CN107942328A - Terahertz aperture coding three-dimensional target scanning imaging method - Google Patents

Terahertz aperture coding three-dimensional target scanning imaging method Download PDF

Info

Publication number
CN107942328A
CN107942328A CN201711127463.4A CN201711127463A CN107942328A CN 107942328 A CN107942328 A CN 107942328A CN 201711127463 A CN201711127463 A CN 201711127463A CN 107942328 A CN107942328 A CN 107942328A
Authority
CN
China
Prior art keywords
mrow
imaging
aperture
terahertz
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711127463.4A
Other languages
Chinese (zh)
Other versions
CN107942328B (en
Inventor
陈硕
罗成高
范波
秦玉亮
王宏强
邓彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201711127463.4A priority Critical patent/CN107942328B/en
Publication of CN107942328A publication Critical patent/CN107942328A/en
Application granted granted Critical
Publication of CN107942328B publication Critical patent/CN107942328B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

目前孔径编码成像体制下的二维成像技术不再适用于三维目标,针对现有技术存在的上述缺陷,本发明提供一种太赫兹孔径编码三维目标扫描成像方法。本发明将三维目标所在的整个三维成像区域均匀剖分成尺寸相同的三维成像单元,分别针对每个三维成像单元,根据单个三维成像单元的位置,计算更新透镜相位调制因子,可以实现对三维成像单元的完整覆盖,实现对三维成像区域的完备扫描。本发明可对近距离三维目标实现前视高分辨成像,有效提高太赫兹孔径编码成像的成像范围和速度,提高了成像效率,降低对计算机内存配置要求,可应用于安检与反恐、目标探测与识别等近距成像领域。

The current two-dimensional imaging technology under the aperture coding imaging system is no longer suitable for three-dimensional targets. To address the above-mentioned defects in the prior art, the present invention provides a terahertz aperture coding three-dimensional target scanning imaging method. The present invention evenly divides the entire 3D imaging area where the 3D target is located into 3D imaging units of the same size, and for each 3D imaging unit, calculates and updates the lens phase modulation factor according to the position of a single 3D imaging unit, which can realize the three-dimensional imaging unit Complete coverage of the 3D imaging area is achieved. The present invention can realize forward-looking high-resolution imaging for short-distance three-dimensional targets, effectively improve the imaging range and speed of terahertz aperture coding imaging, improve imaging efficiency, and reduce computer memory configuration requirements, and can be applied to security inspection and anti-terrorism, target detection and Identify isometric imaging fields.

Description

一种太赫兹孔径编码三维目标扫描成像方法A terahertz aperture-coded three-dimensional object scanning imaging method

技术领域technical field

本发明属于三维目标分块扫描技术领域,特别是一种基于太赫兹孔径编码成像的三维目标分块扫描方法。The invention belongs to the technical field of three-dimensional target block scanning, in particular to a three-dimensional target block scanning method based on terahertz aperture coding imaging.

背景技术Background technique

随着社会的发展,雷达高分辨率成像在确保国家战略安全和促进国民经济发展方面扮演着越来越重要的角色。光学雷达可前视成像,波长短,分辨率高,成像速度快,但是依赖于目标辐射,对烟、尘、雾和障碍物等穿透能力差,易受环境因素影响。而微波雷达可主动探测,穿透能力强,但是由于微波频率低,波长长,角分辨率低,且由于成像原理的限制,需要成像积累时间,无法实现前视高帧频、高分辨成像。其中合成孔径雷达(SAR)和逆合成孔径雷达(ISAR)成像虽然能够通过合成孔径获得横向上的高分辨率,但是二者都依赖于雷达与目标的相对运动,无法前视成像,而实孔径阵列雷达与相控阵雷达由于需要使用的阵元数量多,结构复杂,建设与维护成本高昂。微波关联成像技术能够实现前视、凝视条件下的高分辨成像。其通过构造时间不相关、空间相互正交的阵列信号作为发射信号,通过计算推演得到目标所在区域的探测信号,并通过探测信号与目标回波信号之间的关联处理获得目标信息。但是该方法需要在发射端构造较大规模的天线阵列,且难以实现有效实时的波束指向调控。With the development of society, radar high-resolution imaging plays an increasingly important role in ensuring national strategic security and promoting national economic development. Optical radar can provide forward-looking imaging, with short wavelength, high resolution and fast imaging speed, but it relies on target radiation, has poor penetration ability to smoke, dust, fog and obstacles, and is easily affected by environmental factors. Microwave radar can actively detect and has strong penetrating ability. However, due to the low microwave frequency, long wavelength, and low angular resolution, and due to the limitation of the imaging principle, imaging accumulation time is required, and high frame rate and high resolution imaging cannot be achieved. Among them, although synthetic aperture radar (SAR) and inverse synthetic aperture radar (ISAR) imaging can obtain high resolution in the lateral direction through synthetic aperture, both rely on the relative motion between the radar and the target, and cannot look forward to imaging. Array radars and phased array radars require a large number of array elements, complex structures, and high construction and maintenance costs. Microwave correlation imaging technology can realize high-resolution imaging under forward-looking and staring conditions. It constructs a time-uncorrelated and space-orthogonal array signal as the transmitting signal, calculates and deduces the detection signal in the area where the target is located, and obtains target information through the correlation processing between the detection signal and the target echo signal. However, this method needs to construct a large-scale antenna array at the transmitting end, and it is difficult to achieve effective real-time beam pointing control.

太赫兹孔径编码成像借鉴微波关联成像思想,通过阵列编码孔径对太赫兹波束的实时调制来取代微波关联成像中的雷达阵列,从而形成时-空二维随机分布的辐射场,最后利用探测回波和辐射场参考信号矩阵通过矩阵方程求解的方式实现高分辨、前视和凝视成像,弥补了合成孔径高分辨成像依赖目标运动的不足,实现更复杂多样的空间波调制。相对于传统雷达,太赫兹波具有更高频率和更短波长,使得太赫兹雷达能够提供更大的绝对带宽,在相同孔径天线条件下结合孔径编码技术,更易产生多样性的照射模式和更快的模式切换速度,照射模式越多样则自由度越高,回波中携带的目标信息越丰富,利用回波进行目标高分辨成像的潜力也就越大。同时,系统收发链路单发单收,易实现小型化。目前该体制下的三维目标成像方法鲜有人研究,主要是针对二维目标进行成像,二维目标成像方法主要分为两种,对于低分辨率小面积二维目标可单次照射直接成像,对于高分辨率大范围二维目标可以进行分块扫描拼接成像。如图1所示为基于太赫兹孔径编码成像体制y方向二维目标高分辨扫描成像方案示意图,图1中大写字母A-D分别代表太赫兹收发天线,阵列编码孔径,二维成像平面和焦平面。Terahertz aperture coded imaging draws on the idea of microwave correlation imaging, and replaces the radar array in microwave correlation imaging by real-time modulation of the array coded aperture on the terahertz beam, thereby forming a time-space two-dimensional randomly distributed radiation field, and finally using the detection echo And the radiation field reference signal matrix realizes high-resolution, forward-looking and staring imaging by solving matrix equations, which makes up for the deficiency that synthetic aperture high-resolution imaging relies on target movement, and realizes more complex and diverse spatial wave modulation. Compared with traditional radars, terahertz waves have higher frequencies and shorter wavelengths, enabling terahertz radars to provide greater absolute bandwidth. Combining aperture coding technology under the same aperture antenna conditions, it is easier to generate diverse illumination patterns and faster The more diverse the irradiation mode, the higher the degree of freedom, the richer the target information carried in the echo, and the greater the potential for high-resolution imaging of the target using the echo. At the same time, the transmission and reception link of the system is single-transmitting and single-receiving, which is easy to realize miniaturization. At present, the 3D target imaging method under this system is seldom studied. It is mainly for 2D target imaging. High-resolution large-scale two-dimensional targets can be scanned and stitched into blocks. Figure 1 is a schematic diagram of a high-resolution scanning imaging scheme for two-dimensional targets in the y direction based on the terahertz aperture coding imaging system. The capital letters A-D in figure 1 represent the terahertz transceiver antenna, array coded aperture, two-dimensional imaging plane and focal plane, respectively.

阵列编码孔径在竖直方向上均匀分布着P个阵元,阵列编码孔径在水平方向上均匀分布着Q个阵元,整个阵列编码孔径包含P×Q个阵元。考虑到该成像体制在水平和竖直方向上的工作模式具有对称性,以竖直方向为例进行说明。在竖直方向上,阵列编码孔径第p个阵元加载(1)式的透镜相位调制因子来控制太赫兹波束照射第n个目标扫描区域:The array coded aperture has P array elements evenly distributed in the vertical direction, and the array coded aperture has Q array elements evenly distributed in the horizontal direction, and the entire array coded aperture includes P×Q array elements. Considering that the working modes of the imaging system in the horizontal and vertical directions are symmetrical, the vertical direction is taken as an example for illustration. In the vertical direction, the p-th element of the array coding aperture is loaded with the lens phase modulation factor of formula (1) to control the terahertz beam to illuminate the n-th target scanning area:

其中,fy为透镜的焦距,k=2πfc/c,fc为太赫兹波的中心频率,c为光速,yp为阵列编码孔径竖直方向上第p个阵元中心点的纵坐标,p=1,2…P,为阵列编码孔径上透镜相位调制因子的相位中心位置处的纵坐标。二维成像的焦平面与成像平面平行,透镜焦距可以通过太赫兹收发天线和阵列编码孔径,阵列编码孔径和焦平面之间的相对位置确定。扫描过程中,透镜相位调制因子中的透镜焦距固定不变,通过改变其中的相位中心位置,可以改变太赫兹波束的扫描区域。如图所示,分别加载N个不同的相位调制因子,太赫兹波束可以在成像平面上实现N次扫描,且各扫描区域尺寸完全相同。相邻扫描区域之间无缝拼接,如图1中的扫描区域1和2。Among them, f y is the focal length of the lens, k=2πf c /c, f c is the center frequency of the terahertz wave, c is the speed of light, and y p is the ordinate of the center point of the pth array element in the vertical direction of the array coding aperture , p=1,2...P, is the ordinate at the phase center position of the lens phase modulation factor on the array encoding aperture. The focal plane of two-dimensional imaging is parallel to the imaging plane, and the focal length of the lens can be determined by the terahertz transceiver antenna and the array coded aperture, and the relative position between the array coded aperture and the focal plane. During the scanning process, the focal length of the lens in the lens phase modulation factor is fixed, and the scanning area of the terahertz beam can be changed by changing the position of the phase center. As shown in the figure, by loading N different phase modulation factors, the terahertz beam can be scanned N times on the imaging plane, and the size of each scanning area is exactly the same. Seamless stitching between adjacent scanning areas, such as scanning areas 1 and 2 in Figure 1.

但是二维成像中的扫描拼接方法不完全适用于三维目标成像。将图1中的基于太赫兹孔径编码成像体制的二维目标高分辨扫描成像方案移植到三维目标成像中,在三维分块扫描过程中,将整个三维成像区域右侧面看作二维成像平面,通过加载与二维目标高分辨分块扫描成像方案中相同的透镜相位调制因子,可以实现对整个三维成像区域右侧面的无缝遍历扫描,但是该方法存在弊端。如图2所示,图2为Y方向的太赫兹孔径编码三维目标高分辨分块扫描成像问题阐述示意图。在太赫兹孔径编码成像体制中,辐射场参考信号矩阵规模受网格单元数量影响,而网格单元数量由网格单元尺寸和目标三维成像范围决定。因此为降低该成像体制对计算机内存配置要求,首先根据太赫兹孔径编码成像系统参数确定其成像分辨率大小,然后再由成像分辨率和三维目标大小将三维成像区域均匀剖分成M×N个三维成像单元,其中在三维成像区域的y方向上剖分成N个三维成像单元,在其x方向上剖分成M个三维成像单元,整个三维成像区域的三维成像单元个数就是M×N。太赫兹波束在照射三维成像单元n时,能够将整个单元都照射到;但是当太赫兹波束照射三维成像单元1,2和N时,目标扫描单元中的空白区域未被照射到,因此回波中该扫描区域的目标信息不完备。同理,将三维成像区域的左侧面作为二维成像的平面,二维分块扫描方案同样不能够完全覆盖某些三维成像单元。However, the scan stitching method in 2D imaging is not completely suitable for 3D target imaging. Transplant the 2D target high-resolution scanning imaging scheme based on the terahertz aperture coding imaging system in Figure 1 into 3D target imaging. In the process of 3D block scanning, the right side of the entire 3D imaging area is regarded as a 2D imaging plane , by loading the same lens phase modulation factor as in the two-dimensional target high-resolution block scanning imaging scheme, seamless traversal scanning of the right side of the entire three-dimensional imaging area can be achieved, but this method has drawbacks. As shown in Figure 2, Figure 2 is a schematic diagram illustrating the problem of high-resolution block scanning imaging of terahertz aperture coded three-dimensional targets in the Y direction. In the terahertz aperture coding imaging system, the size of the radiation field reference signal matrix is affected by the number of grid cells, and the number of grid cells is determined by the size of the grid cells and the target three-dimensional imaging range. Therefore, in order to reduce the requirements of the imaging system for computer memory configuration, the imaging resolution is first determined according to the parameters of the terahertz aperture coding imaging system, and then the 3D imaging area is evenly divided into M×N three-dimensional The imaging unit is divided into N three-dimensional imaging units in the y direction of the three-dimensional imaging area, and M three-dimensional imaging units in the x direction. The number of three-dimensional imaging units in the entire three-dimensional imaging area is M×N. When the terahertz beam irradiates the 3D imaging unit n, it can irradiate the whole unit; but when the terahertz beam irradiates the 3D imaging units 1, 2 and N, the blank area in the target scanning unit is not irradiated, so the echo The target information for this scan area in . Similarly, if the left side of the 3D imaging area is used as the plane of 2D imaging, the 2D block scanning scheme also cannot completely cover some 3D imaging units.

类似于二维成像平面网格划分,微波关联成像中提出对三维成像区域先沿水平、竖直和距离方向网格剖分,然后构造参考信号矩阵,再进行关联成像处理的方法,同样该方法也适用于太赫兹孔径编码成像。但是该方法针对的是微波段低分辨率成像,网格划分较为稀疏,参考信号矩阵规模相对较小。而针对相对较大体积的三维目标高分辨成像,例如安检成像中的人体,所需构造的参考信号矩阵规模成倍扩大,一方面经过编码孔径的太赫兹波束难以单次照射整个人体,另一方面针对整个人体目标的辐射场参考矩阵规模庞大,成像过程对计算机内存要求太高。因此,亟需一种基于孔径编码成像体制的新的三维目标成像方法。Similar to the grid division of 2D imaging plane, in microwave correlation imaging, it is proposed to divide the 3D imaging area into grid along the horizontal, vertical and distance directions, then construct the reference signal matrix, and then perform correlation imaging processing. Also suitable for terahertz aperture-encoded imaging. However, this method is aimed at low-resolution imaging in the microwave region, the grid division is relatively sparse, and the scale of the reference signal matrix is relatively small. For high-resolution imaging of relatively large-volume 3D targets, such as the human body in security inspection imaging, the scale of the reference signal matrix that needs to be constructed is doubled. On the one hand, the radiation field reference matrix for the entire human target is huge, and the imaging process requires too much computer memory. Therefore, there is an urgent need for a new 3D object imaging method based on the aperture-encoded imaging system.

发明内容Contents of the invention

目前孔径编码成像体制下的二维成像技术不再适用于三维目标,另外目前可使用的三维成像技术成像分辨率低,成像范围窄,对计算机的系统内存要求高。针对现有技术存在的上述缺陷,本发明提供一种太赫兹孔径编码三维目标扫描成像方法。本发明将三维目标所在的整个三维成像区域均匀剖分成尺寸相同的三维成像单元,分别针对每个三维成像单元进行扫描成像,然后将所有三维成像单元的成像结果拼接形成整个三维成像结果。本发明可对近距离三维目标实现前视高分辨成像,可应用于安检与反恐、目标探测与识别等近距成像领域。本发明能够提高三维成像分辨率,扩大三维成像范围,降低对计算机的内存配置要求,提高计算机运行效率。The 2D imaging technology under the current aperture coding imaging system is no longer suitable for 3D targets. In addition, the currently available 3D imaging technology has low imaging resolution, narrow imaging range, and high requirements for computer system memory. In view of the above defects in the prior art, the present invention provides a terahertz aperture coded three-dimensional object scanning imaging method. The present invention evenly divides the entire 3D imaging area where the 3D target is located into 3D imaging units of the same size, performs scanning and imaging for each 3D imaging unit, and then stitches the imaging results of all 3D imaging units to form the entire 3D imaging result. The invention can realize forward-looking high-resolution imaging of short-distance three-dimensional targets, and can be applied to the fields of short-distance imaging such as security inspection and anti-terrorism, target detection and identification, and the like. The invention can improve the resolution of three-dimensional imaging, expand the range of three-dimensional imaging, reduce the memory configuration requirements of the computer, and improve the operating efficiency of the computer.

为实现上述目的,本发明的技术方案是:For realizing the above object, technical scheme of the present invention is:

一种太赫兹孔径编码三维目标扫描成像方法,包括以下步骤:A terahertz aperture coded three-dimensional object scanning imaging method, comprising the following steps:

第一步、确定太赫兹孔径编码成像系统参数并对三维成像区域进行剖分;The first step is to determine the parameters of the terahertz aperture coding imaging system and divide the three-dimensional imaging area;

已知太赫兹孔径编码成像系统参数如下:阵列编码孔径的y方向的竖直高度为h,阵列编码孔径的x方向的横向长度v;太赫兹收发天线和阵列编码孔径之间的距离为a,阵列编码孔径和三维成像区域左侧面的距离为b,三维成像区域的厚度为c。The known parameters of the terahertz aperture coding imaging system are as follows: the vertical height of the array coding aperture in the y direction is h, the horizontal length of the array coding aperture in the x direction v; the distance between the terahertz transceiver antenna and the array coding aperture is a, The distance between the array coding aperture and the left side of the three-dimensional imaging area is b, and the thickness of the three-dimensional imaging area is c.

根据太赫兹孔径编码成像系统的成像分辨率大小以及三维目标大小将三维成像区域均匀剖分成M×N个三维成像单元,其中在三维成像区域的y方向上剖分成N个三维成像单元,在其x方向上剖分成M个三维成像单元,整个三维成像区域的三维成像单元个数就是M×N。该步骤与背景技术中剖分方法相同。According to the imaging resolution of the terahertz aperture coding imaging system and the size of the 3D target, the 3D imaging area is evenly divided into M×N 3D imaging units, and the 3D imaging area is divided into N 3D imaging units in the y direction. The x-direction is divided into M three-dimensional imaging units, and the number of three-dimensional imaging units in the entire three-dimensional imaging area is M×N. This step is the same as the subdivision method in the background art.

第二步、将三维成像区域的右侧面作为二维成像平面进行太赫兹孔径编码二维目标分块扫描成像,对于三维成像区域上每一个三维成像单元分别初步求解其y方向(竖直方向)透镜相位调制因子以及x方向(水平方向)透镜相位调制因子,包括y方向数字透镜焦距fy,mn和y方向相位中心位置以及x方向数字透镜焦距fx,mn和x方向相位中心位置其中m以及n表示三维成像区域上第m行第n列个三维成像单元,m=1,2…M,n=1,2…N。In the second step, the right side of the 3D imaging area is used as the 2D imaging plane to perform terahertz aperture coded 2D target block scanning imaging, and for each 3D imaging unit on the 3D imaging area, its y direction (vertical direction) is preliminarily solved. ) lens phase modulation factor and x-direction (horizontal direction) lens phase modulation factor, including y-direction digital lens focal length f y, mn and y-direction phase center position And the focal length of the digital lens in the x direction f x, mn and the phase center position in the x direction Where m and n represent the three-dimensional imaging units in the mth row and nth column of the three-dimensional imaging area, m=1, 2...M, n=1, 2...N.

第三步、判断三维成像区域中各三维成像单元对应的透镜相位调制因子是否需要修正;The third step is to determine whether the lens phase modulation factors corresponding to the three-dimensional imaging units in the three-dimensional imaging area need to be corrected;

第四步、对第三步中判断出需要进行透镜相位调制因子修正的三维成像单元进行y方向(竖直方向)透镜相位调制因子修正求解以及x方向(水平方向)透镜相位调制因子修正求解,确定其修正后的y方向的数字透镜焦距fy,mn和修正后的y方向的相位中心位置以及修正后的x方向的数字透镜焦距f′x,mn和修正后的x方向的相位中心位置 In the fourth step, it is determined in the third step that the three-dimensional imaging unit that needs to be corrected for the lens phase modulation factor is solved for the correction of the lens phase modulation factor in the y direction (vertical direction) and the solution for the correction of the lens phase modulation factor in the x direction (horizontal direction), Determine its corrected digital lens focal length f y,mn in the y direction and the corrected phase center position in the y direction And the corrected digital lens focal length f′ x,mn in the x direction and the corrected phase center position in the x direction

第五步、透镜相位调制因子综合修正Step 5: Comprehensive correction of lens phase modulation factor

为使三维成像单元在x方向和y方向都被太赫兹波束完整覆盖,比较修正后的x方向的数字透镜焦距f′x,mn和修正后的y方向的数字透镜焦距f′y,mn,选择其中较大的作为数字透镜焦距:In order to make the 3D imaging unit completely covered by the terahertz beam in the x direction and the y direction, compare the corrected digital lens focal length f′ x,mn in the x direction with the corrected digital lens focal length f′ y,mn in the y direction, Choose the larger one as the digital lens focal length:

f′=max(f′x,mn,f′y,mn) (14)f'=max(f' x,mn ,f' y,mn ) (14)

太赫兹孔径编码成像系统对三维成像区域进行分块扫描时,太赫兹孔径编码成像系统中阵列编码孔径的第p行,第q列个阵元加载(15)式的透镜相位调制因子Fpq,mn来控制太赫兹波束照射三维成像区域上第m行第n列个三维成像单元:When the terahertz aperture coding imaging system scans the three-dimensional imaging area in blocks, the pth row and the qth column of the array coding aperture in the terahertz aperture coding imaging system are loaded with the lens phase modulation factor F pq of formula (15), mn to control the terahertz beam to irradiate the 3D imaging unit in the mth row and nth column of the 3D imaging area:

其中:p=1,2…P,q=1,2…Q,k=2πfc/c,fc为太赫兹波的中心频率,c为光速。阵列编码孔径在竖直方向上即y方向上均匀分布着P个阵元,阵列编码孔径在水平方向上即x方向上均匀分布着Q个阵元,整个阵列编码孔径包含P×Q个阵元。(xpq,ypq)为阵列编码孔径第p行,第q列个阵元中心点的坐标位置,p=1,2…P。Where: p=1,2...P, q=1,2...Q, k=2πf c /c, f c is the center frequency of the terahertz wave, and c is the speed of light. The array coded aperture is evenly distributed with P array elements in the vertical direction, that is, the y direction, and the array coded aperture is evenly distributed with Q array elements in the horizontal direction, that is, the x direction. The entire array coded aperture contains P×Q array elements . (x pq , y pq ) is the coordinate position of the center point of the array element in row p and column q of the array coding aperture, p=1,2...P.

本发明第二步中,对于三维成像区域上每一个三维成像单元如第m行第n列个三维成像单元,初步求解其y方向(竖直方向)透镜相位调制因子,包括y方向数字透镜焦距fy,mn和y方向相位中心位置方法如下:In the second step of the present invention, for each three-dimensional imaging unit on the three-dimensional imaging area, such as the three-dimensional imaging unit in the mth row and the nth column, the phase modulation factor of the lens in the y direction (vertical direction) is initially solved, including the focal length of the digital lens in the y direction f y, mn and y direction phase center position Methods as below:

2.1初步求解y方向的数字透镜焦距fy,mn 2.1 Preliminary calculation of the digital lens focal length f y,mn in the y direction

将三维成像区域的右侧面作为二维成像平面进行y方向的太赫兹孔径编码二维目标分块扫描成像,确定太赫兹孔径编码成像系统中的太赫兹收发天线发出的太赫兹波束在各三维成像单元右侧面的覆盖范围ShUse the right side of the 3D imaging area as the 2D imaging plane to scan and image the terahertz aperture-coded 2D target block in the y direction, and determine the terahertz beam emitted by the terahertz transceiver antenna in the terahertz aperture-coded imaging system. Coverage Sh of the right side of the imaging unit.

根据三角形相似关系计算各三维成像单元右侧面和二维成像体制下的焦平面(即三维成像区域的右侧面作为二维成像平面进行太赫兹孔径编码二维成像时对应的焦平面)间的距离d:Calculate the distance between the right side of each 3D imaging unit and the focal plane under the 2D imaging system (that is, the corresponding focal plane when the right side of the 3D imaging area is used as the 2D imaging plane for terahertz aperture coding 2D imaging) according to the triangle similarity relationship. The distance d:

接着,根据透镜成像公式计算将三维成像区域的右侧面作为二维成像平面进行y方向的太赫兹孔径编码二维目标分块扫描成像时,第m行第n列个三维成像单元其y方向需要加载的数字透镜焦距fy,mnThen, according to the lens imaging formula, when the right side of the three-dimensional imaging area is used as the two-dimensional imaging plane to scan and image the terahertz aperture coded two-dimensional target block in the y direction, the y direction of the three-dimensional imaging unit in the mth row and nth column The focal length f y,mn of the digital lens that needs to be loaded:

2.2初步求解y方向的相位中心位置 2.2 Preliminary solution to the phase center position in the y direction

将三维成像区域的右侧面作为二维成像平面进行y方向的太赫兹孔径编码二维目标分块扫描成像时,为实现二维目标分块扫描成像过程中各扫描区域之间的无缝拼接,相邻三维成像单元之间需加载的透镜相位调制因子相位中心位置步进长度为:When the right side of the 3D imaging area is used as the 2D imaging plane for terahertz aperture coded 2D target block scanning imaging in the y direction, in order to realize the seamless stitching between the scanning areas during the 2D target block scanning imaging process , the phase center position step length of the lens phase modulation factor to be loaded between adjacent 3D imaging units for:

根据步进长度可计算三维成像区域第m行第n列个三维成像单元其y方向需加载的相位中心位置 According to step length It can calculate the phase center position to be loaded in the y direction of the 3D imaging unit in the mth row and nth column of the 3D imaging area

太赫兹孔径编码成像系统的成像体制在x方向(即水平方向)和y方向(即竖直方向)上的工作模式是相同的,对于三维成像区域上的每个三维成像单元可以采用与2.1以及2.2相同的方法完成初步求解其x方向(水平方向)透镜相位调制因子,包括x方向的数字透镜焦距fx,mn和x方向的相位中心位置 The imaging mechanism of the terahertz aperture coding imaging system works in the same mode in the x direction (ie, the horizontal direction) and the y direction (ie, the vertical direction). For each 3D imaging unit on the 3D imaging area, the same method as in 2.1 and 2.2 The same method is used to complete the initial calculation of the lens phase modulation factor in the x direction (horizontal direction), including the digital lens focal length f x, mn in the x direction and the phase center position in the x direction

本发明第三步中,判断三维成像区域中各三维成像单元对应的透镜相位调制因子是否需要修正的方法如下:In the third step of the present invention, the method for judging whether the lens phase modulation factor corresponding to each three-dimensional imaging unit in the three-dimensional imaging area needs to be corrected is as follows:

在判断各三维成像单元对应的透镜相位调制因子是否需要修正之前,先确定一个灰色区域:设从整个阵列编码孔径沿z轴方向发出平行波束,灰色区域就是该平行波束的覆盖范围,灰色区域y方向的的竖直高度为阵列编码孔径的y方向的竖直高度h,灰色区域的x方向的横向长度即为阵列编码孔径的x方向的横向长度,灰色区域z方向的长度为阵列编码孔径到三维成像区域右侧面之间的距离(即阵列编码孔径和三维成像区域左侧面的距离b与三维成像区域的厚度c之和);Before judging whether the phase modulation factor of the lens corresponding to each three-dimensional imaging unit needs to be corrected, a gray area is determined first: suppose a parallel beam is emitted from the entire array coding aperture along the z-axis direction, the gray area is the coverage of the parallel beam, and the gray area y The vertical height of the direction is the vertical height h of the y direction of the array coding aperture, the horizontal length of the x direction of the gray area is the horizontal length of the x direction of the array coding aperture, and the length of the z direction of the gray area is the array coding aperture to The distance between the right side of the three-dimensional imaging area (that is, the sum of the distance b between the array coding aperture and the left side of the three-dimensional imaging area and the thickness c of the three-dimensional imaging area);

当三维成像单元完全处于灰色区域内时,阵列编码孔径需要加载的透镜相位调制因子不需要修正,阵列编码孔径需要加载的透镜相位调制因子与二维目标成像相同,焦平面仍然为与三维成像区域平行的竖直平面。When the three-dimensional imaging unit is completely in the gray area, the lens phase modulation factor that needs to be loaded on the array coded aperture does not need to be corrected, the lens phase modulation factor that needs to be loaded on the array coded aperture is the same as the two-dimensional target imaging, and the focal plane is still the same as the three-dimensional imaging area parallel vertical planes.

当存在不完全处于灰色区域的三维成像单元时,加载二维扫描成像体制下的透镜相位调制因子不能完整覆盖三维成像区域,需要修正透镜相位调制因子使得太赫兹波束照射到整个三维成像区域。When there are 3D imaging units that are not completely in the gray area, the lens phase modulation factor under the 2D scanning imaging system cannot completely cover the 3D imaging area, and the lens phase modulation factor needs to be corrected so that the terahertz beam irradiates the entire 3D imaging area.

本发明第四步中,对于第三步中判断出需要进行透镜相位调制因子修正的三维成像单元(即存在不完全处于灰色区域的三维成像单元),如三维成像区域上第m行第n列个三维成像单元不完全处于灰色区域,则对该三维成像单元的透镜相位调制因子进行修正,其中对透镜相位调制因子进行修正包括对y方向的数字透镜焦距的修正、对y方向的相位中心位置的修正、对x方向的数字透镜焦距的修正以及对x方向的相位中心位置的修正,确定其修正后的y方向的数字透镜焦距f′y,mn和修正后的y方向的相位中心位置以及修正后的x方向的数字透镜焦距f′x,mn和修正后的x方向的相位中心位置在本发明第四步中讨论的三维成像单元都是指不完全处于灰色区域的三维成像单元,对于任一不完全处于灰色区域的三维成像单元如第m行第n列个三维成像单元,采用以下步骤对其透镜相位调制因子进行修正。In the fourth step of the present invention, for the three-dimensional imaging unit that needs to be corrected for the lens phase modulation factor in the third step (that is, there is a three-dimensional imaging unit that is not completely in the gray area), such as the mth row and the nth column on the three-dimensional imaging area If a three-dimensional imaging unit is not completely in the gray area, the lens phase modulation factor of the three-dimensional imaging unit is corrected, wherein the correction of the lens phase modulation factor includes the correction of the focal length of the digital lens in the y direction, and the phase center position in the y direction The correction of the digital lens focal length in the x direction and the correction of the phase center position in the x direction determine the corrected digital lens focal length f′ y,mn in the y direction and the corrected phase center position in the y direction And the corrected digital lens focal length f′ x,mn in the x direction and the corrected phase center position in the x direction The three-dimensional imaging units discussed in the fourth step of the present invention all refer to three-dimensional imaging units that are not completely in the gray area. For any three-dimensional imaging unit that is not completely in the gray area, such as the three-dimensional imaging unit in the mth row and the nth column, use The following steps correct its lens phase modulation factor.

4.1对三维成像区域上不完全处于灰色区域的三维成像单元进行y方向的数字透镜焦距的修正,求解修正后的y方向的数字透镜焦距f′y,mn4.1 Correct the focal length of the digital lens in the y direction for the 3D imaging unit that is not completely in the gray area in the 3D imaging area, and calculate the corrected focal length of the digital lens in the y direction f′ y,mn .

将整个三维成像区域的左侧面看作二维成像平面进行y方向的太赫兹孔径编码二维目标分块扫描成像,对于任一三维成像区域上不完全处于灰色区域的三维成像单元,如不完全处于灰色区域的第m行第n列个三维成像单元,太赫兹孔径编码成像系统中的太赫兹收发天线发出的太赫兹波束在该不完全处于灰色区域内的三维成像单元(不完全处于灰色区域的第m行第n列个三维成像单元)右侧面的覆盖范围为Sh,太赫兹波束在该不完全处于灰色区域的第m行第n列个三维成像单元左侧面的覆盖范围为shConsidering the left side of the entire 3D imaging area as a 2D imaging plane, perform terahertz aperture coded 2D target block scanning imaging in the y direction. The three-dimensional imaging unit in the mth row and nth column that is completely in the gray area, the terahertz beam emitted by the terahertz transceiver antenna in the terahertz aperture coding imaging system is in the three-dimensional imaging unit that is not completely in the gray area (not completely in the gray area) The coverage area on the right side of the 3D imaging unit in the mth row, nth column) of the area is Sh , and the coverage area of the terahertz beam on the left side of the mth row nth column of the 3D imaging unit that is not completely in the gray area for s h ;

设进行透镜相位调制因子修正后得到的三维成像单元左侧面的覆盖范围为s″h,存在关系s″h=s′h+Δs,Δs可以根据下式进行求解:Assuming that the coverage of the left side of the three-dimensional imaging unit obtained after lens phase modulation factor correction is s″ h , there is a relationship s″ h = s′h +Δs, and Δs can be solved according to the following formula:

其中hmn为修正前的焦点(即未进行透镜相位调制因子修正前,以三维成像区域的右侧面作为二维成像平面进行太赫兹孔径编码二维目标分块扫描成像时三维成像区域上第m行第n列个三维成像单元得到的焦点)的y轴坐标,可根据三角形相似关系求得:where h mn is the focal point before correction (that is, before the correction of the lens phase modulation factor, the right side of the three-dimensional imaging area is used as the two-dimensional imaging plane to perform terahertz aperture coded two-dimensional target block scanning imaging on the three-dimensional imaging area. The y-axis coordinates of the focal point obtained by the three-dimensional imaging unit in the nth column of m row) can be obtained according to the triangle similarity relationship:

综合式(6)、(7)和(8),可以求得s″hCombining formulas (6), (7) and (8), s″ h can be obtained.

由三角形相似关系求出进行透镜相位调制因子修正后以三维成像区域的右侧面作为二维成像平面进行太赫兹孔径编码二维目标分块扫描成像时得到的焦点到三维成像区域右侧面的距离为d′Calculate the distance from the focal point to the right side of the 3D imaging area when the terahertz aperture coded 2D target is scanned and imaged in blocks by using the right side of the 3D imaging area as the 2D imaging plane after the correction of the lens phase modulation factor is obtained from the triangle similarity relationship distance d'

根据透镜成像公式计算修正后的y方向的数字透镜焦距f′y,mn Calculate the corrected digital lens focal length f′ y,mn in the y direction according to the lens imaging formula

4.2对y方向的相位中心位置的修正,求解修正后的y方向的相位中心位置 4.2 For the correction of the phase center position in the y direction, solve the corrected phase center position in the y direction

修正前、后的太赫兹波束与不完全处于灰色区域的第m行第n列个三维成像单元左侧面上端相交的交点分别和灰色区域的最短竖直距离分别为h1和h′1,类似于s′h和s″h,两者存在关系h′1=h1+Δs,其中Δs可由式(7)确定。另外,h1可以通过下式求得:The shortest vertical distances between the intersection points of the terahertz beams before and after the correction and the top of the left side surface of the three-dimensional imaging unit in the mth row and nth column not completely in the gray area and the gray area are h 1 and h′ 1 respectively, Similar to s′ h and s″ h , there is a relationship h′ 1 =h 1 +Δs, where Δs can be determined by formula (7). In addition, h 1 can be obtained by the following formula:

进行透镜相位调制因子修正后以三维成像区域的右侧面作为二维成像平面进行太赫兹孔径编码二维目标分块扫描成像时三维成像区域上第m行第n列个三维成像单元得到的焦点的y轴坐标h′mnAfter the lens phase modulation factor is corrected, the right side of the 3D imaging area is used as the 2D imaging plane, and the focal point obtained by the 3D imaging unit in the mth row and nth column of the 3D imaging area when the terahertz aperture coded 2D target is scanned and imaged in blocks The y-axis coordinate h′ mn is

根据三角形相似关系,可以求得修正后的y方向的相位中心位置 According to the triangle similarity relationship, the corrected phase center position in the y direction can be obtained

4.3太赫兹孔径编码成像系统的成像体制在x方向(即水平方向)和y方向(即竖直方向)上的工作模式是相同的,对于三维成像区域上的每个需要进行透镜相位调制因子修正的三维成像单元,采用与4.1以及4.2相同的方法对x方向的数字透镜焦距进行修正以及对x方向的相位中心位置进行修正,确定修正后的x方向的数字透镜焦距f′x,mn和相位中心位置 4.3 The imaging system of the terahertz aperture-encoded imaging system works in the same mode in the x direction (that is, the horizontal direction) and the y direction (that is, the vertical direction), and the correction of the lens phase modulation factor is required for each of the three-dimensional imaging areas Using the same method as 4.1 and 4.2 to correct the digital lens focal length in the x direction and correct the phase center position in the x direction, determine the corrected digital lens focal length f′ x,mn and phase in the x direction Central location

进一步地,本发明的三维分块扫描过程中,在目标三维成像单元被完全覆盖的同时,相邻的非目标三维成像单元也会被太赫兹波束照射到,这样得到的回波信息是冗余的。可以通过构造囊括冗余信息的辐射场参考信号矩阵进行回波信息重构,然后再将冗余信息去除的方法重构出目标三维成像单元,这样每个单元的重构结果不含冗余信息,最后再将所有单元的重构结果组合获得完整的目标信息。Furthermore, during the three-dimensional block scanning process of the present invention, while the target three-dimensional imaging unit is completely covered, the adjacent non-target three-dimensional imaging unit will also be irradiated by the terahertz beam, and the echo information obtained in this way is redundant. of. The echo information can be reconstructed by constructing a radiation field reference signal matrix that includes redundant information, and then the redundant information can be removed to reconstruct the target three-dimensional imaging unit, so that the reconstruction result of each unit does not contain redundant information , and finally combine the reconstruction results of all units to obtain complete target information.

本发明的有益技术效果是:The beneficial technical effect of the present invention is:

本发明针对太赫兹孔径编码三维目标成像,提出分块扫描拼接的体制,分块扫描可降低成像计算对计算机内存配置要求,另外各三维成像单元成像过程可以并行处理,最后再进行拼接,可在高分辨的前提下有效提高太赫兹孔径编码成像的成像范围和速度,提高了成像效率,降低对计算机内存配置要求,有效提高了计算机运行效率。The present invention aims at terahertz aperture coded three-dimensional target imaging, and proposes a block scanning and splicing system. Block scanning can reduce the requirements for computer memory configuration for imaging calculations. In addition, the imaging process of each three-dimensional imaging unit can be processed in parallel, and finally splicing can be performed. Under the premise of high resolution, the imaging range and speed of terahertz aperture coding imaging are effectively improved, the imaging efficiency is improved, the requirements for computer memory configuration are reduced, and the operating efficiency of the computer is effectively improved.

本发明在分块扫描的过程中,不同于一般的二维分块扫描方法,根据单个三维成像单元的位置,计算更新透镜相位调制因子,可以实现对三维成像单元的完整覆盖,实现对三维成像区域的完备扫描。In the process of block scanning, the present invention is different from the general two-dimensional block scanning method. According to the position of a single three-dimensional imaging unit, the phase modulation factor of the lens is calculated and updated, which can realize the complete coverage of the three-dimensional imaging unit and realize the three-dimensional imaging A full scan of the area.

本发明针对三维成像单元重构过程中,信息冗余的问题,适当扩大辐射场参考信号矩阵规模,然后结合回波向量将冗余信息先重构再剔除,得到纯净的三维成像单元信息,降低了冗余信息对三维重构过程的影响。The present invention aims at the problem of information redundancy in the reconstruction process of the three-dimensional imaging unit, appropriately expands the scale of the radiation field reference signal matrix, and then combines the echo vector to first reconstruct and then eliminate the redundant information to obtain pure three-dimensional imaging unit information, reducing the The impact of redundant information on the 3D reconstruction process is investigated.

附图说明Description of drawings

图1是基于太赫兹孔径编码成像体制的二维目标高分辨扫描成像方案示意图。Figure 1 is a schematic diagram of a two-dimensional target high-resolution scanning imaging scheme based on a terahertz aperture coding imaging system.

图2是太赫兹孔径编码三维目标高分辨分块扫描成像问题阐述示意图。Figure 2 is a schematic diagram illustrating the problem of high-resolution block scanning imaging of terahertz aperture-coded three-dimensional targets.

图3是本发明太赫兹孔径编码三维目标高分辨分块扫描成像方案的y方向示意图。Fig. 3 is a schematic diagram in the y direction of the high-resolution sub-block scanning imaging scheme of the terahertz aperture coded three-dimensional target of the present invention.

图4是本发明太赫兹孔径编码三维目标高分辨分块扫描成像方案的x方向示意图。Fig. 4 is a schematic diagram in the x direction of the high-resolution block-by-block scanning imaging scheme of a terahertz aperture coded three-dimensional target according to the present invention.

图5是本发明提供的具体实施例的流程图。Fig. 5 is a flowchart of a specific embodiment provided by the present invention.

具体实施方式Detailed ways

为了使本发明的技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。In order to make the technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

参照图3,图3是本发明太赫兹孔径编码三维目标高分辨分块扫描成像方案的y方向示意图。图3中的灰色区域y方向高度为阵列编码孔径y方向的竖直高度为h,灰色区域z方向的长度为阵列编码孔径到三维成像区域右侧面之间的距离(即阵列编码孔径和三维成像区域左侧面的距离b与三维成像区域的厚度c之和)。太赫兹收发天线和阵列编码孔径之间的距离为a,阵列编码孔径和三维成像区域左侧面的距离为b,三维成像区域厚度为c,三维成像区域右侧面和二维成像体制下的焦平面的距离为d。当三维成像单元分布在灰色区域内时,阵列编码孔径需要加载的y方向透镜相位调制因子与二维目标成像相同,焦平面仍然为与三维成像区域平行的竖直平面。当某一三维成像单元的上端高于或下端低于灰色区域时(即存在三维成像单元不完全处于灰色区域内时),加载二维扫描成像体制下的y方向的透镜相位调制因子不能在y方向完整覆盖该三维成像单元,需要修正透镜相位调制因子使得太赫兹波束能够在y方向完整的照射到该三维成像单元。如图3所示,y方向的透镜相位调制因子未修正前,太赫兹波束在该不完全处于灰色区域内的三维成像单元右侧面的覆盖范围为Sh,而其左侧面的覆盖范围是s′h。对该三维成像单元的y方向透镜相位调制因子进行修正后,使得该三维成像单元左侧面的波束覆盖范围为s″h,这样太赫兹波在y方向可照射到整个该三维成像单元,修正后的焦点到该三维成像单元右侧面的距离为d′。hmn、h′mn分别为修正前、后的焦点的y轴坐标。h1、h′1分别为修正前、后太赫兹波束与该不完全处于灰色区域内的三维成像单元左侧面的交点和灰色区域的最小竖直距离。图3中给出的是三维成像单元上端高于灰色区域的情况。Referring to FIG. 3 , FIG. 3 is a schematic diagram in the y direction of the high-resolution block-by-block scanning imaging scheme of a terahertz aperture coded three-dimensional target according to the present invention. The height of the y-direction of the gray area in Fig. 3 is the vertical height of the y-direction of the array coded aperture is h, and the length of the z-direction of the gray area is the distance between the array coded aperture and the right side of the three-dimensional imaging area (that is, the array coded aperture and the three-dimensional The sum of the distance b from the left side of the imaging area and the thickness c of the three-dimensional imaging area). The distance between the terahertz transceiver antenna and the array coded aperture is a, the distance between the array coded aperture and the left side of the 3D imaging area is b, the thickness of the 3D imaging area is c, the right side of the 3D imaging area and the 2D imaging system The distance of the focal plane is d. When the 3D imaging units are distributed in the gray area, the y-direction lens phase modulation factor that needs to be loaded on the array coded aperture is the same as that of the 2D target imaging, and the focal plane is still a vertical plane parallel to the 3D imaging area. When the upper end of a certain 3D imaging unit is higher or lower than the gray area (that is, when the 3D imaging unit is not completely in the gray area), the lens phase modulation factor in the y direction under the loading of the 2D scanning imaging system cannot be within y If the direction completely covers the three-dimensional imaging unit, the phase modulation factor of the lens needs to be corrected so that the terahertz beam can completely irradiate the three-dimensional imaging unit in the y direction. As shown in Figure 3, before the lens phase modulation factor in the y direction is corrected, the coverage area of the terahertz beam on the right side of the 3D imaging unit that is not completely in the gray area is Sh , while the coverage area on the left side of the terahertz beam is is s′ h . After the lens phase modulation factor in the y direction of the three-dimensional imaging unit is corrected, the beam coverage on the left side of the three-dimensional imaging unit is s″ h , so that the terahertz wave can irradiate the entire three-dimensional imaging unit in the y direction, and the correction The distance between the focal point after correction and the right side of the 3D imaging unit is d′. h mn , h′ mn are the y-axis coordinates of the focal point before and after correction, respectively. h 1 , h′ 1 are the terahertz frequencies before and after correction, respectively. The minimum vertical distance between the intersection point of the beam and the left side of the three-dimensional imaging unit that is not completely in the gray area and the gray area. Figure 3 provides the situation that the upper end of the three-dimensional imaging unit is higher than the gray area.

参照图4,图4是本发明太赫兹孔径编码三维目标高分辨分块扫描成像方案的x方向示意图。图4中的灰色区域x方向长度为阵列编码孔径的x方向的横向长度v,灰色区域z方向的长度为阵列编码孔径到三维成像区域右侧面之间的距离(即阵列编码孔径和三维成像区域左侧面的距离b与三维成像区域的厚度c之和)。太赫兹收发天线和阵列编码孔径之间的距离为a,阵列编码孔径和三维成像区域左侧面的距离为b,三维成像区域厚度为c,三维成像区域右侧面和二维成像体制下的焦平面的距离为d。当三维成像单元分布在灰色区域内时,阵列编码孔径需要加载的x方向的透镜相位调制因子与二维目标成像相同,焦平面仍然为与三维成像区域平行的竖直平面。当某一三维成像单元的不完全处于灰色区域内时,加载二维扫描成像体制下的x方向的透镜相位调制因子不能在x方向完整覆盖该三维成像单元,需要修正透镜相位调制因子使得太赫兹波束能够完整的照射到该三维成像单元。如图4所示,x方向的透镜相位调制因子未修正前,太赫兹波束在该不完全处于灰色区域内的三维成像单元右侧面的覆盖范围为Sv,而其左侧面的覆盖范围是s′v。对该三维成像单元的x方向透镜相位调制因子进行修正后,使得该三维成像单元左侧面的波束覆盖范围为s″v,这样太赫兹波在x方向的可照射到整个该三维成像单元,修正后的焦点到该三维成像单元右侧面的距离为d′。vmn、v′mn分别为修正前、后的焦点的z轴坐标。v1、v′1分别为修正前、后太赫兹波束与该不完全处于灰色区域内的三维成像单元左侧面的交点和灰色区域的最小水平距离。图4中给出的是三维成像单元上端高于灰色区域的情况。Referring to FIG. 4 , FIG. 4 is a schematic diagram in the x direction of the high-resolution block scanning imaging scheme of a terahertz aperture coded three-dimensional target according to the present invention. The x-direction length of the gray area in Fig. 4 is the lateral length v of the x-direction of the array coding aperture, and the length of the z-direction of the gray area is the distance between the array coding aperture and the right side of the three-dimensional imaging area (that is, the array coding aperture and the three-dimensional imaging The sum of the distance b on the left side of the area and the thickness c of the three-dimensional imaging area). The distance between the terahertz transceiver antenna and the array coded aperture is a, the distance between the array coded aperture and the left side of the 3D imaging area is b, the thickness of the 3D imaging area is c, the right side of the 3D imaging area and the 2D imaging system The distance of the focal plane is d. When the 3D imaging units are distributed in the gray area, the lens phase modulation factor in the x direction that needs to be loaded by the array coded aperture is the same as that of the 2D target imaging, and the focal plane is still a vertical plane parallel to the 3D imaging area. When a 3D imaging unit is not completely in the gray area, the lens phase modulation factor in the x direction under the 2D scanning imaging system cannot completely cover the 3D imaging unit in the x direction, and the lens phase modulation factor needs to be corrected so that the terahertz The beam can completely irradiate the three-dimensional imaging unit. As shown in Figure 4, before the lens phase modulation factor in the x direction is corrected, the coverage of the terahertz beam on the right side of the 3D imaging unit that is not completely in the gray area is S v , while the coverage of the left side of the terahertz beam is is s′ v . After the lens phase modulation factor in the x direction of the three-dimensional imaging unit is corrected, the beam coverage on the left side of the three-dimensional imaging unit is s″ v , so that the terahertz wave in the x direction can irradiate the entire three-dimensional imaging unit, The distance between the corrected focus and the right side of the three-dimensional imaging unit is d'. v mn and v' mn are the z-axis coordinates of the focus before and after correction respectively. v 1 and v' 1 are the coordinates of the focus before and after correction respectively. The minimum horizontal distance between the intersection point of the Hertz beam and the left side of the 3D imaging unit not completely in the gray area and the gray area. Figure 4 shows the situation where the upper end of the 3D imaging unit is higher than the gray area.

透镜相位调制因子由加载的数字透镜焦距和相位中心位置决定,因此核心在于求出修正后的数字透镜焦距和相位中心位置。The lens phase modulation factor is determined by the loaded digital lens focal length and phase center position, so the core is to find out the corrected digital lens focal length and phase center position.

参照图5,为本发明的流程图,包括以下步骤:With reference to Fig. 5, be flow chart of the present invention, comprise the following steps:

第一步、确定太赫兹孔径编码成像系统参数并对三维成像区域进行剖分;The first step is to determine the parameters of the terahertz aperture coding imaging system and divide the three-dimensional imaging area;

已知太赫兹孔径编码成像系统参数如下:阵列编码孔径的y方向的竖直高度为h,阵列编码孔径的x方向的横向长度v;太赫兹收发天线和阵列编码孔径之间的距离为a,阵列编码孔径和三维成像区域左侧面的距离为b,三维成像区域的厚度为c。The known parameters of the terahertz aperture coding imaging system are as follows: the vertical height of the array coding aperture in the y direction is h, the horizontal length of the array coding aperture in the x direction v; the distance between the terahertz transceiver antenna and the array coding aperture is a, The distance between the array coding aperture and the left side of the three-dimensional imaging area is b, and the thickness of the three-dimensional imaging area is c.

根据太赫兹孔径编码成像系统的成像分辨率大小以及三维目标大小将三维成像区域均匀剖分成M×N个三维成像单元,其中在三维成像区域的y方向上剖分成N个三维成像单元,在其x方向上剖分成M个三维成像单元,整个三维成像区域的三维成像单元个数就是M×N。该步骤与背景技术中剖分方法相同。According to the imaging resolution of the terahertz aperture coding imaging system and the size of the 3D target, the 3D imaging area is evenly divided into M×N 3D imaging units, and the 3D imaging area is divided into N 3D imaging units in the y direction. The x-direction is divided into M three-dimensional imaging units, and the number of three-dimensional imaging units in the entire three-dimensional imaging area is M×N. This step is the same as the subdivision method in the background art.

第二步、将三维成像区域的右侧面作为二维成像平面进行太赫兹孔径编码二维目标分块扫描成像,对于三维成像区域上每一个三维成像单元分别初步求解其y方向(竖直方向)透镜相位调制因子以及x方向(水平方向)透镜相位调制因子,包括y方向数字透镜焦距fy,mn和y方向相位中心位置以及x方向数字透镜焦距fx,mn和x方向相位中心位置其中m以及n表示三维成像区域上第m行第n列个三维成像单元,m=1,2…M,n=1,2…N。In the second step, the right side of the 3D imaging area is used as the 2D imaging plane to perform terahertz aperture coded 2D target block scanning imaging, and for each 3D imaging unit on the 3D imaging area, its y direction (vertical direction) is preliminarily solved. ) lens phase modulation factor and x-direction (horizontal direction) lens phase modulation factor, including y-direction digital lens focal length f y, mn and y-direction phase center position And the focal length of the digital lens in the x direction f x, mn and the phase center position in the x direction Where m and n represent the three-dimensional imaging units in the mth row and nth column of the three-dimensional imaging area, m=1, 2...M, n=1, 2...N.

太赫兹孔径编码成像系统的成像体制在x方向(即水平方向)和y方向(即竖直方向)上的工作模式是相同的。因此初步求解y方向(竖直方向)透镜相位调制因子与初步求解x方向(水平方向)透镜相位调制因子的方法相同。下面以初步求解y方向(竖直方向)透镜相位调制因子为例,说明其具体的求解过程:The working modes of the imaging mechanism of the terahertz aperture coding imaging system in the x direction (ie, the horizontal direction) and the y direction (ie, the vertical direction) are the same. Therefore, the preliminary calculation of the lens phase modulation factor in the y direction (vertical direction) is the same as the preliminary calculation of the lens phase modulation factor in the x direction (horizontal direction). The following takes the preliminary solution of the y-direction (vertical direction) lens phase modulation factor as an example to illustrate its specific solution process:

对于三维成像区域上任一个三维成像单元如第m行第n列个三维成像单元,初步求解其y方向(竖直方向)透镜相位调制因子,包括y方向数字透镜焦距fy,mn和y方向相位中心位置方法如下:For any 3D imaging unit in the 3D imaging area, such as the 3D imaging unit in the mth row and the nth column, initially solve the y-direction (vertical direction) lens phase modulation factor, including the y-direction digital lens focal length f y, mn and the y-direction phase Central location Methods as below:

2.1初步求解y方向的数字透镜焦距fy,mn 2.1 Preliminary calculation of the digital lens focal length f y,mn in the y direction

将三维成像区域的右侧面作为二维成像平面进行y方向的太赫兹孔径编码二维目标分块扫描成像,确定太赫兹孔径编码成像系统中的太赫兹收发天线发出的太赫兹波束在各三维成像单元右侧面的覆盖范围ShUse the right side of the 3D imaging area as the 2D imaging plane to scan and image the terahertz aperture-coded 2D target block in the y direction, and determine the terahertz beam emitted by the terahertz transceiver antenna in the terahertz aperture-coded imaging system. Coverage Sh of the right side of the imaging unit.

根据三角形相似关系计算各三维成像单元右侧面和二维成像体制下的焦平面(即三维成像区域的右侧面作为二维成像平面进行太赫兹孔径编码二维成像时对应的焦平面)间的距离d:Calculate the distance between the right side of each 3D imaging unit and the focal plane under the 2D imaging system (that is, the corresponding focal plane when the right side of the 3D imaging area is used as the 2D imaging plane for terahertz aperture coding 2D imaging) according to the triangle similarity relationship. The distance d:

接着,根据透镜成像公式计算将三维成像区域的右侧面作为二维成像平面进行y方向的太赫兹孔径编码二维目标分块扫描成像时,第m行第n列个三维成像单元其y方向需要加载的数字透镜焦距fy,mnThen, according to the lens imaging formula, when the right side of the three-dimensional imaging area is used as the two-dimensional imaging plane to scan and image the terahertz aperture coded two-dimensional target block in the y direction, the y direction of the three-dimensional imaging unit in the mth row and nth column The focal length f y,mn of the digital lens that needs to be loaded:

2.2初步求解y方向的相位中心位置 2.2 Preliminary solution to the phase center position in the y direction

将三维成像区域的右侧面作为二维成像平面进行y方向的太赫兹孔径编码二维目标分块扫描成像时,为实现二维目标分块扫描成像过程中各扫描区域之间的无缝拼接,相邻三维成像单元之间需加载的透镜相位调制因子相位中心位置步进长度为:When the right side of the 3D imaging area is used as the 2D imaging plane for terahertz aperture coded 2D target block scanning imaging in the y direction, in order to realize the seamless stitching between the scanning areas during the 2D target block scanning imaging process , the phase center position step length of the lens phase modulation factor to be loaded between adjacent 3D imaging units for:

根据步进长度可计算三维成像区域第m行第n列个三维成像单元其y方向需加载的相位中心位置 According to step length It can calculate the phase center position to be loaded in the y direction of the 3D imaging unit in the mth row and nth column of the 3D imaging area

对于三维成像区域上的每个三维成像单元可以采用与2.1以及2.2相同的方法完成初步求解其x方向(水平方向)透镜相位调制因子,包括x方向的数字透镜焦距fx,mn和x方向的相位中心位置 For each 3D imaging unit on the 3D imaging area, the same method as 2.1 and 2.2 can be used to complete the initial calculation of its x-direction (horizontal direction) lens phase modulation factor, including the digital lens focal length f x, mn in the x direction and the x-direction Phase center position

第三步、判断三维成像区域中各三维成像单元对应的透镜相位调制因子是否需要修正。In the third step, it is determined whether the lens phase modulation factors corresponding to the three-dimensional imaging units in the three-dimensional imaging area need to be corrected.

在判断各三维成像单元对应的透镜相位调制因子是否需要修正之前,先确定一个灰色区域:设从整个阵列编码孔径沿z轴方向发出平行波束,灰色区域就是该平行波束的覆盖范围,灰色区域y方向的的竖直高度为阵列编码孔径的y方向的竖直高度h,灰色区域的x方向的横向长度即为阵列编码孔径的x方向的横向长度,灰色区域z方向的长度为阵列编码孔径到三维成像区域右侧面之间的距离(即阵列编码孔径和三维成像区域左侧面的距离b与三维成像区域的厚度c之和);Before judging whether the phase modulation factor of the lens corresponding to each three-dimensional imaging unit needs to be corrected, a gray area is determined first: suppose a parallel beam is emitted from the entire array coding aperture along the z-axis direction, the gray area is the coverage of the parallel beam, and the gray area y The vertical height of the direction is the vertical height h of the y direction of the array coding aperture, the horizontal length of the x direction of the gray area is the horizontal length of the x direction of the array coding aperture, and the length of the z direction of the gray area is the array coding aperture to The distance between the right side of the three-dimensional imaging area (that is, the sum of the distance b between the array coding aperture and the left side of the three-dimensional imaging area and the thickness c of the three-dimensional imaging area);

当三维成像单元完全处于灰色区域内时,阵列编码孔径需要加载的透镜相位调制因子不需要修正,阵列编码孔径需要加载的透镜相位调制因子与二维目标成像相同,焦平面仍然为与三维成像区域平行的竖直平面。When the three-dimensional imaging unit is completely in the gray area, the lens phase modulation factor that needs to be loaded on the array coded aperture does not need to be corrected, the lens phase modulation factor that needs to be loaded on the array coded aperture is the same as the two-dimensional target imaging, and the focal plane is still the same as the three-dimensional imaging area parallel vertical planes.

当存在不完全处于灰色区域的三维成像单元时,加载二维扫描成像体制下的透镜相位调制因子不能完整覆盖三维成像区域,需要修正透镜相位调制因子使得太赫兹波束照射到整个三维成像区域。When there are 3D imaging units that are not completely in the gray area, the lens phase modulation factor under the 2D scanning imaging system cannot completely cover the 3D imaging area, and the lens phase modulation factor needs to be corrected so that the terahertz beam irradiates the entire 3D imaging area.

第四步、对第三步中判断出需要进行透镜相位调制因子修正的三维成像单元进行y方向(竖直方向)透镜相位调制因子修正求解以及x方向(水平方向)透镜相位调制因子修正求解,确定其修正后的y方向的数字透镜焦距f′y,mn和修正后的y方向的相位中心位置以及修正后的x方向的数字透镜焦距f′x,mn和修正后的x方向的相位中心位置 In the fourth step, it is determined in the third step that the three-dimensional imaging unit that needs to be corrected for the lens phase modulation factor is solved for the correction of the lens phase modulation factor in the y direction (vertical direction) and the solution for the correction of the lens phase modulation factor in the x direction (horizontal direction), Determine its corrected digital lens focal length f′ y,mn in the y direction and the corrected phase center position in the y direction And the corrected digital lens focal length f′ x,mn in the x direction and the corrected phase center position in the x direction

对于第三步中判断出需要进行透镜相位调制因子修正的三维成像单元(即存在不完全处于灰色区域的三维成像单元),如三维成像区域上第m行第n列个三维成像单元不完全处于灰色区域,则对该三维成像单元的透镜相位调制因子进行修正,其中对透镜相位调制因子进行修正包括对y方向的数字透镜焦距的修正、对y方向的相位中心位置的修正、对x方向的数字透镜焦距的修正以及对x方向的相位中心位置的修正,确定其修正后的y方向的数字透镜焦距f′y,mn和修正后的y方向的相位中心位置以及修正后的x方向的数字透镜焦距f′x,mn和修正后的x方向的相位中心位置 For the 3D imaging unit that needs to be corrected for the lens phase modulation factor in the third step (that is, there are 3D imaging units that are not completely in the gray area), for example, the 3D imaging unit in the mth row and nth column of the 3D imaging area is not completely in the In the gray area, the lens phase modulation factor of the three-dimensional imaging unit is corrected, wherein the correction of the lens phase modulation factor includes the correction of the focal length of the digital lens in the y direction, the correction of the phase center position in the y direction, and the correction of the phase center position in the x direction. The correction of the focal length of the digital lens and the correction of the phase center position in the x direction, determine the corrected digital lens focal length f′ y,mn in the y direction and the corrected phase center position in the y direction And the corrected digital lens focal length f′ x,mn in the x direction and the corrected phase center position in the x direction

4.1对三维成像区域上不完全处于灰色区域的三维成像单元进行y方向的数字透镜焦距的修正,求解修正后的y方向的数字透镜焦距f′y,mn4.1 Correct the focal length of the digital lens in the y direction for the 3D imaging unit that is not completely in the gray area in the 3D imaging area, and calculate the corrected focal length of the digital lens in the y direction f′ y,mn .

将整个三维成像区域的左侧面看作二维成像平面进行y方向的太赫兹孔径编码二维目标分块扫描成像,对于任一三维成像区域上不完全处于灰色区域的三维成像单元,如不完全处于灰色区域的第m行第n列个三维成像单元,太赫兹孔径编码成像系统中的太赫兹收发天线发出的太赫兹波束在该不完全处于灰色区域内的三维成像单元右侧面的覆盖范围为Sh,太赫兹波束在该不完全处于灰色区域的第m行第n列个三维成像单元左侧面的覆盖范围为s′hConsidering the left side of the entire 3D imaging area as a 2D imaging plane, perform terahertz aperture coded 2D target block scanning imaging in the y direction. The 3D imaging unit in row m and column n that is completely in the gray area, the coverage of the terahertz beam emitted by the terahertz transceiver antenna in the terahertz aperture coding imaging system on the right side of the 3D imaging unit that is not completely in the gray area The range is S h , and the coverage area of the terahertz beam on the left side of the three-dimensional imaging unit in the mth row and nth column that is not completely in the gray area is s′ h ;

设进行透镜相位调制因子修正后得到的三维成像区域左侧面的覆盖范围为s″h,存在关系s″h=s′h+Δs,Δs可以根据下式进行求解:Assuming that the coverage of the left side of the three-dimensional imaging area obtained after lens phase modulation factor correction is s″ h , there is a relationship s″ h = s′h +Δs, and Δs can be solved according to the following formula:

其中hmn为修正前的焦点(即未进行透镜相位调制因子修正前,以三维成像区域的右侧面作为二维成像平面进行太赫兹孔径编码二维目标分块扫描成像时三维成像区域上第m行第n列个三维成像单元得到的初始焦点)的y轴坐标,可根据三角形相似关系求得:where h mn is the focal point before correction (that is, before the correction of the lens phase modulation factor, the right side of the three-dimensional imaging area is used as the two-dimensional imaging plane to perform terahertz aperture coded two-dimensional target block scanning imaging on the three-dimensional imaging area. The y-axis coordinates of the initial focus obtained by the 3D imaging unit in the nth column of row m) can be obtained according to the triangle similarity relationship:

综合式(6)、(7)和(8),可以求得s″hCombining formulas (6), (7) and (8), s″ h can be obtained.

由三角形相似关系求出进行透镜相位调制因子修正后以三维成像区域的右侧面作为二维成像平面进行太赫兹孔径编码二维目标分块扫描成像时得到的焦点到三维成像区域右侧面的距离为d′Calculate the distance from the focal point to the right side of the 3D imaging area when the terahertz aperture coded 2D target is scanned and imaged in blocks by using the right side of the 3D imaging area as the 2D imaging plane after the correction of the lens phase modulation factor is obtained from the triangle similarity relationship distance d'

根据透镜成像公式计算修正后的y方向的数字透镜焦距f′y,mn Calculate the corrected digital lens focal length f′ y,mn in the y direction according to the lens imaging formula

4.2对y方向的相位中心位置的修正,求解修正后的y方向的相位中心位置 4.2 For the correction of the phase center position in the y direction, solve the corrected phase center position in the y direction

修正前、后的太赫兹波束与不完全处于灰色区域的第m行第n列个三维成像单元左侧面上端相交的交点分别和灰色区域的最短竖直距离分别为h1和h′1,类似于s′h和s″h,两者存在关系h′1=h1+Δs,其中Δs可由式(7)确定。另外,h1可以通过下式求得:The shortest vertical distances between the intersection points of the terahertz beams before and after the correction and the top of the left side surface of the three-dimensional imaging unit in the mth row and nth column not completely in the gray area and the gray area are h 1 and h′ 1 respectively, Similar to s′ h and s″ h , there is a relationship h′ 1 =h 1 +Δs, where Δs can be determined by formula (7). In addition, h 1 can be obtained by the following formula:

进行透镜相位调制因子修正后以三维成像区域的右侧面作为二维成像平面进行太赫兹孔径编码二维目标分块扫描成像时三维成像区域上第m行第n列个三维成像单元得到的焦点的y轴坐标h′mnAfter the lens phase modulation factor is corrected, the right side of the 3D imaging area is used as the 2D imaging plane, and the focal point obtained by the 3D imaging unit in the mth row and nth column of the 3D imaging area when the terahertz aperture coded 2D target is scanned and imaged in blocks The y-axis coordinate h′ mn is

根据三角形相似关系,可以求得修正后的y方向的相位中心位置 According to the triangle similarity relationship, the corrected phase center position in the y direction can be obtained

太赫兹孔径编码成像系统的成像体制在x方向(即水平方向)和y方向(即竖直方向)上的工作模式是相同的,对于三维成像区域上的每个需要进行透镜相位调制因子修正的三维成像单元,采用与4.1以及4.2相同的方法对x方向的数字透镜焦距进行修正以及对x方向的相位中心位置进行修正,确定修正后的x方向的数字透镜焦距f′x,mn和相位中心位置 The imaging system of the terahertz aperture coding imaging system works in the same mode in the x direction (ie, the horizontal direction) and the y direction (ie, the vertical direction). For the three-dimensional imaging unit, use the same method as 4.1 and 4.2 to correct the focal length of the digital lens in the x direction and correct the position of the phase center in the x direction, and determine the corrected digital lens focal length f′ x,mn and phase center in the x direction Location

第五步、透镜相位调制因子综合修正Step 5: Comprehensive correction of lens phase modulation factor

为使三维成像单元在x方向和y方向都被太赫兹波束完整覆盖,比较修正后的x方向的数字透镜焦距f′x,mn和修正后的y方向的数字透镜焦距f′y,mn,选择其中较大的作为数字透镜焦距:In order to make the 3D imaging unit completely covered by the terahertz beam in the x direction and the y direction, compare the corrected digital lens focal length f′ x,mn in the x direction with the corrected digital lens focal length f′ y,mn in the y direction, Choose the larger one as the digital lens focal length:

f′=max(f′x,mn,f′y,mn) (14)f'=max(f' x,mn ,f' y,mn ) (14)

太赫兹孔径编码成像系统对三维成像区域进行分块扫描时,太赫兹孔径编码成像系统中阵列编码孔径的第p行,第q列个阵元加载(15)式的透镜相位调制因子Fpq,mn来控制太赫兹波束照射三维成像区域上第m行第n列个三维成像单元:When the terahertz aperture coding imaging system scans the three-dimensional imaging area in blocks, the pth row and the qth column of the array coding aperture in the terahertz aperture coding imaging system are loaded with the lens phase modulation factor F pq of formula (15), mn to control the terahertz beam to irradiate the 3D imaging unit in the mth row and nth column of the 3D imaging area:

其中:p=1,2…P,q=1,2…Q,k=2πfc/c,fc为太赫兹波的中心频率,c为光速。阵列编码孔径在竖直方向上即y方向上均匀分布着P个阵元,阵列编码孔径在水平方向上即x方向上均匀分布着Q个阵元,整个阵列编码孔径包含P×Q个阵元。(xpq,ypq)为阵列编码孔径第p行,第q列个阵元中心点的坐标位置,p=1,2…P。Where: p=1,2...P, q=1,2...Q, k=2πf c /c, f c is the center frequency of the terahertz wave, and c is the speed of light. The array coded aperture is evenly distributed with P array elements in the vertical direction, that is, the y direction, and the array coded aperture is evenly distributed with Q array elements in the horizontal direction, that is, the x direction. The entire array coded aperture contains P×Q array elements . (x pq , y pq ) is the coordinate position of the center point of the array element in row p and column q of the array coding aperture, p=1,2...P.

进一步地,本发明的三维分块扫描过程中,在目标三维成像单元被完全覆盖的同时,相邻的非目标三维成像单元也会被太赫兹波束照射到,这样得到的回波信息是冗余的。可以通过构造囊括冗余信息的辐射场参考信号矩阵进行回波信息重构,然后再将冗余信息去除的方法重构出目标三维成像单元,这样每个单元的重构结果不含冗余信息,最后再将所有单元的重构结果组合获得完整的目标信息。Furthermore, during the three-dimensional block scanning process of the present invention, while the target three-dimensional imaging unit is completely covered, the adjacent non-target three-dimensional imaging unit will also be irradiated by the terahertz beam, and the echo information obtained in this way is redundant. of. The echo information can be reconstructed by constructing a radiation field reference signal matrix that includes redundant information, and then the redundant information can be removed to reconstruct the target three-dimensional imaging unit, so that the reconstruction result of each unit does not contain redundant information , and finally combine the reconstruction results of all units to obtain complete target information.

下面针对太赫兹孔径编码成像系统,给定系统参数,通过计算仿真的方式得到本发明中的透镜相位调制因子核心参数,验证本发明所述方法的实用性。In the following, for the terahertz aperture coding imaging system, given the system parameters, the core parameters of the lens phase modulation factor in the present invention are obtained through calculation and simulation, and the practicability of the method of the present invention is verified.

确定阵列编码孔径竖直方向上的高度h=0.50m,水平方向上的宽度也为0.5m,竖直方向上包含25行阵元,水平方向上包含25列阵元,共有625个阵元。太赫兹收发天线和阵列编码孔径的水平间距a=0.25m,阵列编码孔径和三维成像区域左侧面的距离b=0.75m,三维成像区域的厚度为c=0.25m,三维成像区域在xoy平面上的投影范围为1.8m×1.8m,设定三维成像单元右侧面尺寸s=0.1m。Determine the height h=0.50m in the vertical direction of the array coding aperture, and the width in the horizontal direction is also 0.5m. The vertical direction contains 25 rows of array elements, and the horizontal direction contains 25 rows of array elements, with a total of 625 array elements. The horizontal distance between the terahertz transceiver antenna and the array coding aperture is a=0.25m, the distance between the array coding aperture and the left side of the three-dimensional imaging area is b=0.75m, the thickness of the three-dimensional imaging area is c=0.25m, and the three-dimensional imaging area is on the xoy plane The projection range on is 1.8m×1.8m, and the size of the right side of the three-dimensional imaging unit is set to s=0.1m.

首相将三维成像区域沿横向和纵向分割成18×18=324个三维成像单元,对于第9行第10列的三维成像单元,根据本发明的方法确定其透镜相位调制因子核心参数数字透镜焦距和相位中心位置。判断可知该三维成像单元在灰色区域内,直接计算可以得到数字透镜焦距和相位中心位置分别为0.2065m和(-0.0109m,0.0109m)。The Prime Minister divides the three-dimensional imaging area into 18×18=324 three-dimensional imaging units along the horizontal and vertical directions, and for the three-dimensional imaging units of the ninth row and the tenth column, the method of the present invention determines its lens phase modulation factor core parameter digital lens focal length and Phase center position. Judging that the three-dimensional imaging unit is in the gray area, the focal length and phase center position of the digital lens can be obtained by direct calculation as 0.2065m and (-0.0109m, 0.0109m) respectively.

对于第4行第5列的三维成像单元,判断可知该三维成像单元不在灰色区域内,分别计算x方向和y方向的数字透镜焦距和相位中心位置,得到f′x=0.2127m,f′y=0.2153m和(0.0978m,0.1196m)。又根据步骤2选择较大的透镜焦距可以确定修正后的数字透镜焦距和相位中心位置为0.2153m和(0.0978m,0.1196m)。For the 3D imaging unit in the 4th row and 5th column, it can be judged that the 3D imaging unit is not in the gray area, and the focal length and phase center position of the digital lens in the x direction and y direction are respectively calculated to obtain f′ x = 0.2127m, f′ y = 0.2153m and (0.0978m, 0.1196m). According to step 2, select a larger lens focal length to determine the corrected digital lens focal length and phase center position as 0.2153m and (0.0978m, 0.1196m).

根据本发明提供的上述方法可以分别计算各三维成像单元对应的透镜相位调制因子,分块扫描结束后再按本发明提出的方法去除冗余信息,拼接得到完整的三维成像目标。According to the above method provided by the present invention, the lens phase modulation factors corresponding to each three-dimensional imaging unit can be calculated separately, and after the block scanning is completed, redundant information can be removed according to the method proposed by the present invention, and a complete three-dimensional imaging target can be spliced.

综上所述,虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何本领域普通技术人员,在不脱离本发明的精神和范围内,当可作各种更动与润饰,因此本发明的保护范围当视权利要求书界定的范围为准。In summary, although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art may make various modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be determined by the scope defined in the claims.

Claims (5)

1.一种太赫兹孔径编码三维目标扫描成像方法,其特征在于,包括以下步骤:1. A terahertz aperture coding three-dimensional object scanning imaging method, is characterized in that, comprises the following steps: 第一步、确定太赫兹孔径编码成像系统参数并对三维成像区域进行剖分;The first step is to determine the parameters of the terahertz aperture coding imaging system and divide the three-dimensional imaging area; 第二步、将三维成像区域的右侧面作为二维成像平面进行太赫兹孔径编码二维目标分块扫描成像,对于三维成像区域上每一个三维成像单元分别初步求解其y方向透镜相位调制因子以及x方向透镜相位调制因子,包括y方向数字透镜焦距fy,mn和y方向相位中心位置以及x方向数字透镜焦距fx,mn和x方向相位中心位置其中m以及n表示三维成像区域上第m行第n列个三维成像单元,m=1,2…M,n=1,2…N;The second step is to use the right side of the 3D imaging area as the 2D imaging plane to scan and image the 2D target with terahertz aperture coding, and to calculate the phase modulation factor of the lens in the y direction for each 3D imaging unit in the 3D imaging area. And the lens phase modulation factor in the x direction, including the focal length of the digital lens in the y direction f y,mn and the phase center position in the y direction And the focal length of the digital lens in the x direction f x, mn and the phase center position in the x direction Where m and n represent the three-dimensional imaging unit in the mth row and nth column of the three-dimensional imaging area, m=1,2...M, n=1,2...N; 第三步、判断三维成像区域中各三维成像单元对应的透镜相位调制因子是否需要修正;The third step is to determine whether the lens phase modulation factors corresponding to the three-dimensional imaging units in the three-dimensional imaging area need to be corrected; 第四步、对第三步中判断出需要进行透镜相位调制因子修正的三维成像单元进行y方向透镜相位调制因子修正求解以及x方向透镜相位调制因子修正求解,确定其修正后的y方向的数字透镜焦距f′y,mn和修正后的y方向的相位中心位置以及修正后的x方向的数字透镜焦距f′x,mn和修正后的x方向的相位中心位置 Step 4: For the three-dimensional imaging unit that needs to be corrected for the lens phase modulation factor in the third step, the lens phase modulation factor correction solution in the y direction and the lens phase modulation factor correction solution in the x direction are determined, and the corrected number in the y direction is determined. Lens focal length f′ y,mn and the corrected phase center position in the y direction And the corrected digital lens focal length f′ x,mn in the x direction and the corrected phase center position in the x direction 第五步、透镜相位调制因子综合修正;The fifth step, comprehensive correction of the lens phase modulation factor; 为使三维成像单元在x方向和y方向都被太赫兹波束完整覆盖,比较修正后的x方向的数字透镜焦距f′x,mn和修正后的y方向的数字透镜焦距f′y,mn,选择其中较大的作为数字透镜焦距:In order to make the 3D imaging unit completely covered by the terahertz beam in the x direction and the y direction, compare the corrected digital lens focal length f′ x,mn in the x direction with the corrected digital lens focal length f′ y,mn in the y direction, Choose the larger one as the digital lens focal length: f′=max(f′x,mn,f′y,mn) (14)f'=max(f' x,mn ,f' y,mn ) (14) 太赫兹孔径编码成像系统对三维成像区域进行分块扫描时,太赫兹孔径编码成像系统中阵列编码孔径的第p行,第q列个阵元加载(15)式的透镜相位调制因子Fpq,mn来控制太赫兹波束照射三维成像区域上第m行第n列个三维成像单元:When the terahertz aperture coding imaging system scans the three-dimensional imaging area in blocks, the pth row and the qth column of the array coding aperture in the terahertz aperture coding imaging system are loaded with the lens phase modulation factor F pq of formula (15), mn to control the terahertz beam to irradiate the 3D imaging unit in the mth row and nth column of the 3D imaging area: <mrow> <msub> <mi>F</mi> <mrow> <mi>p</mi> <mi>q</mi> <mo>,</mo> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>i</mi> <mfrac> <mi>k</mi> <mrow> <mn>2</mn> <msup> <mi>f</mi> <mo>&amp;prime;</mo> </msup> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>F</mi><mrow><mi>p</mi><mi>q</mi><mo>,</mo><mi>m</mi><mi>n</mi></mrow></msub><mo>=</mo><msup><mi>e</mi><mrow><mo>-</mo><mi>i</mi><mfrac><mi>k</mi><mrow><mn>2</mn><msup><mi>f</mi><mo>&amp;prime;</mo></msup></mrow></mfrac><mo>&amp;lsqb;</mo><msup><mrow><mo>(</mo><msub><mi>x</mi><mrow><mi>p</mi><mi>q</mi></mrow></msub><mo>-</mo><msubsup><mover><mi>x</mi><mo>^</mo></mover><mrow><mi>m</mi><mi>n</mi></mrow><mo>&amp;prime;</mo></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><msub><mi>y</mi><mrow><mi>p</mi><mi>q</mi></mrow></msub><mo>-</mo><msubsup><mover><mi>y</mi><mo>^</mo></mover><mrow><mi>m</mi><mi>n</mi></mrow><mo>&amp;prime;</mo></msubsup><mo>)</mo></mrow><mn>2</mn></msup><mo>&amp;rsqb;</mo></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>15</mn><mo>)</mo></mrow></mrow> 其中:p=1,2…P,q=1,2…Q,k=2πfc/c,fc为太赫兹波的中心频率,c为光速;阵列编码孔径在竖直方向上即y方向上均匀分布着P个阵元,阵列编码孔径在水平方向上即x方向上均匀分布着Q个阵元,整个阵列编码孔径包含P×Q个阵元;(xpq,ypq)为阵列编码孔径第p行,第q列个阵元中心点的坐标位置,p=1,2…P。Among them: p=1,2...P, q=1,2...Q, k=2πf c /c, f c is the center frequency of the terahertz wave, c is the speed of light; the array coding aperture is in the vertical direction, that is, the y direction P array elements are evenly distributed on the array coding aperture, and Q array elements are evenly distributed in the horizontal direction, that is, in the x direction, and the entire array coding aperture contains P×Q array elements; (x pq ,y pq ) is the array coding The coordinate position of the center point of the array element in the pth row and the qth column of the aperture, p=1,2...P. 2.根据权利要求1所述的太赫兹孔径编码三维目标扫描成像方法,其特征在于:第一步中:已知太赫兹孔径编码成像系统参数如下:阵列编码孔径的y方向的竖直高度为h,阵列编码孔径的x方向的横向长度;太赫兹收发天线和阵列编码孔径之间的距离为a,阵列编码孔径和三维成像区域左侧面的距离为b,三维成像区域的厚度为c;2. The terahertz aperture coded three-dimensional object scanning imaging method according to claim 1, characterized in that: in the first step: the known parameters of the terahertz aperture coded imaging system are as follows: the vertical height of the y-direction of the array coded aperture is h, the lateral length of the array coding aperture in the x direction; the distance between the terahertz transceiver antenna and the array coding aperture is a, the distance between the array coding aperture and the left side of the three-dimensional imaging area is b, and the thickness of the three-dimensional imaging area is c; 根据太赫兹孔径编码成像系统的成像分辨率大小以及三维目标大小将三维成像区域均匀剖分成M×N个三维成像单元,其中在三维成像区域的y方向上剖分成N个三维成像单元,在其x方向上剖分成M个三维成像单元,整个三维成像区域的三维成像单元个数就是M×N。According to the imaging resolution of the terahertz aperture coding imaging system and the size of the 3D target, the 3D imaging area is evenly divided into M×N 3D imaging units, and the 3D imaging area is divided into N 3D imaging units in the y direction. The x-direction is divided into M three-dimensional imaging units, and the number of three-dimensional imaging units in the entire three-dimensional imaging area is M×N. 3.根据权利要求2所述的太赫兹孔径编码三维目标扫描成像方法,其特征在于:第二步中,对于三维成像区域上每一个三维成像单元如第m行第n列个三维成像单元,初步求解其y方向透镜相位调制因子,包括y方向数字透镜焦距fy,mn和y方向相位中心位置方法如下:3. The terahertz aperture coded three-dimensional object scanning imaging method according to claim 2, characterized in that: in the second step, for each three-dimensional imaging unit on the three-dimensional imaging area, such as the three-dimensional imaging unit in the mth row and the nth column, Preliminary solution of its y-direction lens phase modulation factor, including y-direction digital lens focal length f y, mn and y-direction phase center position Methods as below: 2.1初步求解y方向的数字透镜焦距fy,mn 2.1 Preliminary calculation of the digital lens focal length f y,mn in the y direction 将三维成像区域的右侧面作为二维成像平面进行y方向的太赫兹孔径编码二维目标分块扫描成像,确定太赫兹孔径编码成像系统中的太赫兹收发天线发出的太赫兹波束在各三维成像单元右侧面的覆盖范围ShUse the right side of the 3D imaging area as the 2D imaging plane to scan and image the terahertz aperture-coded 2D target block in the y direction, and determine the terahertz beam emitted by the terahertz transceiver antenna in the terahertz aperture-coded imaging system. Coverage Sh on the right side of the imaging unit; 根据三角形相似关系计算各三维成像单元右侧面和二维成像体制下的焦平面间的距离d:Calculate the distance d between the right side of each three-dimensional imaging unit and the focal plane under the two-dimensional imaging system according to the triangle similarity relationship: <mrow> <mi>d</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>s</mi> <mi>h</mi> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>h</mi> <mo>-</mo> <msub> <mi>s</mi> <mi>h</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>d</mi><mo>=</mo><mfrac><mrow><msub><mi>s</mi><mi>h</mi></msub><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo>)</mo>mo></mrow></mrow><mrow><mi>h</mi><mo>-</mo><msub><mi>s</mi><mi>h</mi></msub></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow> 接着,根据透镜成像公式计算将三维成像区域的右侧面作为二维成像平面进行y方向的太赫兹孔径编码二维目标分块扫描成像时,第m行第n列个三维成像单元其y方向需要加载的数字透镜焦距fy,mnThen, according to the lens imaging formula, when the right side of the three-dimensional imaging area is used as the two-dimensional imaging plane to scan and image the terahertz aperture coded two-dimensional target block in the y direction, the y direction of the three-dimensional imaging unit in the mth row and nth column The focal length f y,mn of the digital lens that needs to be loaded: <mrow> <msub> <mi>f</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>f</mi><mrow><mi>y</mi><mo>,</mo><mi>m</mi><mi>n</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>a</mi><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo>+</mo><mi>d</mi><mo>)</mo></mrow></mrow><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo>+</mo><mi>d</mi></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow> 2.2初步求解y方向的相位中心位置 2.2 Preliminary solution to the phase center position in the y direction 将三维成像区域的右侧面作为二维成像平面进行y方向的太赫兹孔径编码二维目标分块扫描成像时,为实现二维目标分块扫描成像过程中各扫描区域之间的无缝拼接,相邻三维成像单元之间需加载的透镜相位调制因子相位中心位置步进长度为:When the right side of the 3D imaging area is used as the 2D imaging plane for terahertz aperture coded 2D target block scanning imaging in the y direction, in order to realize the seamless stitching between the scanning areas during the 2D target block scanning imaging process , the phase center position step length of the lens phase modulation factor to be loaded between adjacent three-dimensional imaging units for: <mrow> <mi>&amp;Delta;</mi> <mover> <mi>y</mi> <mo>^</mo> </mover> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mo>&amp;CenterDot;</mo> <mi>s</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo>)</mo> <mo>&amp;CenterDot;</mo> <mo>(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>)</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>&amp;Delta;</mi><mover><mi>y</mi><mo>^</mo></mover><mo>=</mo><mfrac><mrow><mi>a</mi><mo>&amp;CenterDot;</mo><mi>s</mi><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo>+</mo><mi>d</mi><mo>)</mo></mrow></mrow><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo>+</mo><mi>d</mi><mo>)</mo><mo>&amp;CenterDot;</mo><mo>(</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo>)</mo></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow> 根据步进长度可计算三维成像区域第m行第n列个三维成像单元其y方向需加载的相位中心位置 According to step length It can calculate the phase center position to be loaded in the y direction of the 3D imaging unit in the mth row and nth column of the 3D imaging area <mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>n</mi> </mrow> <mn>2</mn> </mfrac> <mo>&amp;CenterDot;</mo> <mi>&amp;Delta;</mi> <mover> <mi>y</mi> <mo>^</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mover><mi>y</mi><mo>^</mo></mover><mrow><mi>m</mi><mi>n</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>1</mn><mo>-</mo><mn>2</mn><mi>n</mi></mrow><mn>2</mn></mfrac><mo>&amp;CenterDot;</mo><mi>&amp;Delta;</mi><mover><mi>y</mi><mo>^</mo></mover><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow> 太赫兹孔径编码成像系统的成像体制在x方向和y方向上的工作模式是相同的,对于三维成像区域上的每个三维成像单元采用与2.1以及2.2相同的方法完成初步求解其x方向透镜相位调制因子,包括x方向的数字透镜焦距fx,mn和x方向的相位中心位置 The imaging system of the terahertz aperture coding imaging system has the same working mode in the x direction and the y direction. For each 3D imaging unit in the 3D imaging area, the same method as 2.1 and 2.2 is used to complete the preliminary calculation of the lens phase in the x direction. Modulation factor, including the digital lens focal length f x,mn in the x direction and the phase center position in the x direction 4.根据权利要求3所述的太赫兹孔径编码三维目标扫描成像方法,其特征在于:第三步中,判断三维成像区域中各三维成像单元对应的透镜相位调制因子是否需要修正的方法如下:4. The terahertz aperture coding three-dimensional object scanning imaging method according to claim 3, characterized in that: in the third step, the method for judging whether the lens phase modulation factor corresponding to each three-dimensional imaging unit in the three-dimensional imaging area needs to be corrected is as follows: 在判断各三维成像单元对应的透镜相位调制因子是否需要修正之前,先确定一个灰色区域:设从整个阵列编码孔径沿z轴方向发出平行波束,灰色区域就是该平行波束的覆盖范围,灰色区域y方向的的竖直高度为阵列编码孔径的y方向的竖直高度h,灰色区域的x方向的横向长度即为阵列编码孔径的x方向的横向长度,灰色区域z方向的长度为阵列编码孔径到三维成像区域右侧面之间的距离;Before judging whether the phase modulation factor of the lens corresponding to each three-dimensional imaging unit needs to be corrected, a gray area is determined first: suppose a parallel beam is emitted from the entire array coding aperture along the z-axis direction, the gray area is the coverage of the parallel beam, and the gray area y The vertical height of the direction is the vertical height h of the y direction of the array coding aperture, the horizontal length of the x direction of the gray area is the horizontal length of the x direction of the array coding aperture, and the length of the z direction of the gray area is the array coding aperture to The distance between the right sides of the 3D imaging area; 当三维成像单元完全处于灰色区域内时,阵列编码孔径需要加载的透镜相位调制因子不需要修正,阵列编码孔径需要加载的透镜相位调制因子与二维目标成像相同;When the three-dimensional imaging unit is completely in the gray area, the lens phase modulation factor that needs to be loaded on the array coded aperture does not need to be corrected, and the lens phase modulation factor that needs to be loaded on the array coded aperture is the same as the two-dimensional target imaging; 当存在不完全处于灰色区域的三维成像单元时,加载二维扫描成像体制下的透镜相位调制因子不能完整覆盖三维成像区域,需要修正透镜相位调制因子使得太赫兹波束照射到整个三维成像区域。When there are 3D imaging units that are not completely in the gray area, the lens phase modulation factor under the 2D scanning imaging system cannot completely cover the 3D imaging area, and the lens phase modulation factor needs to be corrected so that the terahertz beam irradiates the entire 3D imaging area. 5.根据权利要求4所述的太赫兹孔径编码三维目标扫描成像方法,其特征在于:第三步中,对于第三步中判断出需要进行透镜相位调制因子修正的任一不完全处于灰色区域的三维成像单元如第m行第n列个三维成像单元,采用以下步骤对其透镜相位调制因子进行修正:5. The terahertz aperture coded three-dimensional target scanning imaging method according to claim 4, characterized in that: in the third step, any part that needs to be corrected for the lens phase modulation factor in the third step is not completely in the gray area The three-dimensional imaging unit of is such as the three-dimensional imaging unit in the mth row and the nth column, and the following steps are used to correct its lens phase modulation factor: 4.1对三维成像区域上不完全处于灰色区域的三维成像单元进行y方向的数字透镜焦距的修正,求解修正后的y方向的数字透镜焦距f′y,mn4.1 Correct the focal length of the digital lens in the y direction for the 3D imaging unit that is not completely in the gray area on the 3D imaging area, and solve the focal length f′ y,mn of the digital lens in the corrected y direction; 将整个三维成像区域的左侧面看作二维成像平面进行y方向的太赫兹孔径编码二维目标分块扫描成像,对于三维成像区域上任一不完全处于灰色区域的三维成像单元如第m行第n列个三维成像单元,太赫兹孔径编码成像系统中的太赫兹收发天线发出的太赫兹波束在该不完全处于灰色区域内的三维成像单元右侧面的覆盖范围为Sh,太赫兹波束在该不完全处于灰色区域的第m行第n列个三维成像单元左侧面的覆盖范围为sh′;Consider the left side of the entire 3D imaging area as a 2D imaging plane to perform terahertz aperture coded 2D target block scanning imaging in the y direction. For any 3D imaging unit that is not completely in the gray area on the 3D imaging area, such as the m In the nth column of 3D imaging unit, the coverage of the terahertz beam emitted by the terahertz transceiver antenna in the terahertz aperture coding imaging system on the right side of the 3D imaging unit that is not completely in the gray area is S h , the terahertz beam The coverage area on the left side of the three-dimensional imaging unit in the mth row and nth column that is not completely in the gray area is s h '; <mrow> <msubsup> <mi>s</mi> <mi>h</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>s</mi> <mi>h</mi> </msub> </mrow> <mi>d</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mi>s</mi><mi>h</mi><mo>&amp;prime;</mo></msubsup><mo>=</mo><mfrac><mrow><mo>(</mo><mi>c</mi><mo>+</mo><mi>d</mi><mo>)</mo><mo>&amp;CenterDot;</mo><msub><mi>s</mi><mi>h</mi></msub></mrow><mi>d</mi></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow> 设进行透镜相位调制因子修正后得到的三维成像单元左侧面的覆盖范围为sh″,存在关系sh″=sh′+Δs,Δs根据下式进行求解:Assuming that the coverage area of the left side of the three-dimensional imaging unit obtained after lens phase modulation factor correction is s h ″, there is a relationship s h ″=s h ′+Δs, and Δs is solved according to the following formula: <mrow> <mi>&amp;Delta;</mi> <mi>s</mi> <mo>=</mo> <mfrac> <mrow> <mi>c</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>|</mo> <mo>-</mo> <mi>h</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>&amp;Delta;</mi><mi>s</mi><mo>=</mo><mfrac><mrow><mi>c</mi><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><mo>|</mo><msub><mi>h</mi><mrow><mi>m</mi><mi>n</mi></mrow></msub><mo>|</mo><mo>-</mo><mi>h</mi><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><mi>b</mi><mo>+</mo><mi>c</mi><mo>+</mo><mi>d</mi></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow></mrow> 其中hmn为修正前的焦点的y轴坐标,可根据三角形相似关系求得:Where h mn is the y-axis coordinate of the focus before correction, which can be obtained according to the triangle similarity relationship: <mrow> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> <mi>a</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>h</mi><mrow><mi>m</mi><mi>n</mi></mrow></msub><mo>=</mo><mfrac><mrow><msub><mover><mi>y</mi><mo>^</mo></mover><mrow><mi>m</mi><mi>n</mi></mrow></msub><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo>+</mo><mi>d</mi><mo>)</mo></mrow></mi>mrow><mi>a</mi></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mrow> 综合式(6)、(7)和(8),求得s″hComprehensive formula (6), (7) and (8), obtain s″ h ; 由三角形相似关系求出进行透镜相位调制因子修正后以三维成像区域的右侧面作为二维成像平面进行太赫兹孔径编码二维目标分块扫描成像时得到的焦点到三维成像区域右侧面的距离为d′Calculate the distance from the focal point to the right side of the 3D imaging area when the terahertz aperture coded 2D target is scanned and imaged in blocks by using the right side of the 3D imaging area as the 2D imaging plane after the correction of the lens phase modulation factor is obtained from the triangle similarity relationship distance d' <mrow> <msup> <mi>d</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>s</mi> <mi>h</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msubsup> <mo>&amp;CenterDot;</mo> <mi>b</mi> <mo>+</mo> <msubsup> <mi>s</mi> <mi>h</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msubsup> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mo>-</mo> <mi>h</mi> <mo>&amp;CenterDot;</mo> <mi>c</mi> </mrow> <mrow> <mi>h</mi> <mo>-</mo> <msubsup> <mi>s</mi> <mi>h</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> <mrow><msup><mi>d</mi><mo>&amp;prime;</mo></msup><mo>=</mo><mfrac><mrow><msubsup><mi>s</mi><mi>h</mi><mrow><mo>&amp;prime;</mo><mo>&amp;prime;</mo></mrow></msubsup><mo>&amp;CenterDot;</mo><mi>b</mi><mo>+</mo><msubsup><mi>s</mi><mi>h</mi><mrow><mo>&amp;prime;</mo><mo>&amp;prime;</mo></mrow></msubsup><mo>&amp;CenterDot;</mo><mi>c</mi><mo>-</mo><mi>h</mi><mo>&amp;CenterDot;</mo><mi>c</mi></mrow><mrow><mi>h</mi><mo>-</mo><msubsup><mi>s</mi><mi>h</mi><mrow><mo>&amp;prime;</mo><mo>&amp;prime;</mo></mrow></msubsup></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow></mrow> 根据透镜成像公式计算修正后的y方向的数字透镜焦距fy,mn Calculate the corrected digital lens focal length f y,mn in the y direction according to the lens imaging formula <mrow> <msubsup> <mi>f</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>m</mi> <mi>n</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <msup> <mi>d</mi> <mo>&amp;prime;</mo> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <msup> <mi>d</mi> <mo>&amp;prime;</mo> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mi>f</mi><mrow><mi>y</mi><mo>,</mo><mi>m</mi><mi>n</mi></mrow><mo>&amp;prime;</mo></msubsup><mo>=</mo><mfrac><mrow><mi>a</mi><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo>+</mo><msup><mi>d</mi><mo>&amp;prime;</mo></msup><mo>)</mo></mrow></mrow><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo>+</mo><msup><mi>d</mi><mo>&amp;prime;</mo></msup></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow></mrow> 4.2对y方向的相位中心位置的修正,求解修正后的y方向的相位中心位置 4.2 For the correction of the phase center position in the y direction, solve the corrected phase center position in the y direction 修正前、后的太赫兹波束与不完全处于灰色区域的第m行第n列个三维成像单元左侧面上端相交的交点分别和灰色区域的最短竖直距离分别为h1和h1′,类似于sh′和sh″,两者存在关系h1′=h1+Δs,其中Δs可由式(7)确定;另外,h1可以通过下式求得:The shortest vertical distances between the intersection points of the terahertz beams before and after the correction and the upper left side surface of the three-dimensional imaging unit in the mth row and nth column not completely in the gray area and the gray area are h 1 and h 1 ′ respectively, Similar to s h ′ and s h ″, there is a relationship h 1 ′=h 1 +Δs, where Δs can be determined by formula (7); in addition, h 1 can be obtained by the following formula: <mrow> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>|</mo> <mo>-</mo> <mi>h</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>h</mi><mn>1</mn></msub><mo>=</mo><mfrac><mrow><mi>b</mi><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><mo>|</mo><msub><mi>h</mi><mrow><mi>m</mi><mi>n</mi></mrow></msub><mo>|</mo><mo>-</mo><mi>h</mi><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><mi>b</mi><mo>+</mo><mi>c</mi><mo>+</mo><mi>d</mi></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>11</mn><mo>)</mo></mrow></mrow> 进行透镜相位调制因子修正后以三维成像区域的右侧面作为二维成像平面进行太赫兹孔径编码二维目标分块扫描成像时三维成像区域上第m行第n列个三维成像单元得到的焦点的y轴坐标h′mnAfter the lens phase modulation factor is corrected, the right side of the 3D imaging area is used as the 2D imaging plane, and the focal point obtained by the 3D imaging unit in the mth row and nth column of the 3D imaging area when the terahertz aperture coded 2D target is scanned and imaged in blocks The y-axis coordinate h′ mn is <mrow> <msubsup> <mi>h</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msubsup> <mi>h</mi> <mn>1</mn> <mo>&amp;prime;</mo> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mrow> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <msup> <mi>d</mi> <mo>&amp;prime;</mo> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </mfrac> <mo>+</mo> <mi>h</mi> <mo>/</mo> <mn>2</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>n</mi> </msub> <mo>&gt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>h</mi> <mn>1</mn> <mo>&amp;prime;</mo> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mrow> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <msup> <mi>d</mi> <mo>&amp;prime;</mo> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </mfrac> <mo>-</mo> <mi>h</mi> <mo>/</mo> <mn>2</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>n</mi> </msub> <mo>&gt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mi>h</mi><mrow><mi>m</mi><mi>n</mi></mrow><mo>&amp;prime;</mo></msubsup><mo>=</mo><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><mfrac><mrow><msubsup><mi>h</mi><mn>1</mn><mo>&amp;prime;</mo></msubsup><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><mrow><mi>b</mi><mo>+</mo><mi>c</mi><mo>+</mo><msup><mi>d</mi><mo>&amp;prime;</mo></msup></mrow><mo>)</mo></mrow></mrow><mi>b</mi></mfrac><mo>+</mo><mi>h</mi><mo>/</mo><mn>2</mn></mrow></mtd><mtd><mrow><msub><mover><mi>y</mi><mo>^</mo></mover><mi>n</mi></msub><mo>&gt;</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>-</mo><mfrac><mrow><msubsup><mi>h</mi><mn>1</mn><mo>&amp;prime;</mo></msubsup><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><mrow><mi>b</mi><mo>+</mo><mi>c</mi><mo>+</mo><msup><mi>d</mi><mo>&amp;prime;</mo></msup></mrow><mo>)</mo></mrow></mrow><mi>b</mi></mfrac><mo>-</mo><mi>h</mi><mo>/</mo><mn>2</mn></mrow></mtd><mtd><mrow><msub><mover><mi>y</mi><mo>^</mo></mover><mi>n</mi></msub><mo>&gt;</mo><mn>0</mn></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>12</mn><mo>)</mo></mrow></mrow> 根据三角形相似关系,可以求得修正后的y方向的相位中心位置 According to the triangle similarity relationship, the corrected phase center position in the y direction can be obtained <mrow> <msubsup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mo>&amp;CenterDot;</mo> <msubsup> <mi>h</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> </mrow> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <msup> <mi>d</mi> <mo>&amp;prime;</mo> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mover><mi>y</mi><mo>^</mo></mover><mrow><mi>m</mi><mi>n</mi></mrow><mo>&amp;prime;</mo></msubsup><mo>=</mo><mfrac><mrow><mi>a</mi><mo>&amp;CenterDot;</mo><msubsup><mi>h</mi><mrow><mi>m</mi><mi>n</mi></mrow><mo>&amp;prime;</mo></msubsup></mrow><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo>+</mo><msup><mi>d</mi><mo>&amp;prime;</mo></msup></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>13</mn><mo>)</mo></mrow></mrow> 4.3太赫兹孔径编码成像系统的成像体制在x方向和y方向上的工作模式是相同的,对于三维成像区域上的每个需要进行透镜相位调制因子修正的三维成像单元,采用与4.1以及4.2相同的方法对x方向的数字透镜焦距进行修正以及对x方向的相位中心位置进行修正,确定修正后的x方向的数字透镜焦距fx,mn和相位中心位置 4.3 The imaging system of the terahertz aperture coded imaging system has the same working mode in the x direction and the y direction. For each 3D imaging unit that needs to correct the lens phase modulation factor in the 3D imaging area, the same method as 4.1 and 4.2 is used. The method corrects the focal length of the digital lens in the x direction and corrects the phase center position in the x direction, and determines the corrected digital lens focal length f x, mn and the phase center position in the x direction
CN201711127463.4A 2017-11-15 2017-11-15 Terahertz aperture coding three-dimensional target scanning imaging method Active CN107942328B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711127463.4A CN107942328B (en) 2017-11-15 2017-11-15 Terahertz aperture coding three-dimensional target scanning imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711127463.4A CN107942328B (en) 2017-11-15 2017-11-15 Terahertz aperture coding three-dimensional target scanning imaging method

Publications (2)

Publication Number Publication Date
CN107942328A true CN107942328A (en) 2018-04-20
CN107942328B CN107942328B (en) 2018-11-13

Family

ID=61932256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711127463.4A Active CN107942328B (en) 2017-11-15 2017-11-15 Terahertz aperture coding three-dimensional target scanning imaging method

Country Status (1)

Country Link
CN (1) CN107942328B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109739268A (en) * 2018-12-18 2019-05-10 深圳市太赫兹科技创新研究院 Imaging adjustment device
CN110609297A (en) * 2019-09-19 2019-12-24 中国人民解放军军事科学院国防科技创新研究院 Three-dimensional target imaging method and device
CN116087954A (en) * 2023-04-06 2023-05-09 中国科学院空天信息创新研究院 A short-distance off-focus synthetic aperture imaging method for a real-aperture system
CN118859200A (en) * 2024-09-12 2024-10-29 杭州电子科技大学 Flexible and robust phase-free terahertz aperture-coded three-dimensional imaging method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012000075A1 (en) * 2010-06-28 2012-01-05 Institut National D'optique Synthetic aperture imaging interferometer
CN106680796A (en) * 2017-01-11 2017-05-17 中国人民解放军国防科学技术大学 Method for reconstructing three-dimensional surface of planar holographic array target on basis of frequency interference
CN106772367A (en) * 2016-11-30 2017-05-31 中国人民解放军国防科学技术大学 Long distance staring imaging device and method in the coding high-resolution of Terahertz frequency range aperture
CN106950555A (en) * 2017-05-03 2017-07-14 中国人民解放军国防科学技术大学 A kind of Area Objects imaging method based on Terahertz aperture coded imaging system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012000075A1 (en) * 2010-06-28 2012-01-05 Institut National D'optique Synthetic aperture imaging interferometer
CN106772367A (en) * 2016-11-30 2017-05-31 中国人民解放军国防科学技术大学 Long distance staring imaging device and method in the coding high-resolution of Terahertz frequency range aperture
CN106680796A (en) * 2017-01-11 2017-05-17 中国人民解放军国防科学技术大学 Method for reconstructing three-dimensional surface of planar holographic array target on basis of frequency interference
CN106950555A (en) * 2017-05-03 2017-07-14 中国人民解放军国防科学技术大学 A kind of Area Objects imaging method based on Terahertz aperture coded imaging system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109739268A (en) * 2018-12-18 2019-05-10 深圳市太赫兹科技创新研究院 Imaging adjustment device
CN109739268B (en) * 2018-12-18 2021-11-16 深圳市太赫兹科技创新研究院 Imaging adjustment device
CN110609297A (en) * 2019-09-19 2019-12-24 中国人民解放军军事科学院国防科技创新研究院 Three-dimensional target imaging method and device
CN116087954A (en) * 2023-04-06 2023-05-09 中国科学院空天信息创新研究院 A short-distance off-focus synthetic aperture imaging method for a real-aperture system
CN118859200A (en) * 2024-09-12 2024-10-29 杭州电子科技大学 Flexible and robust phase-free terahertz aperture-coded three-dimensional imaging method and device

Also Published As

Publication number Publication date
CN107942328B (en) 2018-11-13

Similar Documents

Publication Publication Date Title
CN107942328B (en) Terahertz aperture coding three-dimensional target scanning imaging method
US20210286050A1 (en) Intelligent metamaterial radar for target identification
US11836852B2 (en) Neural network-based millimeter-wave imaging system
CN109471193B (en) Signal processing imaging method of microwave millimeter wave three-dimensional holographic imaging system
US11620760B2 (en) Ranging method based on laser-line scanning imaging
US20220180131A1 (en) Intelligent lidar scanning
CN107483910B (en) A kind of long range Nakedness-yet stereoscopic display method and its system
CN1250165A (en) Three-dimensional radar apparatus and method for displaying three-dimensional radar image
CN107966710B (en) Three-dimensional target high-resolution imaging method based on terahertz aperture coding imaging
Jia et al. Drone-NeRF: Efficient NeRF based 3D scene reconstruction for large-scale drone survey
CN112114310B (en) Microwave millimeter wave holographic image reconstruction method based on three-dimensional decomposition
Zheng et al. Lidar4d: Dynamic neural fields for novel space-time view lidar synthesis
CN105093223A (en) Rapid time domain imaging method of bistatic forward-looking SAR (Synthetic Aperture Radar)
CN104535978A (en) Three-dimensional InISAR image registration and fusion method based on mutual information
CN109188881A (en) A kind of THz wave digital hologram imaging method and system
WO2018055861A1 (en) Mobile object control device and mobile object control system
Almanza-Medina et al. Deep learning architectures for navigation using forward looking sonar images
CN104931963B (en) A kind of method that moving-target microwave stares relevance imaging
WO2020255265A1 (en) Radar system, imaging method, and imaging program
CN113885023B (en) Three-dimensional model microwave photon echo imaging method based on LCIM algorithm
Sengupta et al. A review of recent advancements including machine learning on synthetic aperture radar using millimeter-wave radar
GB2616181A (en) Three-dimensional imaging method and apparatus, and three-dimensional imaging device
US20240386665A1 (en) Method for generating a high-resolution point cloud and method for training an image synthesis neural network
CN109917385A (en) Long-distance frequency domain rapid imaging method and device for ground SAR (synthetic aperture radar) scanned by rotary arm
CN109793999A (en) The construction method of the static three-dimensional profile body image of HIFU Treatment system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant