient, and it is constant, SOC is the charged shape of battery State.
Fig. 4 is fitting as a result, obtained open-circuit voltage and the relation of SOC are:
UOCV=3.3233+0.02455SOC-8.9131 × 10-4SOC2
+1.6196×10-5SOC3-1.2246×10-7SOC4+3.3391×10-10SOC5
S2, establish equivalent-circuit model, obtains the relation of the model parameter and the SOC and temperature T, which includes Following sub-step:
S21, establish three rank equivalent-circuit models, specifies the battery terminal voltage U and open-circuit voltage UOCVCharacteristic relation.
For circuit diagram shown in Fig. 2, the characteristic equation of battery model is established:
U0=IR0
U=Uocv-U0-U1-U2-U3
Wherein, U0For the ohmic internal resistance R0The voltage at both ends, U1~U3For the voltage at three RC units both ends, I is electricity Stream.
Solution formula (1), the expression formula that can obtain terminal voltage are:
Wherein, U1(0)、U2(0) and U3(0) when being respectively that timing starts, the voltage initial value at three RC units both ends.
Ohmic internal resistance R in S22, the acquisition equivalent-circuit model0With the relation of SOC and temperature T.
S221, determine that pulsed discharge terminates the voltage characteristic of moment.
Pulsed discharge terminates moment, electric current zero, and circuit structure shown in Fig. 2 is zero input response, its voltage characteristic equation For:
According to the structure of Fig. 2, pulsed discharge terminates moment, and the change of voltage is entirely by ohmic internal resistance R0Produce. Therefore, ohmic internal resistance R0Obtained using following formula:
Wherein, ULThe voltage jump terminated for pulsed discharge, I are impulse discharge current value.
S222, obtain ohmic internal resistance R at certain identical temperature0With the relation of SOC
According to the voltage response curves that at 25 DEG C of temperature, HPPC of the battery under different SOC is tested, using S221 institutes The ohmic internal resistance R under different SOC is calculated in the method for stating0And R0- SOC curves.The SOC value is 0.1,0.2,0.3,0.4, 0.5,0.6,0.7,0.8 with 0.9.To the R at 25 DEG C0- SOC curves carry out following fitting of a polynomial:
R0=b0+b1SOC+b2SOC2+b3SOC3+b4SOC4+b5SOC5
Wherein R0Represent ohmic internal resistance, b0~b5For multinomial coefficient, and it is constant, SOC is the state-of-charge of battery.
Fig. 5 is fitting result, and obtained ohmic internal resistance and the relation of SOC is:
R0=2.5800-0.03058SOC-4.5770 × 10-4SOC2
+1.6125×10-6SOC3-8.6662×10-8SOC4+5.0321×10-10SOC5
RC cell parameters R in parallel in S23, the acquisition equivalent-circuit model1, C1, R2, C2, R3, C3With SOC and temperature T Relation.Include following sub-step:
S231, determine pulsed discharge terminate moment after voltage characteristic.
From the circuit structure of Fig. 2, after pulsed discharge terminates moment, the voltage vanishing at ohmic internal resistance both ends, but three The voltage at a RC units both ends will not vanishing.Therefore formula (3) is changed into:
In principle, using the nonlinear fitting instrument of mathematical software, directly voltage response curves can be intended according to formula (4) Close, obtain the parameter value of three RC units.But due in formula (4) there are exponential function, and the number of the capacitance in Fig. 2 structures Value kF from tens to hundreds of is differed, simultaneously because fitting parameter is in denominator position, each interative computation, can introduce and block mistake Difference.Therefore, directly it is fitted using formula (5), it is difficult to fit procedure is controlled, obtained result stability is poor.So will Formula (5) is written as:
Wherein, c1~c3And d1~d3For with the relevant constant of RC cell parameters.
S232, obtain parallel connection RC cell parameters R at certain identical temperature1, C1, R2, C2, R3, C3With the relation of SOC.
According to the voltage response curves that at 25 DEG C of temperature, battery is stood after the HPPC experiment impulse electricities under different SOC, base The c under different SOC is obtained by nonlinear fitting in formula (6)1~c3And d1~d3Value.
The SOC value is 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 and 0.9.It is calculated not further according to following formula With the RC cell parameters values under SOC.The expression formula is:
According to the R under step difference SOC obtained above1~R3And C1~C3Value, to R1- SOC, R2- SOC, R3- SOC, C1- SOC, C2- SOC and C3-The parameter list of SOC carries out cubic spline interpolation, obtains encrypted R1- SOC, R2- SOC, R3- SOC, C1- SOC, C2- SOC and C3-The parameter list of SOC.
Parameter the result is shown in Fig. 6~11.
SOC value under S3, estimation Current Temperatures T and time t
The step includes following sub-step:
S31, simplify voltage characteristic equation
Due to having been obtained for formula (2) Uocv、R0、R1、R2、R3、C1、C2And C3Value under different SOC and temperature T, because This, formula (2) can be rewritten as:
For Current Temperatures T and time t, then the U (t), U in formula (8)1(0)、U2(0) and U3(0) and I is known quantity, And Uocv、R0、R1、R2、R3、C1、C2And C3Only related to SOC, then formula (8) can be write
Formula (9) is solved, you can obtain the SOC value under the time t of Current Temperatures T and battery operation.
S32, solve voltage characteristic equation
Formula (9) is a nonlinearity equation, is directly asked using the Solving Nonlinear Equation instrument of mathematical software Solution, can not obtain stable solving result, and it is longer to solve the time.There is bound in itself in view of SOC value, therefore using volume The mode of program writing solves formula (9), and specific flow is as shown in Figure 3.
I) SOC initial values are set as 0.9, the terminal voltage value U of battery is calculated according to formula (9);
Ii) the relative deviation of battery terminal voltage the value U* and U under current t
Δ=| U-U* |/U;
Iii) if Δ >=0.001.Then make SOC value reduce 0.001, repeat i)~ii).If Δ<0.001, then export this SOC Value, is the SOC value under Current Temperatures T and time t.
Specific programming demonstration is following (only to list the program for solving nonlinear equation, each parameter and SOC in unlisted formula The program of relation):
The overall process that this method is estimated from parameter acquiring to SOC is described in detail in the present embodiment.In practical applications, for Identical battery, the expression formula of all parameter acquisition procedure, that is, S1 and S2 and estimation procedure, which simplify process S31, only to be needed to hold Row once, obtains corresponding parameter value.Carry out only needing specifically to perform S32 steps during SOC estimations.
Implementation result:
Figure 12 is shown in the contrast of obtained SOC estimation and experiment value, and experiment test (experiment) and in advance is seen from figure Survey result (prediction) substantially completely to overlap, deviation situation is shown in Figure 13.Positive and negative maximum deviation is each about 0.6%.
Embodiment 2
Using the method with 1 system of embodiment, the temperature of other values is set, T obtains one group for every 5 DEG C when less than 10 DEG C UOCVWith the relation of SOC, one group of U of every 10 DEG C of acquisitions when T is more than 10 DEG COCVWith the relation of SOC.
Obtained SOC estimation is contrasted with experiment value, its maximum deviation is no more than 1%.
More than embodiment be only the preferred embodiment of the present invention is described, not to the scope of the present invention into Row limits, on the premise of design spirit of the present invention is not departed from, technical side of this area ordinary skill technical staff to the present invention The all variations and modifications that case is made, should all fall into the protection domain that claims of the present invention determines.

Claims (10)

1. a kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit, it is characterised in that including step:
S1, at different temperature, obtains open-circuit voltage UOCVWith the relation of SOC and temperature T,
S2, establish equivalent-circuit model, obtains model parameter and the relation of SOC and temperature T, which is specially
S21, establish three rank equivalent-circuit models, and the Ohmic resistance R of series connection is included in equivalent circuit0With three RC units, each RC Unit is made of resistance and capacitance in parallel, determines the equivalent circuit terminal voltage U and open-circuit voltage UOCVCharacteristic relation;
Ohmic internal resistance R in S22, the acquisition equivalent-circuit model0With the relation of SOC and temperature T:Determine that pulsed discharge terminates The voltage characteristic of moment, obtains ohmic internal resistance R under temperature T0With the relation of SOC;
RC cell parameters R in S23, the acquisition equivalent-circuit model1, C1, R2, C2, R3, C3With the relation of SOC and temperature T;
S231, the voltage U (ts) for measuring the equivalent circuit after pulsed discharge terminates moment;
S232, obtain RC cell parameters R at identical temperature1, C1, R2, C2, R3, C3With the relation of SOC;
SOC value under the time t of S3, calculating Current Temperatures T and battery operation, including simplify voltage characteristic equation, it is special to voltage Property equation is solved.
2. lithium ion battery SOC algorithm for estimating according to claim 1, it is characterised in that in step S1, obtain a series of Open-circuit voltage U under temperature TOCVWith the relation of SOC, the temperature range of T is -10~50 DEG C, SOC in the range of 0.1~0.9 extremely Few 9 values.
3. lithium ion battery SOC algorithm for estimating according to claim 2, it is characterised in that by open-circuit voltage under temperature T The relation of UOCV and SOC is expressed with five rank multinomials:
UOCV=a0+a1SOC+a2SOC2+a3SOC3+a4SOC4+a5SOC5
Wherein Uocv represents battery open circuit voltage, and a0~a5 is multinomial coefficient, and is constant, and SOC is the state-of-charge of battery.
4. lithium ion battery SOC algorithm for estimating according to claim 1, it is characterised in that the step S21 is:
For three rank equivalent-circuit models, the characteristic equation of battery model is established:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mfrac> <mrow> <msub> <mi>dU</mi> <mn>1</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>U</mi> <mn>1</mn> </msub> <msub> <mi>R</mi> <mn>1</mn> </msub> </mfrac> <mo>=</mo> <mi>I</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mfrac> <mrow> <msub> <mi>dU</mi> <mn>2</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>U</mi> <mn>2</mn> </msub> <msub> <mi>R</mi> <mn>2</mn> </msub> </mfrac> <mo>=</mo> <mi>I</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mn>3</mn> </msub> <mfrac> <mrow> <msub> <mi>dU</mi> <mn>3</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>U</mi> <mn>3</mn> </msub> <msub> <mi>R</mi> <mn>3</mn> </msub> </mfrac> <mo>=</mo> <mi>I</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>U</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>IR</mi> <mn>0</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>U</mi> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>o</mi> <mi>c</mi> <mi>v</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>U</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>U</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>U</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein, U0For the ohmic internal resistance R0The voltage at both ends, U1~U3For the voltage at three RC units both ends, I is electric current;
Solution formula (1), the expression formula that can obtain equivalent circuit terminal voltage are:
<mrow> <mi>U</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>o</mi> <mi>c</mi> <mi>v</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>IR</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>U</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>1</mn> </msub> <msub> <mi>C</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </msup> <mo>-</mo> <msub> <mi>U</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>2</mn> </msub> <msub> <mi>C</mi> <mn>2</mn> </msub> </mrow> </mfrac> </mrow> </msup> <mo>-</mo> <msub> <mi>U</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>3</mn> </msub> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </mfrac> </mrow> </msup> <mo>-</mo> <msub> <mi>IR</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>1</mn> </msub> <msub> <mi>C</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>2</mn> </msub> <msub> <mi>C</mi> <mn>2</mn> </msub> </mrow> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>3</mn> </msub> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein, U1(0)、U2(0) and U3(0) when being respectively that pulsed discharge timing starts, the voltage initial value at three RC units both ends.
5. lithium ion battery SOC algorithm for estimating according to claim 1, it is characterised in that the step S22 is:
According to the voltage response curves that under temperature T, HPPC of the battery under different SOC is tested, using formula
Wherein, ULThe voltage jump terminated for pulsed discharge, I are impulse discharge current value,
The ohmic internal resistance R under different SOC is calculated0And R0- SOC curves.The SOC value is at least 9 in the range of 0.1~0.9 A numerical value.To R at this temperature0- SOC curves carry out multinomial fitting, and the fitting of a polynomial formula is:
R0=b0+b1SOC+b2SOC2+b3SOC3+b4SOC4+b5SOC5
Wherein R0Represent ohmic internal resistance, b0~b5For multinomial coefficient, and it is constant, SOC is the state-of-charge of battery.
6. lithium ion battery SOC algorithm for estimating according to claim 1, it is characterised in that put pulse in step S231 Voltage characteristic equation after electricity terminates moment is determined as
<mrow> <mi>U</mi> <mrow> <mo>(</mo> <mi>t</mi> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>o</mi> <mi>c</mi> <mi>v</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mi>s</mi> </msub> </mrow> </msup> <mo>-</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <msub> <mi>t</mi> <mi>s</mi> </msub> </mrow> </msup> <mo>-</mo> <msub> <mi>c</mi> <mn>3</mn> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>d</mi> <mn>3</mn> </msub> <msub> <mi>t</mi> <mi>s</mi> </msub> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
Wherein, tsBe end-of-pulsing electric discharge after time of repose, c1~c3And d1~d3For with the relevant constant of RC cell parameters.
7. lithium ion battery SOC algorithm for estimating according to claim 6, it is characterised in that step S232 is:
According to the voltage response curves that under temperature T, battery is stood after the HPPC test of pulse electric discharge under different SOC, using (6) Formula obtains the c under different SOC by nonlinear fitting1~c3And d1~d3Value, the SOC value in the range of 0.1~0.9 extremely Few 9 numerical value, the RC cell parameters values under different SOC are calculated further according to following formula:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mi>I</mi> </mfrac> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mi>I</mi> <mrow> <msub> <mi>c</mi> <mi>i</mi> </msub> <msub> <mi>d</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
According to the R under obtained different SOCiAnd CiValue, to R1- SOC, R2- SOC, R3- SOC, C1- SOC, C2- SOC and C3- SOC's Parameter list carries out cubic spline interpolation, obtains encrypted R1- SOC, R2- SOC, R3- SOC, C1- SOC, C2- SOC and C3- SOC's Parameter list.
8. lithium ion battery SOC algorithm for estimating according to claim 1, it is characterised in that
For the step S233 specifically, changing temperature T, repetition S232, obtains encrypted R at other temperature1- SOC, R2- SOC, R3- SOC, C1- SOC, C2- SOC and C3-The parameter list of SOC, establishes R1、R2、R3、C1、C2And C3With SOC and the two-dimensional parameter of temperature Network.
9. lithium ion battery SOC algorithm for estimating according to claim 1, it is characterised in that calculated currently in step S32 Solved during SOC value under temperature T and time t by the way of program is write, including:
I) SOC initial values are set as 0.9, calculate the terminal voltage value U of battery;
Ii the relative deviation of battery terminal voltage the value U* and U under current t) are calculated
Δ=| U-U* |/U;
Iii) if Δ >=0.001, make SOC value reduce 0.001, repeat i)~ii);If Δ<0.001, then this SOC value is exported, SOC value as under Current Temperatures T and time t.
10. lithium ion battery SOC algorithm for estimating according to claim 4, it is characterised in that in step S31, equivalent circuit The expression formula of terminal voltage is written as:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>o</mi> <mi>c</mi> <mi>v</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>U</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>U</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo>-</mo> <msub> <mi>U</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo>-</mo> <msub> <mi>IR</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
For temperature T and time t, then the U (t), U in formula (8)1(0)、U2(0) and U3(0) and I is known quantity, and Uocv、R0、 R1、R2、R3、C1、C2And C3Only related to SOC, then formula (8) can be write
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>o</mi> <mi>c</mi> <mi>v</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>U</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>U</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo>-</mo> <msub> <mi>U</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo>-</mo> <msub> <mi>IR</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>,</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mrow> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Formula (9) is solved, you can obtain the SOC value under Current Temperatures T and time t.
CN201711376573.4A 2017-12-19 2017-12-19 Lithium ion battery SOC estimation algorithm based on equivalent circuit Active CN107957560B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711376573.4A CN107957560B (en) 2017-12-19 2017-12-19 Lithium ion battery SOC estimation algorithm based on equivalent circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711376573.4A CN107957560B (en) 2017-12-19 2017-12-19 Lithium ion battery SOC estimation algorithm based on equivalent circuit

Publications (2)

Publication Number Publication Date
CN107957560A true CN107957560A (en) 2018-04-24
CN107957560B CN107957560B (en) 2020-03-06

Family

ID=61959236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711376573.4A Active CN107957560B (en) 2017-12-19 2017-12-19 Lithium ion battery SOC estimation algorithm based on equivalent circuit

Country Status (1)

Country Link
CN (1) CN107957560B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988450A (en) * 2018-09-04 2018-12-11 石家庄科林电气股份有限公司 Intelligent Charger for Electric Bicycle and charging method with fire-proof and explosion-proof function
CN109878378A (en) * 2019-01-30 2019-06-14 北京长城华冠汽车科技股份有限公司 Internal resistance of cell calculation method, device and battery management system
CN110058159A (en) * 2019-04-29 2019-07-26 杭州电子科技大学 A kind of lithium battery health status estimation method based on grey neural network
CN110208701A (en) * 2019-04-09 2019-09-06 清华大学 The calculation method of energy-storage system virtual battery internal resistance in a kind of direct-current micro-grid
CN110208707A (en) * 2019-06-14 2019-09-06 湖北锂诺新能源科技有限公司 A kind of lithium ion battery parameter evaluation method based on equivalent-circuit model
CN110348062A (en) * 2019-06-14 2019-10-18 湖北锂诺新能源科技有限公司 The construction method of lithium ion battery equivalent-circuit model
CN110954831A (en) * 2019-12-06 2020-04-03 重庆大学 Multi-time scale square lithium battery SOC and SOT joint estimation method
CN111025172A (en) * 2019-12-31 2020-04-17 国联汽车动力电池研究院有限责任公司 Method for realizing rapid measurement of maximum allowable power of charging and discharging of lithium ion battery
CN111413618A (en) * 2020-03-27 2020-07-14 国联汽车动力电池研究院有限责任公司 Lithium ion battery equivalent circuit model parameter relation calculation method and system
CN111579992A (en) * 2020-04-27 2020-08-25 沃太能源南通有限公司 Second-order RC equivalent circuit parameter fitting method based on cubic spline difference
CN117117346A (en) * 2023-07-31 2023-11-24 广东嘉尚新能源科技有限公司 Design and control method of sodium ion battery management system
EP4407329A1 (en) * 2023-01-24 2024-07-31 Rimac Technology LLC Method and device for determining a derated power limit of a battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050030041A1 (en) * 2003-08-07 2005-02-10 Jae Seung Koo Method for determining a steady state battery terminal voltage
JP2010135075A (en) * 2008-12-02 2010-06-17 Calsonic Kansei Corp Method and device for estimating temperature of battery pack
CN103439668A (en) * 2013-09-05 2013-12-11 桂林电子科技大学 Charge state evaluation method and system of power lithium ion battery
CN103901351A (en) * 2014-03-18 2014-07-02 浙江大学城市学院 Single lithium ion battery SOC estimation method based on sliding window filtering
CN103926538A (en) * 2014-05-05 2014-07-16 山东大学 Variable tap-length RC equivalent circuit model and realization method based on AIC
CN105425154A (en) * 2015-11-02 2016-03-23 北京理工大学 Method for estimating charge state of power cell set of electric vehicle
CN106026260A (en) * 2016-06-24 2016-10-12 南京航空航天大学 SOC estimation method for series-wound battery pack having equalization circuit
CN106918787A (en) * 2017-03-20 2017-07-04 国网重庆市电力公司电力科学研究院 A kind of electric automobile lithium battery residual charge evaluation method and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050030041A1 (en) * 2003-08-07 2005-02-10 Jae Seung Koo Method for determining a steady state battery terminal voltage
JP2010135075A (en) * 2008-12-02 2010-06-17 Calsonic Kansei Corp Method and device for estimating temperature of battery pack
CN103439668A (en) * 2013-09-05 2013-12-11 桂林电子科技大学 Charge state evaluation method and system of power lithium ion battery
CN103901351A (en) * 2014-03-18 2014-07-02 浙江大学城市学院 Single lithium ion battery SOC estimation method based on sliding window filtering
CN103926538A (en) * 2014-05-05 2014-07-16 山东大学 Variable tap-length RC equivalent circuit model and realization method based on AIC
CN105425154A (en) * 2015-11-02 2016-03-23 北京理工大学 Method for estimating charge state of power cell set of electric vehicle
CN106026260A (en) * 2016-06-24 2016-10-12 南京航空航天大学 SOC estimation method for series-wound battery pack having equalization circuit
CN106918787A (en) * 2017-03-20 2017-07-04 国网重庆市电力公司电力科学研究院 A kind of electric automobile lithium battery residual charge evaluation method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
项胜: "电动汽车动力电池安全管理系统研究与设计", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988450A (en) * 2018-09-04 2018-12-11 石家庄科林电气股份有限公司 Intelligent Charger for Electric Bicycle and charging method with fire-proof and explosion-proof function
CN108988450B (en) * 2018-09-04 2021-03-30 石家庄科林电气股份有限公司 Electric bicycle intelligent charger with fireproof and explosion-proof functions and charging method
CN109878378A (en) * 2019-01-30 2019-06-14 北京长城华冠汽车科技股份有限公司 Internal resistance of cell calculation method, device and battery management system
CN110208701B (en) * 2019-04-09 2020-07-10 清华大学 Method for calculating virtual battery internal resistance of energy storage system in direct-current micro-grid
CN110208701A (en) * 2019-04-09 2019-09-06 清华大学 The calculation method of energy-storage system virtual battery internal resistance in a kind of direct-current micro-grid
CN110058159A (en) * 2019-04-29 2019-07-26 杭州电子科技大学 A kind of lithium battery health status estimation method based on grey neural network
CN110208707A (en) * 2019-06-14 2019-09-06 湖北锂诺新能源科技有限公司 A kind of lithium ion battery parameter evaluation method based on equivalent-circuit model
CN110348062A (en) * 2019-06-14 2019-10-18 湖北锂诺新能源科技有限公司 The construction method of lithium ion battery equivalent-circuit model
CN110348062B (en) * 2019-06-14 2023-05-26 湖北锂诺新能源科技有限公司 Construction method of equivalent circuit model of lithium ion battery
CN110954831A (en) * 2019-12-06 2020-04-03 重庆大学 Multi-time scale square lithium battery SOC and SOT joint estimation method
CN110954831B (en) * 2019-12-06 2021-10-26 重庆大学 Multi-time scale square lithium battery SOC and SOT joint estimation method
CN111025172A (en) * 2019-12-31 2020-04-17 国联汽车动力电池研究院有限责任公司 Method for realizing rapid measurement of maximum allowable power of charging and discharging of lithium ion battery
CN111025172B (en) * 2019-12-31 2022-03-01 国联汽车动力电池研究院有限责任公司 Method for realizing rapid measurement of maximum allowable power of charging and discharging of lithium ion battery
CN111413618A (en) * 2020-03-27 2020-07-14 国联汽车动力电池研究院有限责任公司 Lithium ion battery equivalent circuit model parameter relation calculation method and system
CN111579992A (en) * 2020-04-27 2020-08-25 沃太能源南通有限公司 Second-order RC equivalent circuit parameter fitting method based on cubic spline difference
EP4407329A1 (en) * 2023-01-24 2024-07-31 Rimac Technology LLC Method and device for determining a derated power limit of a battery
CN117117346A (en) * 2023-07-31 2023-11-24 广东嘉尚新能源科技有限公司 Design and control method of sodium ion battery management system
CN117117346B (en) * 2023-07-31 2024-03-12 广东嘉尚新能源科技有限公司 Design and control method of sodium ion battery management system

Also Published As

Publication number Publication date
CN107957560B (en) 2020-03-06

Similar Documents

Publication Publication Date Title
CN107957560A (en) A kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit
Yang et al. A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles
Hu et al. Online estimation of an electric vehicle lithium-ion battery using recursive least squares with forgetting
Farmann et al. A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles
Mesbahi et al. Dynamical modeling of Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm–Nelder–Mead (PSO–NM) optimization algorithm
Zheng et al. A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles
CN104392080B (en) A kind of lithium battery fractional order becomes rank equivalent-circuit model and its discrimination method
Zheng et al. An accurate parameters extraction method for a novel on-board battery model considering electrochemical properties
CN102981125B (en) A kind of electrokinetic cell SOC method of estimation based on RC equivalent model
CN103926538B (en) Change exponent number RC equivalent-circuit model based on AIC criterion and implementation method
CN110208704A (en) A kind of lithium battery modeling method and system based on voltage delay effect
CN110824363B (en) Lithium battery SOC and SOE joint estimation method based on improved CKF
Nikolian et al. Classification of Electric modelling and Characterization methods of Lithium-ion Batteries for Vehicle Applications
CN108519555A (en) A kind of the improvement fractional model and parameter identification method of lithium ion battery
CN110795851A (en) Lithium ion battery modeling method considering environmental temperature influence
Anderson et al. Real time battery power capability estimation
CN105425154B (en) A kind of method of the state-of-charge for the power battery pack for estimating electric automobile
CN113433464A (en) High-order model parameter identification method and system suitable for lithium-rich manganese-based battery
Wang et al. An improved coulomb counting method based on dual open‐circuit voltage and real‐time evaluation of battery dischargeable capacity considering temperature and battery aging
CN103744028A (en) UKF-based storage battery SOC (state of charge) estimation method
CN109459699A (en) A kind of lithium-ion-power cell SOC method of real-time
CN104537166B (en) A kind of construction method of the equivalent-circuit model of electrokinetic cell
CN111426956A (en) Fractional order power battery SOC estimation method considering temperature and hysteresis effect
CN106093517A (en) Lithium ion battery open circuit voltage curve approximating method based on Hermite&#39;s interpolation method
Tanaka et al. Accurate and versatile simulation of transient voltage profile of lithium-ion secondary battery employing internal equivalent electric circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant