CN107933351A - 一种基于激光无线电能传输的无人机充电方法 - Google Patents

一种基于激光无线电能传输的无人机充电方法 Download PDF

Info

Publication number
CN107933351A
CN107933351A CN201711191048.5A CN201711191048A CN107933351A CN 107933351 A CN107933351 A CN 107933351A CN 201711191048 A CN201711191048 A CN 201711191048A CN 107933351 A CN107933351 A CN 107933351A
Authority
CN
China
Prior art keywords
laser
energy
electric energy
laser beam
unmanned plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711191048.5A
Other languages
English (en)
Inventor
邹强
付超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201711191048.5A priority Critical patent/CN107933351A/zh
Publication of CN107933351A publication Critical patent/CN107933351A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/30Circuit arrangements or systems for wireless supply or distribution of electric power using light, e.g. lasers
    • H02J7/025
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种基于激光无线电能传输的无人机充电方法,包括:利用无人机自带电能作为激励能量源,激励半导体激光器,经过光束整形后,产生能量激光光束;在激光无线电能传输接收端,将激光扩束装置置于能够跟踪激光光束的可移动底座上;激光扩束装置将入射的激光光束扩大后平行射出;从激光扩束装置射出的激光经由球面反射镜反射会聚到棱镜再投射到光伏电池,能量转换过程中产生的热能由铝鳍散热片吸收;光伏电池将光能转换成电能。

Description

一种基于激光无线电能传输的无人机充电方法
技术领域
本发明涉及一种基于激光无线电能传输的无人机充电方法。
背景技术
无线电能传输(Wireless Power Transmission)就是利用一种特殊设备将电能以无线形式进行传输,从而可以在无需电缆线的情况下直接传输电能。早在1890年,著名的物理学家兼电气工程师尼古拉·特斯拉(Nikola Tesla)就提出了无线电能传输这一理论并且做了无线输电的试验。但是在相当长的时期内由于存在有关技术方面的瓶颈问题,以及缺乏客观需求,无线能量传输方面的很多研究都没有突破性进展。无线电能传输技术的发展是在上个世纪六、七十年代,随着能源问题的突出、小型无线设备的大量出现以及电力电子技术的发展使人们对这一课题又产生了兴趣。无线电能传输技术的研究目前主要集中在太阳能空间基站、地面远距离大功率输电、飞行器及卫星无线电力供应、便携式移动设备供电,生物医学领域、可移植的小型设备充电等领域。
远程无线电力传输可采用微波或激光作载体,即发射端将电能转化为微波或激光能量发射到接收端,接收端再将微波或激光转化为电能,两种传输技术目前均处于研究阶段。微波是波长介于无线电波和红外线辐射之间的电磁波,微波输电的优点是穿透性好,适合远程传输,缺点是发射和接受装置庞大,不适合便携式和对发射、接收装置要求轻便的设备使用。而激光输电则是首先通过受激辐射放大将电能转换为激光,再将激光照射到接收装置上(一般为光伏电池)进行光电转换。该种输电方法具有传输距离远、传输效率高、接收装置小、适合小型电子设备使用等优点,对于紧急情况缺电的情况,例如,抗震救灾中,电力设施损坏;又如一些不方便安装电缆的地方,但又急需电;火灾时电力中断,电灯、电话等电器设施因停电不可使用。在这些情况下,如果有便携式无线电能传输装置,即可快速方便的得到电能,对于保护人身安全、生产生活便利提供了巨大帮助。
目前为止,光伏领域中多结点太阳能电池显示了最髙的光电转换效率,和较好的温度特性、稳定性,并已慢慢步入地面发电应用领域。相比于晶硅电池,多结点太阳能电池作为地面发电应用产品,具有使用寿命长,能源回收周期短的特点。
发明内容
针对上述问题,本发明的目的是克服现有技术的不足,结合实际应用,提出了一种基于激光无线电能传输的无人机充电方法,创新地利用无人机搭载激光器为需要电能的场景充电,且采用多结点光伏电池,提高了转换效率,减少了昂贵电池材料的使用量。本发明的技术方案如下:
一种基基于激光无线电能传输的无人机充电方法,包括:
(1)利用无人机自带电能作为激励能量源,激励半导体激光器,经过光束整形后,产生能量激光光束;
(2)在激光无线电能传输接收端,将激光扩束装置置于能够跟踪激光光束的可移动底座上;
(3)激光扩束装置将入射的激光光束扩大后平行射出;
(4)从激光扩束装置射出的激光经由球面反射镜反射会聚到棱镜再投射到光伏电池,能量转换过程中产生的热能由铝鳍散热片吸收;
(5)光伏电池将光能转换成电能。
本发明由于采取以上技术方案,其具有以下优点:
(1)本发明采用激光作为无线电能传输方式,由于激光方向性好,能量集中等特点使得大量光能可集中在一极小空间范围被接收,因此,该种输电方法具有传输距离远、传输效率高、接收装置小、适合小型电子设备使用等优点,对微型飞行器等进行远程电力传输具有独特的应用价值。例如,采用激光远程充电技术,使微型飞行器(Micro Air Vehicle-MAV)携带激光器为灾区或边远地区的传感器供电成为可能。
(2)激光光束在大气传输过程中,考虑到大气分子的吸收效应、大气分子的散射效应、大气湍流以及大气溶胶的影响,激光光束能量会衰减。因此需要聚光装置将激光光束进行聚光。本发明采用球形镜面方式将激光会聚到高透明棱镜中,再由多结点光伏电池将光能转化为电能。本发明的聚光装置,一方面,使电池芯片单位面积接收的辐射功率密度大幅度地增加,太阳电池光电转化效率得以提高;另一方面,对于给定的输出功率,可以大幅度降低太阳能电池芯片的消耗,从而降低系统的成本。
附图说明
图1本发明的一种基于激光无线电能传输的无人机充电方法的结构示意图。
附图标记说明如下:1无人机;2808nm光纤耦合半导体激光器;3激光扩束装置;4球面反射镜;5高透明棱镜;6多结点光伏电池;7铝鳍散热片;8激光无线电能传输系统接收端
具体实施方式
下面结合附图和实施例对本发明进行详细的说明。
应用场景为边远地区、森林中的传感器或人为到达不了的情况,一种基于激光无线电能传输的无人机充电方法,搭载了激光无线电能传输系统接收端后,可以对其进行激光无线电能传输。
本发明的技术方案为:参见图1,本实施例利用激光光束在普通大气空间传输能量,利用无人机1自带电能作为激励能量源,激励808nm光纤耦合半导体激光器2,经过光束整形后,产生高光束质量、小束散角、直径较粗的能量激光光束。经激光扩束装置3后扩大的激光平行射出,并且激光扩束装置3的底座可移动并具有跟踪激光功能,当激光以各种角度入射时,可迅速调整激光扩束装置3的姿态,激光扩束装置3与激光无线电能传输系统接收端8一体,可随意携带至不方便安装电缆的地方。经由球面反射镜4将激光光束反射会聚到高透明棱镜5中,通过光电转换材料为多晶硅、单晶硅、III-V族半导体等多结点光伏电池6。将光能转化为电能,经过整流、滤波之后的,可以直接为例如分布在海上或湖上的无线传感器等充电。能量转换过程中产生的热能由铝鳍散热片7吸收。

Claims (1)

1.一种基于激光无线电能传输的无人机充电方法,包括:
(1)利用无人机自带电能作为激励能量源,激励半导体激光器,经过光束整形后,产生能量激光光束;
(2)在激光无线电能传输接收端,将激光扩束装置置于能够跟踪激光光束的可移动底座上;
(3)激光扩束装置将入射的激光光束扩大后平行射出;
(4)从激光扩束装置射出的激光经由球面反射镜反射会聚到棱镜再投射到光伏电池,能量转换过程中产生的热能由铝鳍散热片吸收;
(5)光伏电池将光能转换成电能。
CN201711191048.5A 2017-11-24 2017-11-24 一种基于激光无线电能传输的无人机充电方法 Pending CN107933351A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711191048.5A CN107933351A (zh) 2017-11-24 2017-11-24 一种基于激光无线电能传输的无人机充电方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711191048.5A CN107933351A (zh) 2017-11-24 2017-11-24 一种基于激光无线电能传输的无人机充电方法

Publications (1)

Publication Number Publication Date
CN107933351A true CN107933351A (zh) 2018-04-20

Family

ID=61949720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711191048.5A Pending CN107933351A (zh) 2017-11-24 2017-11-24 一种基于激光无线电能传输的无人机充电方法

Country Status (1)

Country Link
CN (1) CN107933351A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109347216A (zh) * 2018-10-18 2019-02-15 华北水利水电大学 一种激光接收并转换成电能输出的装置与方法
CN111319786A (zh) * 2020-04-01 2020-06-23 中国人民解放军陆军工程大学 一种系留型无人机供电系统及其供电方法
CN111697712A (zh) * 2019-03-12 2020-09-22 天津大学 一种地下管网中设备的无线电能充电装置
CN112172552A (zh) * 2020-10-10 2021-01-05 军事科学院系统工程研究院军事新能源技术研究所 一种无人机远距供电方法
CN112531868A (zh) * 2020-11-20 2021-03-19 军事科学院系统工程研究院军事新能源技术研究所 一种无人编队运动平台电源供给装置
CN113169588A (zh) * 2019-05-24 2021-07-23 世宗大学校产学协力团 无线光学充电系统及其充电方法
CN113809841A (zh) * 2020-06-16 2021-12-17 丰田自动车株式会社 使用了多结型太阳能电池的非接触光能供电方法及用于该方法的光能供电用投光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124108A (zh) * 2013-01-31 2013-05-29 天津大学 一种相干光无线传输能量的方法及装置
CN103235489A (zh) * 2013-05-15 2013-08-07 中国科学院光电技术研究所 可变周期多光束干涉光刻的方法
CN205304342U (zh) * 2015-10-12 2016-06-08 上海中科深江电动车辆有限公司 一种电动车辆移动无线补电系统
CN106230134A (zh) * 2016-08-31 2016-12-14 安徽中科自动化股份有限公司 一种新型无人机激光无系统线能量传输
CN106741973A (zh) * 2016-11-29 2017-05-31 陈蓓 基于光纤传递高能激光的飞行器能量供给装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124108A (zh) * 2013-01-31 2013-05-29 天津大学 一种相干光无线传输能量的方法及装置
CN103235489A (zh) * 2013-05-15 2013-08-07 中国科学院光电技术研究所 可变周期多光束干涉光刻的方法
CN205304342U (zh) * 2015-10-12 2016-06-08 上海中科深江电动车辆有限公司 一种电动车辆移动无线补电系统
CN106230134A (zh) * 2016-08-31 2016-12-14 安徽中科自动化股份有限公司 一种新型无人机激光无系统线能量传输
CN106741973A (zh) * 2016-11-29 2017-05-31 陈蓓 基于光纤传递高能激光的飞行器能量供给装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109347216A (zh) * 2018-10-18 2019-02-15 华北水利水电大学 一种激光接收并转换成电能输出的装置与方法
CN109347216B (zh) * 2018-10-18 2021-08-17 华北水利水电大学 一种激光接收并转换成电能输出的装置与方法
CN111697712A (zh) * 2019-03-12 2020-09-22 天津大学 一种地下管网中设备的无线电能充电装置
CN113169588A (zh) * 2019-05-24 2021-07-23 世宗大学校产学协力团 无线光学充电系统及其充电方法
CN111319786A (zh) * 2020-04-01 2020-06-23 中国人民解放军陆军工程大学 一种系留型无人机供电系统及其供电方法
CN113809841A (zh) * 2020-06-16 2021-12-17 丰田自动车株式会社 使用了多结型太阳能电池的非接触光能供电方法及用于该方法的光能供电用投光装置
CN112172552A (zh) * 2020-10-10 2021-01-05 军事科学院系统工程研究院军事新能源技术研究所 一种无人机远距供电方法
CN112172552B (zh) * 2020-10-10 2022-04-01 军事科学院系统工程研究院军事新能源技术研究所 一种无人机远距供电方法
CN112531868A (zh) * 2020-11-20 2021-03-19 军事科学院系统工程研究院军事新能源技术研究所 一种无人编队运动平台电源供给装置

Similar Documents

Publication Publication Date Title
CN107933351A (zh) 一种基于激光无线电能传输的无人机充电方法
Summerer et al. Concepts for wireless energy transmission via laser
US8188366B2 (en) Integrated solar energy conversion system, method, and apparatus
GB2471816A (en) Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector
CN107769398A (zh) 一种船载便携式高效激光无线电能传输方法
CN106230134A (zh) 一种新型无人机激光无系统线能量传输
ES2366325T3 (es) Célula solar de bajo coste.
MX2014000175A (es) Planta solar.
Ugli The importance of alternative solar energy sources and the advantages and disadvantages of using solar panels in this process
CN107707009A (zh) 一种无人机激光充电装置
WO2011112207A2 (en) Solar power conversion system and methods of use
CN103337542A (zh) 一种激光-电能量转换器
CN107919741A (zh) 一种无线电能传输空中充电平台
CN103531651B (zh) 一种九宫格型激光-电能转换器
RU2492124C1 (ru) Солнечная космическая электростанция и автономная фотоизлучающая панель
CN103618210B (zh) 一种空间太阳能电站无线能量传输的激光产生与发射装置
CN104868827A (zh) 一种激光无线输能和飞轮储能的混合蓄电系统
CN104767471B (zh) 一种激光无线能量传输高效复合能量接收装置
Zhou et al. Optimized LED-based optical wireless power transmission system configuration for compact IoT
US20160352286A1 (en) Self-contained large scale computing platform
Dong et al. A new solar power satellite system faced to engineering: Concentric disc
Ortabasi et al. PowerSphere: A novel photovoltaic cavity converter using low bandgap TPV cells for efficient conversion of high power laser beams to electricity
TW201130208A (en) Wireless communication module
Kognovitskii et al. Power-communicating photo-receiving device
Elanzeery et al. Frequency survey simulation for developing novel radio frequency energy harvesting model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180420

RJ01 Rejection of invention patent application after publication