CN107957560A - A kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit - Google Patents
A kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit Download PDFInfo
- Publication number
- CN107957560A CN107957560A CN201711376573.4A CN201711376573A CN107957560A CN 107957560 A CN107957560 A CN 107957560A CN 201711376573 A CN201711376573 A CN 201711376573A CN 107957560 A CN107957560 A CN 107957560A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- soc
- mfrac
- msup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
- G01R31/387—Determining ampere-hour charge capacity or SoC
- G01R31/388—Determining ampere-hour charge capacity or SoC involving voltage measurements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
The present invention provides a kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit, including step:S1, at different temperature, obtains open-circuit voltage UOCVWith the relation of SOC and temperature T, S2, establish equivalent-circuit model, obtains model parameter and the relation of SOC and temperature T, and S3, calculate SOC value under Current Temperatures T and time t, including simplifies voltage characteristic equation, and voltage characteristic equation is solved.The SOC methods of estimation of lithium ion battery provided by the invention, principle is simple, and estimated accuracy is high, is no more than 1% to the SOC estimated accuracies maximum deviation of lithium ion battery.
Description
Technical field
The invention belongs to detection field, and in particular to a kind of evaluation method of charge states of lithium ion battery.
Background technology
In recent years, global automobile quantity drastically rises, also increasing to the demand of the energy, while dirty caused by environment
Dye is also more serious.New-energy automobile, especially electric automobile have become the developing direction of future automobile, but its development speed is still
Restricted by power battery and its application technology.How to extend battery service life, improve battery energy efficiency and can
It is that electric vehicle industrialization must solve the problems, such as by property, therefore study battery management technique there is very great meaning.
Power battery charged state (State of Charge) abbreviation SOC.The remaining capacity of lithium ion battery is that battery exists
One of most important performance parameter in operational process, the estimation of remaining capacity is a very important link.For electric car
For, the SOC of battery is estimated exactly, can not only improve cruising ability, can also extend battery life, improves security.
The content of the invention
For shortcoming existing for this area, the invention discloses a kind of lithium ion battery SOC based on equivalent circuit
Algorithm for estimating, to estimate the SOC of battery exactly.
Realize that above-mentioned purpose technical solution of the present invention is:
A kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit, including step:
S1, at different temperature, obtains open-circuit voltage UOCVWith the relation of SOC and temperature T,
S2, establish equivalent-circuit model, obtains the relation of the model parameter and the SOC and temperature T, and the step is specific
For
S21, establish three rank equivalent-circuit models, and the Ohmic resistance R of series connection is included in equivalent circuit0With three RC units,
Each RC units are made of resistance and capacitance in parallel;Determine the equivalent circuit terminal voltage U and open-circuit voltage UOCVCharacteristic close
System;
Ohmic internal resistance R in S22, the acquisition equivalent-circuit model0With the relation of SOC and temperature T:Determine pulsed discharge
Terminate the voltage characteristic of moment.
S222, obtain ohmic internal resistance R under temperature T0With the relation of SOC
S223, obtain ohmic internal resistance R at other temperature0With the relation of SOC
RC cell parameters R in S23, the acquisition equivalent-circuit model1, C1, R2, C2, R3, C3With the pass of SOC and temperature T
System;
S231, the voltage U (t) for measuring the equivalent circuit after pulsed discharge terminates moment;
S232, obtain RC cell parameters R at identical temperature1, C1, R2, C2, R3, C3With the relation of SOC.
S233, the relation for obtaining parallel connection RC cell parameters R1, C1, R2, C2, R3, C3 and SOC at other temperature.
SOC value under the time t of S3, estimation Current Temperatures T and battery operation, including S31, simplified voltage characteristic equation,
S32, solve voltage characteristic equation.
Wherein, in step S1, open-circuit voltage U under series of temperature T is obtainedOCVWith the relation of SOC, the temperature range of T for-
10~50 DEG C, SOC is at least nine value in the range of 0.1~0.9.
Further, the relation of open-circuit voltage UOCV and SOC under temperature T are expressed with five rank multinomials:
UOCV=a0+a1SOC+a2SOC2+a3SOC3+a4SOC4+a5SOC5
Wherein Uocv represents battery open circuit voltage, and a0~a5 is multinomial coefficient, and is constant, and SOC is the charged of battery
State.
Alternatively, T one group of U of acquisition per 4-8 DEG C when less than 10 DEG COCVWith the relation of SOC, every 8-12 when T is more than 10 DEG C
DEG C obtain one group of UOCVWith the relation of SOC.
Wherein, the step S21 is:
For three rank equivalent-circuit models, the characteristic equation of battery model is established:
Wherein, U0For the ohmic internal resistance R0The voltage at both ends, U1~U3For the voltage at three RC units both ends, I is
Electric current;
Solution formula (1), the expression formula that can obtain equivalent circuit terminal voltage are:
Wherein, U1(0)、U2(0) and U3(0) when being respectively that pulsed discharge (HPPC) timing starts, three RC units both ends
Voltage initial value.
In step S22, pulsed discharge (HPPC) is existing for existing test method, pulse discharge time, electric current etc.
Specification (such as according to Freedom battery testings handbook).
According to the structure of Fig. 2, pulsed discharge terminates moment, and the change of voltage is entirely by ohmic internal resistance R0Produce.
Therefore, ohmic internal resistance R0Obtained using following formula:
In formula, ULThe voltage jump terminated for pulsed discharge, I are impulse discharge current value.
Wherein, the step S22 is:
According to the voltage response curves that under temperature T, HPPC of the battery under different SOC is tested, calculated using formula (4)
Obtain the ohmic internal resistance R under different SOC0And R0- SOC curves.The SOC value is at least nine numerical value in the range of 0.1~0.9.
To R at this temperature0- SOC curves carry out multinomial fitting, and the fitting of a polynomial formula is:
R0=b0+b1SOC+b2SOC2+b3SOC3+b4SOC4+b5SOC5
Wherein R0Represent ohmic internal resistance, b0~b5For multinomial coefficient, and it is constant, SOC is the state-of-charge of battery.
Pulsed discharge terminates moment, electric current zero, and circuit structure shown in Fig. 2 is zero input response, its voltage characteristic equation
For:
Further, the step S231 is specially:
From the circuit structure of Fig. 2, after pulsed discharge terminates moment, the voltage vanishing at ohmic internal resistance both ends, but three
The voltage at a RC units both ends will not vanishing.Therefore formula (3) is changed into:
In principle, using the nonlinear fitting instrument of mathematical software, directly voltage response curves can be intended according to formula (4)
Close, obtain the parameter value of three RC units.But due in formula (4) there are exponential function, and the number of the capacitance in Fig. 2 structures
Value kF from tens to hundreds of is differed, and therefore, is directly fitted using formula (5), it is difficult to fit procedure is controlled, simultaneously because intending
Close parameter and be in denominator position, each interative computation, can introduce truncated error.Obtained result stability is poor.So will
Formula (5) can be written as:
Wherein, c1~c3And d1~d3For with the relevant constant of RC cell parameters.
Wherein, the voltage characteristic equation after pulsed discharge being terminated moment in step S231 is determined as
Wherein, tsIt is the time stood after pulsed discharge, c1~c3And d1~d3For with the relevant constant of RC cell parameters.
HPPC experiments include first carrying out pulsed discharge to battery, then stand.tsTime zero when being end-of-pulsing, i.e. arteries and veins
Time after impulse electricity.
Wherein, step S232 is:
According to the voltage response curves that under temperature T, battery is stood after the HPPC test of pulse electric discharge under different SOC, adopt
The c under different SOC is obtained by nonlinear fitting with (6) formula1~c3And d1~d3Value.The SOC value is in the range of 0.1~0.9
At least nine numerical value, the RC cell parameters values under different SOC are calculated further according to following formula:
According to Ri the and Ci values under obtained different SOC, to R1- SOC, R2- SOC, R3- SOC, C1- SOC, C2- SOC and C3-
The parameter list of SOC carries out cubic spline interpolation, obtains encrypted R1- SOC, R2- SOC, R3- SOC, C1- SOC, C2- SOC and C3-
The parameter list of SOC.
Wherein, for the step S233 specifically, changing temperature T, repetition S232, obtains encrypted R at other temperature1-
SOC, R2- SOC, R3- SOC, C1- SOC, C2- SOC and C3-The parameter list of SOC, establishes R1、R2、R3、C1、C2And C3With SOC and temperature
Two-dimensional parameter network
Further, mathematical software is not used directly in the SOC value under calculating Current Temperatures T and time t in step S32
Solving Nonlinear Equation instrument solve the obtained nonlinearity equation of equivalent-circuit model, and by the way of program is write
Solve, including:
I) SOC initial values are set as 0.9, calculate the terminal voltage value U of battery;
Ii the relative deviation of battery terminal voltage the value U* and U under current t) are calculated
Δ=| U-U* |/U;
Iii) if Δ >=0.001, make SOC value reduce 0.001, repeat i)~ii);If Δ<0.001, then export this SOC
Value, is the SOC value under Current Temperatures T and time t.
Due to having been obtained for formula (2) Uocv、R0、R1、R2、R3、C1、C2And C3Value under different SOC and temperature T, because
This, step S31 is:
The expression formula of equivalent circuit terminal voltage is written as:
For Current Temperatures T and time t, then the U (t), U in formula (8)1(0)、U2(0) and U3(0) and I is known quantity,
And Uocv、R0、R1、R2、R3、C1、C2And C3Only related to SOC, then formula (8) can be write
Formula (9) is solved, you can obtain the SOC value under Current Temperatures T and time t.
The beneficial effects of the present invention are:
The present invention provides a kind of SOC methods of estimation of lithium ion battery.The principle of this method is simple, and estimated accuracy is high.Tool
Body includes:
1st, SOC methods of estimation provided by the invention are no more than 1% to the SOC estimated accuracies maximum deviation of lithium ion battery.
2nd, SOC methods of estimation provided by the invention carry out nonlinear fitting in the RC cell parameters to equivalent-circuit model
When, the parametric form of fitting is changed, the stability and speed of fitting can be effectively improved.
3rd, SOC methods of estimation provided by the invention obtain equivalent-circuit model RC cell parameters and SOC relation when,
Polynomial fitting method is not used, and parameter list is established using Technique of Cubic Spline Interpolation, can effectively avoid fitting of a polynomial
The deviation brought.
4th, the present invention provides SOC methods of estimation when solving equivalent circuit voltage characteristic equation, and direct solution is not non-linear
Equation, is solved using the method for writing program, effectively improves solving precision, reduced and solve the time.
Brief description of the drawings
Fig. 1 is the flow chart of the method for estimation of the battery SOC of the invention based on equivalent circuit;
Fig. 2 is the circuit structure of equivalent circuit;
Fig. 3 solves the flow chart of formula (9) by the way of program is write.
Fig. 4 is the open-circuit voltage that fitting obtains and the relation of SOC.
Fig. 5 is the ohmic internal resistance that fitting obtains and the relation of SOC.
Fig. 6 to Figure 11 is respectively the parameter list of R1-SOC, R2-SOC, R3-SOC, C1-SOC, C2-SOC and C3-SOC.
Figure 12 contrasts for obtained SOC estimation and experiment value,
The deviation situation of Figure 13 estimation results.
Embodiment
Illustrate the present invention below by most preferred embodiment.Those skilled in the art institute it should be understood that, embodiment is only used for
Illustrate rather than for limiting the scope of the invention.
In embodiment, unless otherwise instructed, means used are the means of this area routine.
Embodiment 1
The present embodiment combines the battery that a positive electrode is ternary material, exemplified by T=25 DEG C, using estimated below side
Method, estimates its SOC.
Detailed process comprises the following steps:
S1, obtain the open-circuit voltage UOCVWith the relation of the SOC and temperature T
Open-circuit voltage U of the battery obtained according to constant-current discharge at 25 DEG C of temperature under different SOCocv, the SOC value is
At least nine numerical value in the range of 0.1~0.9.To the U at 25 DEG Cocv- SOC curves carry out multinomial and intend fitting.
The fitting polynomial formulas is:
UOCV=a0+a1SOC+a2SOC2+a3SOC3+a4SOC4+a5SOC5
Wherein UocvRepresent battery open circuit voltage, a0~a5For multinomial coefficient, and it is constant, SOC is the charged shape of battery
State.
Fig. 4 is fitting as a result, obtained open-circuit voltage and the relation of SOC are:
UOCV=3.3233+0.02455SOC-8.9131 × 10-4SOC2
+1.6196×10-5SOC3-1.2246×10-7SOC4+3.3391×10-10SOC5
S2, establish equivalent-circuit model, obtains the relation of the model parameter and the SOC and temperature T, which includes
Following sub-step:
S21, establish three rank equivalent-circuit models, specifies the battery terminal voltage U and open-circuit voltage UOCVCharacteristic relation.
For circuit diagram shown in Fig. 2, the characteristic equation of battery model is established:
U0=IR0
U=Uocv-U0-U1-U2-U3
Wherein, U0For the ohmic internal resistance R0The voltage at both ends, U1~U3For the voltage at three RC units both ends, I is electricity
Stream.
Solution formula (1), the expression formula that can obtain terminal voltage are:
Wherein, U1(0)、U2(0) and U3(0) when being respectively that timing starts, the voltage initial value at three RC units both ends.
Ohmic internal resistance R in S22, the acquisition equivalent-circuit model0With the relation of SOC and temperature T.
S221, determine that pulsed discharge terminates the voltage characteristic of moment.
Pulsed discharge terminates moment, electric current zero, and circuit structure shown in Fig. 2 is zero input response, its voltage characteristic equation
For:
According to the structure of Fig. 2, pulsed discharge terminates moment, and the change of voltage is entirely by ohmic internal resistance R0Produce.
Therefore, ohmic internal resistance R0Obtained using following formula:
Wherein, ULThe voltage jump terminated for pulsed discharge, I are impulse discharge current value.
S222, obtain ohmic internal resistance R at certain identical temperature0With the relation of SOC
According to the voltage response curves that at 25 DEG C of temperature, HPPC of the battery under different SOC is tested, using S221 institutes
The ohmic internal resistance R under different SOC is calculated in the method for stating0And R0- SOC curves.The SOC value is 0.1,0.2,0.3,0.4,
0.5,0.6,0.7,0.8 with 0.9.To the R at 25 DEG C0- SOC curves carry out following fitting of a polynomial:
R0=b0+b1SOC+b2SOC2+b3SOC3+b4SOC4+b5SOC5
Wherein R0Represent ohmic internal resistance, b0~b5For multinomial coefficient, and it is constant, SOC is the state-of-charge of battery.
Fig. 5 is fitting result, and obtained ohmic internal resistance and the relation of SOC is:
R0=2.5800-0.03058SOC-4.5770 × 10-4SOC2
+1.6125×10-6SOC3-8.6662×10-8SOC4+5.0321×10-10SOC5
RC cell parameters R in parallel in S23, the acquisition equivalent-circuit model1, C1, R2, C2, R3, C3With SOC and temperature T
Relation.Include following sub-step:
S231, determine pulsed discharge terminate moment after voltage characteristic.
From the circuit structure of Fig. 2, after pulsed discharge terminates moment, the voltage vanishing at ohmic internal resistance both ends, but three
The voltage at a RC units both ends will not vanishing.Therefore formula (3) is changed into:
In principle, using the nonlinear fitting instrument of mathematical software, directly voltage response curves can be intended according to formula (4)
Close, obtain the parameter value of three RC units.But due in formula (4) there are exponential function, and the number of the capacitance in Fig. 2 structures
Value kF from tens to hundreds of is differed, simultaneously because fitting parameter is in denominator position, each interative computation, can introduce and block mistake
Difference.Therefore, directly it is fitted using formula (5), it is difficult to fit procedure is controlled, obtained result stability is poor.So will
Formula (5) is written as:
Wherein, c1~c3And d1~d3For with the relevant constant of RC cell parameters.
S232, obtain parallel connection RC cell parameters R at certain identical temperature1, C1, R2, C2, R3, C3With the relation of SOC.
According to the voltage response curves that at 25 DEG C of temperature, battery is stood after the HPPC experiment impulse electricities under different SOC, base
The c under different SOC is obtained by nonlinear fitting in formula (6)1~c3And d1~d3Value.
The SOC value is 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 and 0.9.It is calculated not further according to following formula
With the RC cell parameters values under SOC.The expression formula is:
According to the R under step difference SOC obtained above1~R3And C1~C3Value, to R1- SOC, R2- SOC, R3- SOC, C1-
SOC, C2- SOC and C3-The parameter list of SOC carries out cubic spline interpolation, obtains encrypted R1- SOC, R2- SOC, R3- SOC, C1-
SOC, C2- SOC and C3-The parameter list of SOC.
Parameter the result is shown in Fig. 6~11.
SOC value under S3, estimation Current Temperatures T and time t
The step includes following sub-step:
S31, simplify voltage characteristic equation
Due to having been obtained for formula (2) Uocv、R0、R1、R2、R3、C1、C2And C3Value under different SOC and temperature T, because
This, formula (2) can be rewritten as:
For Current Temperatures T and time t, then the U (t), U in formula (8)1(0)、U2(0) and U3(0) and I is known quantity,
And Uocv、R0、R1、R2、R3、C1、C2And C3Only related to SOC, then formula (8) can be write
Formula (9) is solved, you can obtain the SOC value under the time t of Current Temperatures T and battery operation.
S32, solve voltage characteristic equation
Formula (9) is a nonlinearity equation, is directly asked using the Solving Nonlinear Equation instrument of mathematical software
Solution, can not obtain stable solving result, and it is longer to solve the time.There is bound in itself in view of SOC value, therefore using volume
The mode of program writing solves formula (9), and specific flow is as shown in Figure 3.
I) SOC initial values are set as 0.9, the terminal voltage value U of battery is calculated according to formula (9);
Ii) the relative deviation of battery terminal voltage the value U* and U under current t
Δ=| U-U* |/U;
Iii) if Δ >=0.001.Then make SOC value reduce 0.001, repeat i)~ii).If Δ<0.001, then export this SOC
Value, is the SOC value under Current Temperatures T and time t.
Specific programming demonstration is following (only to list the program for solving nonlinear equation, each parameter and SOC in unlisted formula
The program of relation):
The overall process that this method is estimated from parameter acquiring to SOC is described in detail in the present embodiment.In practical applications, for
Identical battery, the expression formula of all parameter acquisition procedure, that is, S1 and S2 and estimation procedure, which simplify process S31, only to be needed to hold
Row once, obtains corresponding parameter value.Carry out only needing specifically to perform S32 steps during SOC estimations.
Implementation result:
Figure 12 is shown in the contrast of obtained SOC estimation and experiment value, and experiment test (experiment) and in advance is seen from figure
Survey result (prediction) substantially completely to overlap, deviation situation is shown in Figure 13.Positive and negative maximum deviation is each about 0.6%.
Embodiment 2
Using the method with 1 system of embodiment, the temperature of other values is set, T obtains one group for every 5 DEG C when less than 10 DEG C
UOCVWith the relation of SOC, one group of U of every 10 DEG C of acquisitions when T is more than 10 DEG COCVWith the relation of SOC.
Obtained SOC estimation is contrasted with experiment value, its maximum deviation is no more than 1%.
More than embodiment be only the preferred embodiment of the present invention is described, not to the scope of the present invention into
Row limits, on the premise of design spirit of the present invention is not departed from, technical side of this area ordinary skill technical staff to the present invention
The all variations and modifications that case is made, should all fall into the protection domain that claims of the present invention determines.
Claims (10)
1. a kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit, it is characterised in that including step:
S1, at different temperature, obtains open-circuit voltage UOCVWith the relation of SOC and temperature T,
S2, establish equivalent-circuit model, obtains model parameter and the relation of SOC and temperature T, which is specially
S21, establish three rank equivalent-circuit models, and the Ohmic resistance R of series connection is included in equivalent circuit0With three RC units, each RC
Unit is made of resistance and capacitance in parallel, determines the equivalent circuit terminal voltage U and open-circuit voltage UOCVCharacteristic relation;
Ohmic internal resistance R in S22, the acquisition equivalent-circuit model0With the relation of SOC and temperature T:Determine that pulsed discharge terminates
The voltage characteristic of moment, obtains ohmic internal resistance R under temperature T0With the relation of SOC;
RC cell parameters R in S23, the acquisition equivalent-circuit model1, C1, R2, C2, R3, C3With the relation of SOC and temperature T;
S231, the voltage U (ts) for measuring the equivalent circuit after pulsed discharge terminates moment;
S232, obtain RC cell parameters R at identical temperature1, C1, R2, C2, R3, C3With the relation of SOC;
SOC value under the time t of S3, calculating Current Temperatures T and battery operation, including simplify voltage characteristic equation, it is special to voltage
Property equation is solved.
2. lithium ion battery SOC algorithm for estimating according to claim 1, it is characterised in that in step S1, obtain a series of
Open-circuit voltage U under temperature TOCVWith the relation of SOC, the temperature range of T is -10~50 DEG C, SOC in the range of 0.1~0.9 extremely
Few 9 values.
3. lithium ion battery SOC algorithm for estimating according to claim 2, it is characterised in that by open-circuit voltage under temperature T
The relation of UOCV and SOC is expressed with five rank multinomials:
UOCV=a0+a1SOC+a2SOC2+a3SOC3+a4SOC4+a5SOC5
Wherein Uocv represents battery open circuit voltage, and a0~a5 is multinomial coefficient, and is constant, and SOC is the state-of-charge of battery.
4. lithium ion battery SOC algorithm for estimating according to claim 1, it is characterised in that the step S21 is:
For three rank equivalent-circuit models, the characteristic equation of battery model is established:
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>C</mi>
<mn>1</mn>
</msub>
<mfrac>
<mrow>
<msub>
<mi>dU</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<mi>d</mi>
<mi>t</mi>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<msub>
<mi>U</mi>
<mn>1</mn>
</msub>
<msub>
<mi>R</mi>
<mn>1</mn>
</msub>
</mfrac>
<mo>=</mo>
<mi>I</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>C</mi>
<mn>2</mn>
</msub>
<mfrac>
<mrow>
<msub>
<mi>dU</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<mi>d</mi>
<mi>t</mi>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<msub>
<mi>U</mi>
<mn>2</mn>
</msub>
<msub>
<mi>R</mi>
<mn>2</mn>
</msub>
</mfrac>
<mo>=</mo>
<mi>I</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>C</mi>
<mn>3</mn>
</msub>
<mfrac>
<mrow>
<msub>
<mi>dU</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<mi>d</mi>
<mi>t</mi>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<msub>
<mi>U</mi>
<mn>3</mn>
</msub>
<msub>
<mi>R</mi>
<mn>3</mn>
</msub>
</mfrac>
<mo>=</mo>
<mi>I</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>U</mi>
<mn>0</mn>
</msub>
<mo>=</mo>
<msub>
<mi>IR</mi>
<mn>0</mn>
</msub>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mi>U</mi>
<mo>=</mo>
<msub>
<mi>U</mi>
<mrow>
<mi>o</mi>
<mi>c</mi>
<mi>v</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>U</mi>
<mn>0</mn>
</msub>
<mo>-</mo>
<msub>
<mi>U</mi>
<mn>1</mn>
</msub>
<mo>-</mo>
<msub>
<mi>U</mi>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mi>U</mi>
<mn>3</mn>
</msub>
</mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</mrow>
Wherein, U0For the ohmic internal resistance R0The voltage at both ends, U1~U3For the voltage at three RC units both ends, I is electric current;
Solution formula (1), the expression formula that can obtain equivalent circuit terminal voltage are:
<mrow>
<mi>U</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>U</mi>
<mrow>
<mi>o</mi>
<mi>c</mi>
<mi>v</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>IR</mi>
<mn>0</mn>
</msub>
<mo>-</mo>
<msub>
<mi>U</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>1</mn>
</msub>
<msub>
<mi>C</mi>
<mn>1</mn>
</msub>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>-</mo>
<msub>
<mi>U</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>2</mn>
</msub>
<msub>
<mi>C</mi>
<mn>2</mn>
</msub>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>-</mo>
<msub>
<mi>U</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>3</mn>
</msub>
<msub>
<mi>C</mi>
<mn>3</mn>
</msub>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>-</mo>
<msub>
<mi>IR</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>-</mo>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>1</mn>
</msub>
<msub>
<mi>C</mi>
<mn>1</mn>
</msub>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>IR</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>-</mo>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>2</mn>
</msub>
<msub>
<mi>C</mi>
<mn>2</mn>
</msub>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>IR</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>-</mo>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>3</mn>
</msub>
<msub>
<mi>C</mi>
<mn>3</mn>
</msub>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
</mrow>
Wherein, U1(0)、U2(0) and U3(0) when being respectively that pulsed discharge timing starts, the voltage initial value at three RC units both ends.
5. lithium ion battery SOC algorithm for estimating according to claim 1, it is characterised in that the step S22 is:
According to the voltage response curves that under temperature T, HPPC of the battery under different SOC is tested, using formula
Wherein, ULThe voltage jump terminated for pulsed discharge, I are impulse discharge current value,
The ohmic internal resistance R under different SOC is calculated0And R0- SOC curves.The SOC value is at least 9 in the range of 0.1~0.9
A numerical value.To R at this temperature0- SOC curves carry out multinomial fitting, and the fitting of a polynomial formula is:
R0=b0+b1SOC+b2SOC2+b3SOC3+b4SOC4+b5SOC5
Wherein R0Represent ohmic internal resistance, b0~b5For multinomial coefficient, and it is constant, SOC is the state-of-charge of battery.
6. lithium ion battery SOC algorithm for estimating according to claim 1, it is characterised in that put pulse in step S231
Voltage characteristic equation after electricity terminates moment is determined as
<mrow>
<mi>U</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mi>s</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>U</mi>
<mrow>
<mi>o</mi>
<mi>c</mi>
<mi>v</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>c</mi>
<mn>1</mn>
</msub>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<msub>
<mi>d</mi>
<mn>1</mn>
</msub>
<msub>
<mi>t</mi>
<mi>s</mi>
</msub>
</mrow>
</msup>
<mo>-</mo>
<msub>
<mi>c</mi>
<mn>2</mn>
</msub>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<msub>
<mi>d</mi>
<mn>2</mn>
</msub>
<msub>
<mi>t</mi>
<mi>s</mi>
</msub>
</mrow>
</msup>
<mo>-</mo>
<msub>
<mi>c</mi>
<mn>3</mn>
</msub>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<msub>
<mi>d</mi>
<mn>3</mn>
</msub>
<msub>
<mi>t</mi>
<mi>s</mi>
</msub>
</mrow>
</msup>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>6</mn>
<mo>)</mo>
</mrow>
</mrow>
Wherein, tsBe end-of-pulsing electric discharge after time of repose, c1~c3And d1~d3For with the relevant constant of RC cell parameters.
7. lithium ion battery SOC algorithm for estimating according to claim 6, it is characterised in that step S232 is:
According to the voltage response curves that under temperature T, battery is stood after the HPPC test of pulse electric discharge under different SOC, using (6)
Formula obtains the c under different SOC by nonlinear fitting1~c3And d1~d3Value, the SOC value in the range of 0.1~0.9 extremely
Few 9 numerical value, the RC cell parameters values under different SOC are calculated further according to following formula:
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>R</mi>
<mi>i</mi>
</msub>
<mo>=</mo>
<mfrac>
<msub>
<mi>c</mi>
<mi>i</mi>
</msub>
<mi>I</mi>
</mfrac>
<mo>,</mo>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mn>2</mn>
<mo>,</mo>
<mn>3</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>C</mi>
<mi>i</mi>
</msub>
<mo>=</mo>
<mfrac>
<mi>I</mi>
<mrow>
<msub>
<mi>c</mi>
<mi>i</mi>
</msub>
<msub>
<mi>d</mi>
<mi>i</mi>
</msub>
</mrow>
</mfrac>
<mo>,</mo>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mn>2</mn>
<mo>,</mo>
<mn>3</mn>
</mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>7</mn>
<mo>)</mo>
</mrow>
</mrow>
According to the R under obtained different SOCiAnd CiValue, to R1- SOC, R2- SOC, R3- SOC, C1- SOC, C2- SOC and C3- SOC's
Parameter list carries out cubic spline interpolation, obtains encrypted R1- SOC, R2- SOC, R3- SOC, C1- SOC, C2- SOC and C3- SOC's
Parameter list.
8. lithium ion battery SOC algorithm for estimating according to claim 1, it is characterised in that
For the step S233 specifically, changing temperature T, repetition S232, obtains encrypted R at other temperature1- SOC, R2- SOC,
R3- SOC, C1- SOC, C2- SOC and C3-The parameter list of SOC, establishes R1、R2、R3、C1、C2And C3With SOC and the two-dimensional parameter of temperature
Network.
9. lithium ion battery SOC algorithm for estimating according to claim 1, it is characterised in that calculated currently in step S32
Solved during SOC value under temperature T and time t by the way of program is write, including:
I) SOC initial values are set as 0.9, calculate the terminal voltage value U of battery;
Ii the relative deviation of battery terminal voltage the value U* and U under current t) are calculated
Δ=| U-U* |/U;
Iii) if Δ >=0.001, make SOC value reduce 0.001, repeat i)~ii);If Δ<0.001, then this SOC value is exported,
SOC value as under Current Temperatures T and time t.
10. lithium ion battery SOC algorithm for estimating according to claim 4, it is characterised in that in step S31, equivalent circuit
The expression formula of terminal voltage is written as:
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<mi>U</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>U</mi>
<mrow>
<mi>o</mi>
<mi>c</mi>
<mi>v</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>IR</mi>
<mn>0</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>U</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<msub>
<mi>C</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</msup>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>-</mo>
<msub>
<mi>U</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<msub>
<mi>C</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>-</mo>
<msub>
<mi>U</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<msub>
<mi>C</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>-</mo>
<msub>
<mi>IR</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>-</mo>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<msub>
<mi>C</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>-</mo>
<msub>
<mi>IR</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>-</mo>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<msub>
<mi>C</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>IR</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>-</mo>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<msub>
<mi>C</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>8</mn>
<mo>)</mo>
</mrow>
</mrow>
For temperature T and time t, then the U (t), U in formula (8)1(0)、U2(0) and U3(0) and I is known quantity, and Uocv、R0、
R1、R2、R3、C1、C2And C3Only related to SOC, then formula (8) can be write
<mrow>
<mtable>
<mtr>
<mtd>
<mrow>
<mi>U</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>U</mi>
<mrow>
<mi>o</mi>
<mi>c</mi>
<mi>v</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>IR</mi>
<mn>0</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>U</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<msub>
<mi>C</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</msup>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>-</mo>
<msub>
<mi>U</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<msub>
<mi>C</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>-</mo>
<msub>
<mi>U</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<msub>
<mi>C</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>-</mo>
<msub>
<mi>IR</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>-</mo>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<msub>
<mi>C</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>-</mo>
<msub>
<mi>IR</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>-</mo>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<msub>
<mi>C</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>IR</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>,</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>-</mo>
<msup>
<mi>e</mi>
<mrow>
<mo>-</mo>
<mfrac>
<mi>t</mi>
<mrow>
<msub>
<mi>R</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
<msub>
<mi>C</mi>
<mn>3</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mi>O</mi>
<mi>C</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</msup>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>9</mn>
<mo>)</mo>
</mrow>
</mrow>
Formula (9) is solved, you can obtain the SOC value under Current Temperatures T and time t.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711376573.4A CN107957560B (en) | 2017-12-19 | 2017-12-19 | Lithium ion battery SOC estimation algorithm based on equivalent circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711376573.4A CN107957560B (en) | 2017-12-19 | 2017-12-19 | Lithium ion battery SOC estimation algorithm based on equivalent circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107957560A true CN107957560A (en) | 2018-04-24 |
CN107957560B CN107957560B (en) | 2020-03-06 |
Family
ID=61959236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711376573.4A Active CN107957560B (en) | 2017-12-19 | 2017-12-19 | Lithium ion battery SOC estimation algorithm based on equivalent circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107957560B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108988450A (en) * | 2018-09-04 | 2018-12-11 | 石家庄科林电气股份有限公司 | Intelligent Charger for Electric Bicycle and charging method with fire-proof and explosion-proof function |
CN109878378A (en) * | 2019-01-30 | 2019-06-14 | 北京长城华冠汽车科技股份有限公司 | Internal resistance of cell calculation method, device and battery management system |
CN110058159A (en) * | 2019-04-29 | 2019-07-26 | 杭州电子科技大学 | A kind of lithium battery health status estimation method based on grey neural network |
CN110208701A (en) * | 2019-04-09 | 2019-09-06 | 清华大学 | The calculation method of energy-storage system virtual battery internal resistance in a kind of direct-current micro-grid |
CN110208707A (en) * | 2019-06-14 | 2019-09-06 | 湖北锂诺新能源科技有限公司 | A kind of lithium ion battery parameter evaluation method based on equivalent-circuit model |
CN110348062A (en) * | 2019-06-14 | 2019-10-18 | 湖北锂诺新能源科技有限公司 | The construction method of lithium ion battery equivalent-circuit model |
CN110954831A (en) * | 2019-12-06 | 2020-04-03 | 重庆大学 | Multi-time scale square lithium battery SOC and SOT joint estimation method |
CN111025172A (en) * | 2019-12-31 | 2020-04-17 | 国联汽车动力电池研究院有限责任公司 | Method for realizing rapid measurement of maximum allowable power of charging and discharging of lithium ion battery |
CN111413618A (en) * | 2020-03-27 | 2020-07-14 | 国联汽车动力电池研究院有限责任公司 | Lithium ion battery equivalent circuit model parameter relation calculation method and system |
CN111579992A (en) * | 2020-04-27 | 2020-08-25 | 沃太能源南通有限公司 | Second-order RC equivalent circuit parameter fitting method based on cubic spline difference |
CN117117346A (en) * | 2023-07-31 | 2023-11-24 | 广东嘉尚新能源科技有限公司 | Design and control method of sodium ion battery management system |
EP4407329A1 (en) * | 2023-01-24 | 2024-07-31 | Rimac Technology LLC | Method and device for determining a derated power limit of a battery |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050030041A1 (en) * | 2003-08-07 | 2005-02-10 | Jae Seung Koo | Method for determining a steady state battery terminal voltage |
JP2010135075A (en) * | 2008-12-02 | 2010-06-17 | Calsonic Kansei Corp | Method and device for estimating temperature of battery pack |
CN103439668A (en) * | 2013-09-05 | 2013-12-11 | 桂林电子科技大学 | Charge state evaluation method and system of power lithium ion battery |
CN103901351A (en) * | 2014-03-18 | 2014-07-02 | 浙江大学城市学院 | Single lithium ion battery SOC estimation method based on sliding window filtering |
CN103926538A (en) * | 2014-05-05 | 2014-07-16 | 山东大学 | Variable tap-length RC equivalent circuit model and realization method based on AIC |
CN105425154A (en) * | 2015-11-02 | 2016-03-23 | 北京理工大学 | Method for estimating charge state of power cell set of electric vehicle |
CN106026260A (en) * | 2016-06-24 | 2016-10-12 | 南京航空航天大学 | SOC estimation method for series-wound battery pack having equalization circuit |
CN106918787A (en) * | 2017-03-20 | 2017-07-04 | 国网重庆市电力公司电力科学研究院 | A kind of electric automobile lithium battery residual charge evaluation method and device |
-
2017
- 2017-12-19 CN CN201711376573.4A patent/CN107957560B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050030041A1 (en) * | 2003-08-07 | 2005-02-10 | Jae Seung Koo | Method for determining a steady state battery terminal voltage |
JP2010135075A (en) * | 2008-12-02 | 2010-06-17 | Calsonic Kansei Corp | Method and device for estimating temperature of battery pack |
CN103439668A (en) * | 2013-09-05 | 2013-12-11 | 桂林电子科技大学 | Charge state evaluation method and system of power lithium ion battery |
CN103901351A (en) * | 2014-03-18 | 2014-07-02 | 浙江大学城市学院 | Single lithium ion battery SOC estimation method based on sliding window filtering |
CN103926538A (en) * | 2014-05-05 | 2014-07-16 | 山东大学 | Variable tap-length RC equivalent circuit model and realization method based on AIC |
CN105425154A (en) * | 2015-11-02 | 2016-03-23 | 北京理工大学 | Method for estimating charge state of power cell set of electric vehicle |
CN106026260A (en) * | 2016-06-24 | 2016-10-12 | 南京航空航天大学 | SOC estimation method for series-wound battery pack having equalization circuit |
CN106918787A (en) * | 2017-03-20 | 2017-07-04 | 国网重庆市电力公司电力科学研究院 | A kind of electric automobile lithium battery residual charge evaluation method and device |
Non-Patent Citations (1)
Title |
---|
项胜: "电动汽车动力电池安全管理系统研究与设计", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108988450A (en) * | 2018-09-04 | 2018-12-11 | 石家庄科林电气股份有限公司 | Intelligent Charger for Electric Bicycle and charging method with fire-proof and explosion-proof function |
CN108988450B (en) * | 2018-09-04 | 2021-03-30 | 石家庄科林电气股份有限公司 | Electric bicycle intelligent charger with fireproof and explosion-proof functions and charging method |
CN109878378A (en) * | 2019-01-30 | 2019-06-14 | 北京长城华冠汽车科技股份有限公司 | Internal resistance of cell calculation method, device and battery management system |
CN110208701B (en) * | 2019-04-09 | 2020-07-10 | 清华大学 | Method for calculating virtual battery internal resistance of energy storage system in direct-current micro-grid |
CN110208701A (en) * | 2019-04-09 | 2019-09-06 | 清华大学 | The calculation method of energy-storage system virtual battery internal resistance in a kind of direct-current micro-grid |
CN110058159A (en) * | 2019-04-29 | 2019-07-26 | 杭州电子科技大学 | A kind of lithium battery health status estimation method based on grey neural network |
CN110208707A (en) * | 2019-06-14 | 2019-09-06 | 湖北锂诺新能源科技有限公司 | A kind of lithium ion battery parameter evaluation method based on equivalent-circuit model |
CN110348062A (en) * | 2019-06-14 | 2019-10-18 | 湖北锂诺新能源科技有限公司 | The construction method of lithium ion battery equivalent-circuit model |
CN110348062B (en) * | 2019-06-14 | 2023-05-26 | 湖北锂诺新能源科技有限公司 | Construction method of equivalent circuit model of lithium ion battery |
CN110954831A (en) * | 2019-12-06 | 2020-04-03 | 重庆大学 | Multi-time scale square lithium battery SOC and SOT joint estimation method |
CN110954831B (en) * | 2019-12-06 | 2021-10-26 | 重庆大学 | Multi-time scale square lithium battery SOC and SOT joint estimation method |
CN111025172A (en) * | 2019-12-31 | 2020-04-17 | 国联汽车动力电池研究院有限责任公司 | Method for realizing rapid measurement of maximum allowable power of charging and discharging of lithium ion battery |
CN111025172B (en) * | 2019-12-31 | 2022-03-01 | 国联汽车动力电池研究院有限责任公司 | Method for realizing rapid measurement of maximum allowable power of charging and discharging of lithium ion battery |
CN111413618A (en) * | 2020-03-27 | 2020-07-14 | 国联汽车动力电池研究院有限责任公司 | Lithium ion battery equivalent circuit model parameter relation calculation method and system |
CN111579992A (en) * | 2020-04-27 | 2020-08-25 | 沃太能源南通有限公司 | Second-order RC equivalent circuit parameter fitting method based on cubic spline difference |
EP4407329A1 (en) * | 2023-01-24 | 2024-07-31 | Rimac Technology LLC | Method and device for determining a derated power limit of a battery |
CN117117346A (en) * | 2023-07-31 | 2023-11-24 | 广东嘉尚新能源科技有限公司 | Design and control method of sodium ion battery management system |
CN117117346B (en) * | 2023-07-31 | 2024-03-12 | 广东嘉尚新能源科技有限公司 | Design and control method of sodium ion battery management system |
Also Published As
Publication number | Publication date |
---|---|
CN107957560B (en) | 2020-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107957560A (en) | A kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit | |
Yang et al. | A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles | |
Hu et al. | Online estimation of an electric vehicle lithium-ion battery using recursive least squares with forgetting | |
Farmann et al. | A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles | |
Mesbahi et al. | Dynamical modeling of Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm–Nelder–Mead (PSO–NM) optimization algorithm | |
Zheng et al. | A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles | |
CN104392080B (en) | A kind of lithium battery fractional order becomes rank equivalent-circuit model and its discrimination method | |
Zheng et al. | An accurate parameters extraction method for a novel on-board battery model considering electrochemical properties | |
CN102981125B (en) | A kind of electrokinetic cell SOC method of estimation based on RC equivalent model | |
CN103926538B (en) | Change exponent number RC equivalent-circuit model based on AIC criterion and implementation method | |
CN110208704A (en) | A kind of lithium battery modeling method and system based on voltage delay effect | |
CN110824363B (en) | Lithium battery SOC and SOE joint estimation method based on improved CKF | |
Nikolian et al. | Classification of Electric modelling and Characterization methods of Lithium-ion Batteries for Vehicle Applications | |
CN108519555A (en) | A kind of the improvement fractional model and parameter identification method of lithium ion battery | |
CN110795851A (en) | Lithium ion battery modeling method considering environmental temperature influence | |
Anderson et al. | Real time battery power capability estimation | |
CN105425154B (en) | A kind of method of the state-of-charge for the power battery pack for estimating electric automobile | |
CN113433464A (en) | High-order model parameter identification method and system suitable for lithium-rich manganese-based battery | |
Wang et al. | An improved coulomb counting method based on dual open‐circuit voltage and real‐time evaluation of battery dischargeable capacity considering temperature and battery aging | |
CN103744028A (en) | UKF-based storage battery SOC (state of charge) estimation method | |
CN109459699A (en) | A kind of lithium-ion-power cell SOC method of real-time | |
CN104537166B (en) | A kind of construction method of the equivalent-circuit model of electrokinetic cell | |
CN111426956A (en) | Fractional order power battery SOC estimation method considering temperature and hysteresis effect | |
CN106093517A (en) | Lithium ion battery open circuit voltage curve approximating method based on Hermite's interpolation method | |
Tanaka et al. | Accurate and versatile simulation of transient voltage profile of lithium-ion secondary battery employing internal equivalent electric circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |