CN107924486A - 用于分类的强制稀疏 - Google Patents

用于分类的强制稀疏 Download PDF

Info

Publication number
CN107924486A
CN107924486A CN201680050371.8A CN201680050371A CN107924486A CN 107924486 A CN107924486 A CN 107924486A CN 201680050371 A CN201680050371 A CN 201680050371A CN 107924486 A CN107924486 A CN 107924486A
Authority
CN
China
Prior art keywords
vector
feature
input
feature vector
sparse features
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680050371.8A
Other languages
English (en)
Chinese (zh)
Inventor
S·马宗达
R·B·托瓦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN107924486A publication Critical patent/CN107924486A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2136Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on sparsity criteria, e.g. with an overcomplete basis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0495Quantised networks; Sparse networks; Compressed networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/7715Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Multimedia (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Databases & Information Systems (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Image Analysis (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
CN201680050371.8A 2015-09-02 2016-08-04 用于分类的强制稀疏 Pending CN107924486A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562213591P 2015-09-02 2015-09-02
US62/213,591 2015-09-02
US15/077,873 US11423323B2 (en) 2015-09-02 2016-03-22 Generating a sparse feature vector for classification
US15/077,873 2016-03-22
PCT/US2016/045636 WO2017039946A1 (en) 2015-09-02 2016-08-04 Enforced sparsity for classification

Publications (1)

Publication Number Publication Date
CN107924486A true CN107924486A (zh) 2018-04-17

Family

ID=58104178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680050371.8A Pending CN107924486A (zh) 2015-09-02 2016-08-04 用于分类的强制稀疏

Country Status (7)

Country Link
US (1) US11423323B2 (enExample)
EP (1) EP3345133A1 (enExample)
JP (1) JP7037478B2 (enExample)
KR (1) KR102570706B1 (enExample)
CN (1) CN107924486A (enExample)
CA (1) CA2993011C (enExample)
WO (1) WO2017039946A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110321866A (zh) * 2019-07-09 2019-10-11 西北工业大学 基于深度特征稀疏化算法的遥感图像场景分类方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170178346A1 (en) * 2015-12-16 2017-06-22 High School Cube, Llc Neural network architecture for analyzing video data
AU2016277542A1 (en) * 2016-12-19 2018-07-05 Canon Kabushiki Kaisha Method for training an artificial neural network
US10490182B1 (en) * 2016-12-29 2019-11-26 Amazon Technologies, Inc. Initializing and learning rate adjustment for rectifier linear unit based artificial neural networks
EP3699826A1 (en) * 2017-04-20 2020-08-26 Shanghai Cambricon Information Technology Co., Ltd Operation device and related products
EP3657399B1 (en) * 2017-05-23 2025-03-26 Shanghai Cambricon Information Technology Co., Ltd Processing method and accelerating device
CN107316065B (zh) * 2017-06-26 2021-03-02 刘艳 基于分部式子空间模型的稀疏特征提取和分类方法
CN107609599B (zh) * 2017-09-27 2020-09-08 北京小米移动软件有限公司 特征识别方法及装置
US10055685B1 (en) 2017-10-16 2018-08-21 Apprente, Inc. Machine learning architecture for lifelong learning
US10325223B1 (en) 2018-02-06 2019-06-18 Apprente, Inc. Recurrent machine learning system for lifelong learning
US10162794B1 (en) * 2018-03-07 2018-12-25 Apprente, Inc. Hierarchical machine learning system for lifelong learning
CN109905271B (zh) * 2018-05-18 2021-01-12 华为技术有限公司 一种预测方法、训练方法、装置及计算机存储介质
US20210326662A1 (en) * 2018-07-19 2021-10-21 Nokia Technologies Oy Environment modeling and abstraction of network states for cognitive functions
CN113348691B (zh) * 2018-11-28 2024-09-06 诺基亚通信公司 用于网络管理中的故障预测的方法和装置
JP7131356B2 (ja) * 2018-12-11 2022-09-06 富士通株式会社 最適化装置、最適化プログラムおよび最適化方法
US20200364765A1 (en) * 2019-04-25 2020-11-19 Mycelebs Co., Ltd. Method for managing item recommendation using degree of association between language unit and usage history
US12400137B1 (en) * 2019-09-30 2025-08-26 Amazon Technologies, Inc. Bidirectional network on a data-flow centric processor
US12236341B2 (en) 2020-09-30 2025-02-25 Moffett International Co., Limited Bank-balanced-sparse activation feature maps for neural network models
KR20230043318A (ko) * 2021-09-24 2023-03-31 삼성전자주식회사 영상 내 객체를 분류하는 객체 분류 방법 및 장치
WO2024072924A2 (en) * 2022-09-28 2024-04-04 Google Llc Scalable feature selection via sparse learnable masks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124377A1 (en) * 2008-11-19 2010-05-20 Nec Laboratories America, Inc. Linear spatial pyramid matching using sparse coding
CN102073880A (zh) * 2011-01-13 2011-05-25 西安电子科技大学 利用稀疏表示进行人脸识别的集成方法
CN103106535A (zh) * 2013-02-21 2013-05-15 电子科技大学 一种基于神经网络解决协同过滤推荐数据稀疏性的方法
US20140279774A1 (en) * 2013-03-13 2014-09-18 Google Inc. Classifying Resources Using a Deep Network

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633817B1 (en) * 1999-12-29 2003-10-14 Incyte Genomics, Inc. Sequence database search with sequence search trees
US20030139929A1 (en) * 2002-01-24 2003-07-24 Liang He Data transmission system and method for DSR application over GPRS
US7016529B2 (en) 2002-03-15 2006-03-21 Microsoft Corporation System and method facilitating pattern recognition
US20090274376A1 (en) * 2008-05-05 2009-11-05 Yahoo! Inc. Method for efficiently building compact models for large multi-class text classification
US20100161527A1 (en) * 2008-12-23 2010-06-24 Yahoo! Inc. Efficiently building compact models for large taxonomy text classification
US20150139559A1 (en) * 2012-09-14 2015-05-21 Google Inc. System and method for shape clustering using hierarchical character classifiers
US10095917B2 (en) 2013-11-04 2018-10-09 Facebook, Inc. Systems and methods for facial representation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124377A1 (en) * 2008-11-19 2010-05-20 Nec Laboratories America, Inc. Linear spatial pyramid matching using sparse coding
CN102073880A (zh) * 2011-01-13 2011-05-25 西安电子科技大学 利用稀疏表示进行人脸识别的集成方法
CN103106535A (zh) * 2013-02-21 2013-05-15 电子科技大学 一种基于神经网络解决协同过滤推荐数据稀疏性的方法
US20140279774A1 (en) * 2013-03-13 2014-09-18 Google Inc. Classifying Resources Using a Deep Network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOHN WRIGHT ET AL.: "Robust Face Recognition via Sparse Representation", 《IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE》 *
吴良斌等: "《SAR图像处理与目标识别》", 31 January 2013, 航空工业出版社 *
王一丁等: "《数字图像处理》", 31 August 2015, 西安电子科技大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110321866A (zh) * 2019-07-09 2019-10-11 西北工业大学 基于深度特征稀疏化算法的遥感图像场景分类方法
CN110321866B (zh) * 2019-07-09 2023-03-24 西北工业大学 基于深度特征稀疏化算法的遥感图像场景分类方法

Also Published As

Publication number Publication date
KR20180048930A (ko) 2018-05-10
KR102570706B1 (ko) 2023-08-24
US11423323B2 (en) 2022-08-23
CA2993011A1 (en) 2017-03-09
EP3345133A1 (en) 2018-07-11
CA2993011C (en) 2023-09-19
BR112018004219A2 (pt) 2018-09-25
WO2017039946A1 (en) 2017-03-09
JP7037478B2 (ja) 2022-03-16
US20170061328A1 (en) 2017-03-02
JP2018527677A (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
CN108027899B (zh) 用于提高经训练的机器学习模型的性能的方法
US11423323B2 (en) Generating a sparse feature vector for classification
KR102595399B1 (ko) 미지의 클래스들의 검출 및 미지의 클래스들에 대한 분류기들의 초기화
US10878320B2 (en) Transfer learning in neural networks
US11334789B2 (en) Feature selection for retraining classifiers
CN107533669B (zh) 滤波器特异性作为用于神经网络的训练准则
US10275719B2 (en) Hyper-parameter selection for deep convolutional networks
CN108431826B (zh) 自动检测视频图像中的对象
US20170032247A1 (en) Media classification
CN107430703A (zh) 对细调特征的顺序图像采样和存储
CN108140142A (zh) 选择性反向传播

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination