CN107924486A - 用于分类的强制稀疏 - Google Patents
用于分类的强制稀疏 Download PDFInfo
- Publication number
- CN107924486A CN107924486A CN201680050371.8A CN201680050371A CN107924486A CN 107924486 A CN107924486 A CN 107924486A CN 201680050371 A CN201680050371 A CN 201680050371A CN 107924486 A CN107924486 A CN 107924486A
- Authority
- CN
- China
- Prior art keywords
- vector
- feature
- input
- feature vector
- sparse features
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2136—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on sparsity criteria, e.g. with an overcomplete basis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/7715—Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Multimedia (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Databases & Information Systems (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Image Analysis (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562213591P | 2015-09-02 | 2015-09-02 | |
| US62/213,591 | 2015-09-02 | ||
| US15/077,873 US11423323B2 (en) | 2015-09-02 | 2016-03-22 | Generating a sparse feature vector for classification |
| US15/077,873 | 2016-03-22 | ||
| PCT/US2016/045636 WO2017039946A1 (en) | 2015-09-02 | 2016-08-04 | Enforced sparsity for classification |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN107924486A true CN107924486A (zh) | 2018-04-17 |
Family
ID=58104178
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201680050371.8A Pending CN107924486A (zh) | 2015-09-02 | 2016-08-04 | 用于分类的强制稀疏 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US11423323B2 (enExample) |
| EP (1) | EP3345133A1 (enExample) |
| JP (1) | JP7037478B2 (enExample) |
| KR (1) | KR102570706B1 (enExample) |
| CN (1) | CN107924486A (enExample) |
| CA (1) | CA2993011C (enExample) |
| WO (1) | WO2017039946A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110321866A (zh) * | 2019-07-09 | 2019-10-11 | 西北工业大学 | 基于深度特征稀疏化算法的遥感图像场景分类方法 |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170178346A1 (en) * | 2015-12-16 | 2017-06-22 | High School Cube, Llc | Neural network architecture for analyzing video data |
| AU2016277542A1 (en) * | 2016-12-19 | 2018-07-05 | Canon Kabushiki Kaisha | Method for training an artificial neural network |
| US10490182B1 (en) * | 2016-12-29 | 2019-11-26 | Amazon Technologies, Inc. | Initializing and learning rate adjustment for rectifier linear unit based artificial neural networks |
| EP3699826A1 (en) * | 2017-04-20 | 2020-08-26 | Shanghai Cambricon Information Technology Co., Ltd | Operation device and related products |
| EP3657399B1 (en) * | 2017-05-23 | 2025-03-26 | Shanghai Cambricon Information Technology Co., Ltd | Processing method and accelerating device |
| CN107316065B (zh) * | 2017-06-26 | 2021-03-02 | 刘艳 | 基于分部式子空间模型的稀疏特征提取和分类方法 |
| CN107609599B (zh) * | 2017-09-27 | 2020-09-08 | 北京小米移动软件有限公司 | 特征识别方法及装置 |
| US10055685B1 (en) | 2017-10-16 | 2018-08-21 | Apprente, Inc. | Machine learning architecture for lifelong learning |
| US10325223B1 (en) | 2018-02-06 | 2019-06-18 | Apprente, Inc. | Recurrent machine learning system for lifelong learning |
| US10162794B1 (en) * | 2018-03-07 | 2018-12-25 | Apprente, Inc. | Hierarchical machine learning system for lifelong learning |
| CN109905271B (zh) * | 2018-05-18 | 2021-01-12 | 华为技术有限公司 | 一种预测方法、训练方法、装置及计算机存储介质 |
| US20210326662A1 (en) * | 2018-07-19 | 2021-10-21 | Nokia Technologies Oy | Environment modeling and abstraction of network states for cognitive functions |
| CN113348691B (zh) * | 2018-11-28 | 2024-09-06 | 诺基亚通信公司 | 用于网络管理中的故障预测的方法和装置 |
| JP7131356B2 (ja) * | 2018-12-11 | 2022-09-06 | 富士通株式会社 | 最適化装置、最適化プログラムおよび最適化方法 |
| US20200364765A1 (en) * | 2019-04-25 | 2020-11-19 | Mycelebs Co., Ltd. | Method for managing item recommendation using degree of association between language unit and usage history |
| US12400137B1 (en) * | 2019-09-30 | 2025-08-26 | Amazon Technologies, Inc. | Bidirectional network on a data-flow centric processor |
| US12236341B2 (en) | 2020-09-30 | 2025-02-25 | Moffett International Co., Limited | Bank-balanced-sparse activation feature maps for neural network models |
| KR20230043318A (ko) * | 2021-09-24 | 2023-03-31 | 삼성전자주식회사 | 영상 내 객체를 분류하는 객체 분류 방법 및 장치 |
| WO2024072924A2 (en) * | 2022-09-28 | 2024-04-04 | Google Llc | Scalable feature selection via sparse learnable masks |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100124377A1 (en) * | 2008-11-19 | 2010-05-20 | Nec Laboratories America, Inc. | Linear spatial pyramid matching using sparse coding |
| CN102073880A (zh) * | 2011-01-13 | 2011-05-25 | 西安电子科技大学 | 利用稀疏表示进行人脸识别的集成方法 |
| CN103106535A (zh) * | 2013-02-21 | 2013-05-15 | 电子科技大学 | 一种基于神经网络解决协同过滤推荐数据稀疏性的方法 |
| US20140279774A1 (en) * | 2013-03-13 | 2014-09-18 | Google Inc. | Classifying Resources Using a Deep Network |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6633817B1 (en) * | 1999-12-29 | 2003-10-14 | Incyte Genomics, Inc. | Sequence database search with sequence search trees |
| US20030139929A1 (en) * | 2002-01-24 | 2003-07-24 | Liang He | Data transmission system and method for DSR application over GPRS |
| US7016529B2 (en) | 2002-03-15 | 2006-03-21 | Microsoft Corporation | System and method facilitating pattern recognition |
| US20090274376A1 (en) * | 2008-05-05 | 2009-11-05 | Yahoo! Inc. | Method for efficiently building compact models for large multi-class text classification |
| US20100161527A1 (en) * | 2008-12-23 | 2010-06-24 | Yahoo! Inc. | Efficiently building compact models for large taxonomy text classification |
| US20150139559A1 (en) * | 2012-09-14 | 2015-05-21 | Google Inc. | System and method for shape clustering using hierarchical character classifiers |
| US10095917B2 (en) | 2013-11-04 | 2018-10-09 | Facebook, Inc. | Systems and methods for facial representation |
-
2016
- 2016-03-22 US US15/077,873 patent/US11423323B2/en active Active
- 2016-08-04 JP JP2018511276A patent/JP7037478B2/ja active Active
- 2016-08-04 CN CN201680050371.8A patent/CN107924486A/zh active Pending
- 2016-08-04 CA CA2993011A patent/CA2993011C/en active Active
- 2016-08-04 WO PCT/US2016/045636 patent/WO2017039946A1/en not_active Ceased
- 2016-08-04 KR KR1020187009144A patent/KR102570706B1/ko active Active
- 2016-08-04 EP EP16759902.6A patent/EP3345133A1/en not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100124377A1 (en) * | 2008-11-19 | 2010-05-20 | Nec Laboratories America, Inc. | Linear spatial pyramid matching using sparse coding |
| CN102073880A (zh) * | 2011-01-13 | 2011-05-25 | 西安电子科技大学 | 利用稀疏表示进行人脸识别的集成方法 |
| CN103106535A (zh) * | 2013-02-21 | 2013-05-15 | 电子科技大学 | 一种基于神经网络解决协同过滤推荐数据稀疏性的方法 |
| US20140279774A1 (en) * | 2013-03-13 | 2014-09-18 | Google Inc. | Classifying Resources Using a Deep Network |
Non-Patent Citations (3)
| Title |
|---|
| JOHN WRIGHT ET AL.: "Robust Face Recognition via Sparse Representation", 《IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE》 * |
| 吴良斌等: "《SAR图像处理与目标识别》", 31 January 2013, 航空工业出版社 * |
| 王一丁等: "《数字图像处理》", 31 August 2015, 西安电子科技大学出版社 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110321866A (zh) * | 2019-07-09 | 2019-10-11 | 西北工业大学 | 基于深度特征稀疏化算法的遥感图像场景分类方法 |
| CN110321866B (zh) * | 2019-07-09 | 2023-03-24 | 西北工业大学 | 基于深度特征稀疏化算法的遥感图像场景分类方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20180048930A (ko) | 2018-05-10 |
| KR102570706B1 (ko) | 2023-08-24 |
| US11423323B2 (en) | 2022-08-23 |
| CA2993011A1 (en) | 2017-03-09 |
| EP3345133A1 (en) | 2018-07-11 |
| CA2993011C (en) | 2023-09-19 |
| BR112018004219A2 (pt) | 2018-09-25 |
| WO2017039946A1 (en) | 2017-03-09 |
| JP7037478B2 (ja) | 2022-03-16 |
| US20170061328A1 (en) | 2017-03-02 |
| JP2018527677A (ja) | 2018-09-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108027899B (zh) | 用于提高经训练的机器学习模型的性能的方法 | |
| US11423323B2 (en) | Generating a sparse feature vector for classification | |
| KR102595399B1 (ko) | 미지의 클래스들의 검출 및 미지의 클래스들에 대한 분류기들의 초기화 | |
| US10878320B2 (en) | Transfer learning in neural networks | |
| US11334789B2 (en) | Feature selection for retraining classifiers | |
| CN107533669B (zh) | 滤波器特异性作为用于神经网络的训练准则 | |
| US10275719B2 (en) | Hyper-parameter selection for deep convolutional networks | |
| CN108431826B (zh) | 自动检测视频图像中的对象 | |
| US20170032247A1 (en) | Media classification | |
| CN107430703A (zh) | 对细调特征的顺序图像采样和存储 | |
| CN108140142A (zh) | 选择性反向传播 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |