CN107918400A - 一种空天飞行器在轨操作相对位置姿态联合控制方法 - Google Patents

一种空天飞行器在轨操作相对位置姿态联合控制方法 Download PDF

Info

Publication number
CN107918400A
CN107918400A CN201711124072.7A CN201711124072A CN107918400A CN 107918400 A CN107918400 A CN 107918400A CN 201711124072 A CN201711124072 A CN 201711124072A CN 107918400 A CN107918400 A CN 107918400A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
aircraft
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711124072.7A
Other languages
English (en)
Other versions
CN107918400B (zh
Inventor
朱永贵
满益明
张春阳
李永远
孙光
张月玲
朱如意
杨勇
陈洪波
曹晓瑞
何超凡
吴俊辉
王征
陈灿辉
王国庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Original Assignee
China Academy of Launch Vehicle Technology CALT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201711124072.7A priority Critical patent/CN107918400B/zh
Publication of CN107918400A publication Critical patent/CN107918400A/zh
Application granted granted Critical
Publication of CN107918400B publication Critical patent/CN107918400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Abstract

本发明涉及一种空天飞行器在轨操作相对位置姿态联合控制方法,针对发动机有限推力以及饱和特性,通过多项反馈补偿措施,实现任意目标姿态与任意目标位置的一体化控制,具有高效率、高任务适应性、流程简单、易于实现的优点;解决了现有在轨操作中相对位置与相对姿态控制方法重复性强、工作量大、任务适应性差等问题,并且本发明基于不依赖于发动机布局形式的自适应发动机分配方法,对不同发动机布局结果无需重新设计分配算法,有效简化设计流程;对于多通道耦合发动机布局配置的飞行器,任务适应性强。

Description

一种空天飞行器在轨操作相对位置姿态联合控制方法
技术领域
本发明涉及一种空天飞行器在轨操作相对位置姿态联合控制方法,属于可重复使用飞行器在轨操作技术领域。
背景技术
空天飞行器是一类新型的飞行器,穿梭跨越大气层、往返于天地之间,飞行器兼顾航天、航空飞行器双重特性。随着空间技术的快速发展与空间应用的不断拓展,各航天大国相继研制大量面向各种任务需求的空天飞行器,提出了大量新概念计划,系统组成口趋复杂、任务口益多样、性能水平不断提升,自主性要求越来越高。其中,近距离在轨操作对飞行器适应任务的灵活能力、优越的时间和空间覆盖能力、高可靠和生存能力等提出了更高要求,代表了航天领域发展的重要方向,引起航天界的极大关注,同时也孕育了许多新的应用概念,如自主在轨服务技术和集群飞行概念,成为航天领域研究与应用的前沿。美国国防高级研究计划局(Department of Advanced Research Project Agency,DARPA)于2007年完成轨道快车计划(Orbit Express,OE);2006年提出并开始实施分离模块集群航天器(以下简称集群航天器)F6(Future,Fast,Flexible,Fractionated,Free-Flying Spacecraft,F6)计划;2011年启动“凤凰”(Phoenix)计划等。
飞行器近距离操作任务越来越复杂,对其快速响应性、自主性及可靠性要求越来越高,主要情形包括:
(1)自主在轨捕获与维修、在轨监视、在轨更换、在轨组装、在轨加注等自主在轨服务,涉及多种飞行器近距离操作任务,如自主交会、物理对接、自主抓捕锁定等,对近距离操作的安全性、可靠性即自主防撞提出了更严格的要求;
(2)由多颗模块飞行器组成的功能完整的虚拟飞行器系统进行集群飞行,亦涉及大量的近距离操作,如分散与集结、模块飞行器的插入/退出、快速构形重构等,在面临系统级通信不确定性、导航不确定性等情况下,对系统整体的自主碰撞规避能力提出了更高要求。
上述两类飞行器近距离操作任务是目前国际上航天技术的发展前沿且具有更高的复杂性和更好的代表性。国内外在此领域开展了许多研究,包括相对轨道姿态耦合动力学、碰撞风险评估方法、自主防碰撞控制方法等。
传统在轨操作中相对位置与相对姿态控制采用分立式设计,存在方法重复性强、工作量大、任务适应性差等问题,需针对在轨操作控制精度要求,提出一种适用于该类空天飞行器的相对位置姿态联合控制方法,以实现飞行器安全、可靠、自主的实施在轨捕获、更换、组装等目标。
发明内容
本发明的目的在于克服现有技术的上述缺陷,提供一种基于递阶饱和理论的空天飞行器在轨操作相对位置姿态联合控制方法,该方法具有高效率、高任务适应性、流程简单、易于实现的优点。
本发明的上述目的主要是通过如下技术方案予以实现的:
一种空天飞行器在轨操作相对位置姿态联合控制方法,包括:
确定飞行器运动控制参数;
设计飞行器转动三轴递阶饱和控制器指令uc,根据所述飞行器转动三轴递阶饱和控制器指令uc和刚体卫星姿态动力学方程,得到飞行器指令力矩Tc
设计飞行器平动三轴递阶饱和控制器指令uc',根据所述飞行器平动三轴递阶饱和控制器指令uc'和刚体卫星位置动力学方程,得到飞行器指令力Fc
根据所述飞行器指令力矩Tc计算得到每一个控制周期Tsam内的转动需求喷气时间tonA
根据所述飞行器指令力Fc计算得到每一个控制周期Tsam内的平动需求喷气时间tonR
根据所述每一个控制周期Tsam内的转动需求喷气时间tonA和每一个控制周期Tsam内的平动需求喷气时间tonR,得到每一个控制周期内位置姿态联合控制指令开机时间ton
在上述空天飞行器在轨操作相对位置姿态联合控制方法中,所述飞行器运动控制参数包括最大机动角加速度最大机动加速度转动阻尼比ξ和平动阻尼比ξ'。
在上述空天飞行器在轨操作相对位置姿态联合控制方法中,所述最大机动角加速度选取原则为执行机构可产生的最大角加速度的50%~70%;所述最大机动加速度选取原则为执行机构可产生的最大加速度的50%~70%;所述转动阻尼比ξ和平动阻尼比ξ'在机动过程中选取原则为ξ取值为1~1.5,ξ'取值为1~1.5;稳定过程选取原则为ξ取值为0.6~0.8,ξ'取值为0.6~0.8。
在上述空天飞行器在轨操作相对位置姿态联合控制方法中,所述飞行器转动三轴递阶饱和控制器指令uc的表达式如下:
其中,qbtv为qbt四元数的矢量部分;qup为|qbtv|的上限,具体表达式如下:
其中,ξ为转动阻尼比,ωn为转动自然角频率,Kp为转动比例系数,Kd为转动微分系数,uup为执行机构所准许的在转动方向上能够取得的最大值;为-qbtv方向的最大角加速度,satv()为矢量饱和函数,其定义如下:
在上述空天飞行器在轨操作相对位置姿态联合控制方法中,所述转动比例系数Kp与转动微分系数Kd的计算公式如下:
其中:E3为3阶单位阵。
在上述空天飞行器在轨操作相对位置姿态联合控制方法中,根据所述飞行器转动三轴递阶饱和控制器指令uc和刚体卫星姿态动力学方程,得到飞行器指令力矩Tc的具体方法如下:
其中:I为飞行器的转动惯量,ωbi为飞行器相对于惯性系的角速度,h为飞轮角动量,为飞轮角动量变化率,Tg为重力梯度力矩,Tm为磁卸载力矩。
在上述空天飞行器在轨操作相对位置姿态联合控制方法中,所述飞行器平动三轴递阶饱和控制器指令uc'的表达式如下:
式中,m为飞行器的质量;rup的具体表达式如下:
其中,ξ'为平动阻尼比,ωn'为自然角频率;Kp'为平动比例系数,Kd'为平动微分系数,uup'为执行机构所准许的在平动方向上能够取得的最大值;为-r方向的最大加速度,satv()为矢量饱和函数,其定义如下:
在上述空天飞行器在轨操作相对位置姿态联合控制方法中,所述平动比例系数Kp'与平动微分系数Kd'的计算公式如下:
Kp'=(ωn')2E3,Kd'=2ξ'ωn'E3
其中:E3为3阶单位阵。
在上述空天飞行器在轨操作相对位置姿态联合控制方法中,根据所述飞行器平动三轴递阶饱和控制器指令uc'和刚体卫星位置动力学方程,得到飞行器指令力Fc的具体方法如下:
Fc=uc'。
在上述空天飞行器在轨操作相对位置姿态联合控制方法中,根据所述飞行器指令力矩Tc计算得到每一个控制周期内的转动需求喷气时间tonA的具体方法如下:
其中:UsA为每台发动机开机时对质心的力矩矩阵;Tsam为控制周期。
在上述空天飞行器在轨操作相对位置姿态联合控制方法中,对tonA进行矢量限幅,得到:
在上述空天飞行器在轨操作相对位置姿态联合控制方法中,根据所述飞行器指令力Fc计算得到每一个控制周期内的平动需求喷气时间tonR的具体方法如下:
其中:UsR为每台发动机开机时对质心的力矩阵;Tsam为控制周期。
在上述空天飞行器在轨操作相对位置姿态联合控制方法中,对tonR进行矢量限幅,得到:
在上述空天飞行器在轨操作相对位置姿态联合控制方法中,根据所述每一个控制周期Tsam内的转动需求喷气时间tonA和每一个控制周期Tsam内的平动需求喷气时间tonR,得到每一个控制周期内位置姿态联合控制指令开机时间ton的具体公式如下:
ton=tonA+tonR
对ton进行矢量限幅,得到:
本发明与现有技术相比具有的有益效果如下:
(1)本发明针对发动机有限推力以及饱和特性,通过多项反馈补偿措施,实现任意目标姿态与任意目标位置的一体化控制,具有高效率、高任务适应性、流程简单、易于实现的优点;解决了现有在轨操作中相对位置与相对姿态控制方法重复性强、工作量大、任务适应性差等问题。
(2)、本发明基于不依赖于发动机布局形式的自适应发动机分配方法,对不同发动机布局结果无需重新设计分配算法,有效简化设计流程;对于多通道耦合发动机布局配置的飞行器,任务适应性强。
(3)、本发明基于位置姿态机动和稳定状态分别提出的参数选取原则,极大提高设计效率,有效克服了控制参数传统调试方法的时间长、规律性差等弊端。
附图说明
图1为本发明的在轨操作相对位置姿态联合控制方法流程图。
图2为本发明相对姿态控制的指令力矩计算流程图。
图3为本发明相对位置控制的指令力计算流程图。
图4为本发明每台发动机指令工作时间长度计算流程图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
如图1所示为本发明的在轨操作相对位置姿态联合控制方法流程图,本发明空天飞行器相对位置姿态联合控制方法具体包括如下步骤:
(一)确定控制参数取值
控制参数设计包括最大机动角加速度最大机动加速度转动阻尼比ξ和平动阻尼比ξ'。
(1)、本发明实施例中最大机动角加速度选取原则为执行机构可产生的最大角加速度的50%~70%,用于克服各种偏差;
(2)、本发明实施例中最大机动加速度选取原则为执行机构可产生的最大加速度的50%~70%,用于克服各种偏差;
(3)、本发明实施例中转动阻尼比ξ以及平动阻尼比ξ',在机动过程中选取原则为ξ取值为1~1.5,ξ'取值为1~1.5;稳定过程选取原则为ξ取值为0.6~0.8,ξ'取值为0.6~0.8。
使用上述控制参数选取原则,可使控制性能最优化,过渡过程最快且无超调;稳态精度高,并且最省推进剂。
(二)确定飞行器指令力矩
根据姿态运动学与动力学方程,刚体卫星姿态动力学方程形式如下:
式中,I为飞行器的转动惯量,ωbi为飞行器本体相对于惯性系的角速度,h为飞轮角动量,为飞轮角动量变化率,Tc为飞行器指令力矩,Td为未知干扰力矩,Tg为重力梯度力矩,Tm为磁卸载力矩。
卫星姿态运动学方程为:
式中,qbt为本体系相对于目标系的姿态四元数,ωbt为本体系相对于目标系的姿态角速度。
控制的目标是qbt=[1 0 0 0]T,ωbt=0。将动力学方程转化为一个二阶系统
其中,
对uc进行设计,根据uc的表达式,求解出Tc的表达式。针对uc设计的三轴递阶饱和控制器形式如下:
式中,qbtv为qbt四元数的矢量部分。qup为|qbtv|的上限,qup的具体表达式如下:
其中,ξ为转动阻尼比,ωn为转动自然角频率,Kp为转动比例系数,Kd为转动微分系数,uup为执行机构所准许的在转动方向上能够取得的最大值;为-qbtv方向的最大角加速度,satv()为矢量饱和函数,其定义如下:
例如本步骤中具体表示如下:
矢量饱和函数的作用为:保持矢量的方向不变,对矢量的幅值进行限制。当得到了指令uc之后,可以根据uc与指令力矩的关系反解出指令力矩的大小,具体表达式如下:
控制系统指令力矩的幅值与执行机构有关,可以通过步骤(一)确定,而由于前馈指令的存在,实际的控制器需要在Tc满足在力矩幅值范围内的前提下,确定uc方向能取得的最大值uup。限制即可保证uup的取值不超出力矩幅值范围。
通过上述设计,可得出角加速度表达式
因此,
其中,Kp为比例系数,Kd为微分系数,E3为3阶单位阵。
当飞行器各方向执行机构配置不同时,可单独设计Kp与Kd中的自然角频率和阻尼比。
(三)确定飞行器指令力
根据位置运动学与动力学方程,刚体卫星位置动力学方程形式如下:
式中,m为飞行器的质量,为本体相对于惯性系的视加速度,Fc为指令力。
控制的目标是,r=[0 0 0]T,v=0。动力学方程为一个二阶系统
其中,
uc'=Fc (13)
对uc'进行设计,根据uc'的表达式,求解出Fc的表达式。针对uc'设计的三轴递阶饱和控制器形式如下:
式中,rup的具体表达式如下:
其中,ξ'为平动阻尼比,ωn'为自然角频率;Kp'为平动比例系数,Kd'为平动微分系数,uup'为执行机构所准许的在平动方向上能够取得的最大值;为-r方向的最大加速度,satv()为矢量饱和函数,其定义如下:
例如本步骤中具体表达式如下:
当得到了指令uc'之后,根据uc'与指令力的关系反解出指令力的大小,具体表达式如下:
Fc=uc' (18)
控制系统指令力的幅值与执行机构有关,可根据步骤(一)确定,实际的控制器需要在Fc满足在力幅值范围内的前提下,确定uc'方向能取得的最大值uup。通常,限制即可保证uup'的取值不超出力幅值范围。
可得出加速度表达式
因此,
Kp'=(ωn')2E3,Kd'=2ξ'ωn'E3 (20)
其中,E3为3阶单位阵。
当飞行器各方向执行机构配置不同时,可单独设计Kp'与Kd'中的自然角频率和阻尼比。
(四)确定每台发动机指令工作时间长度
根据每台发动机开机时对质心的力矩矩阵UsA,计算满足约束条件UsAtonA=Tc·Tsam的tonA。其中,tonA为每一个控制周期Tsam内的转动需求喷气时间,tonA=[ton1,ton2…,tonm]T
tonA的表达式为
其中:UsA为每台发动机开机时对质心的力矩矩阵;Tsam为控制周期。
对tonA进行矢量限幅,即:
根据每台发动机开机时对质心的力矩阵UsR,计算满足约束条件UsRtonR=Fc·Tsam的tonR。其中,tonR为每一个控制周期Tsam内的平动需求喷气时间,tonR=[ton1,ton2…,tonm]T
tonR的表达式为
其中:UsR为每台发动机开机时对质心的力矩阵;Tsam为控制周期。
对tonR进行矢量限幅,即:
每一个控制周期内,位置姿态联合控制指令开机时间为
ton=tonA+tonR (25)
对ton进行矢量限幅,即
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明公开的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (14)

1.一种空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于包括:
确定飞行器运动控制参数;
设计飞行器转动三轴递阶饱和控制器指令uc,根据所述飞行器转动三轴递阶饱和控制器指令uc和刚体卫星姿态动力学方程,得到飞行器指令力矩Tc
设计飞行器平动三轴递阶饱和控制器指令uc',根据所述飞行器平动三轴递阶饱和控制器指令uc'和刚体卫星位置动力学方程,得到飞行器指令力Fc
根据所述飞行器指令力矩Tc计算得到每一个控制周期Tsam内的转动需求喷气时间tonA
根据所述飞行器指令力Fc计算得到每一个控制周期Tsam内的平动需求喷气时间tonR
根据所述每一个控制周期Tsam内的转动需求喷气时间tonA和每一个控制周期Tsam内的平动需求喷气时间tonR,得到每一个控制周期内位置姿态联合控制指令开机时间ton
2.根据权利要求1所述的空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于:所述飞行器运动控制参数包括最大机动角加速度最大机动加速度转动阻尼比ξ和平动阻尼比ξ'。
3.根据权利要求2所述的空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于:所述最大机动角加速度选取原则为执行机构可产生的最大角加速度的50%~70%;所述最大机动加速度选取原则为执行机构可产生的最大加速度的50%~70%;所述转动阻尼比ξ和平动阻尼比ξ'在机动过程中选取原则为ξ取值为1~1.5,ξ'取值为1~1.5;稳定过程选取原则为ξ取值为0.6~0.8,ξ'取值为0.6~0.8。
4.根据权利要求1所述的空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于:所述飞行器转动三轴递阶饱和控制器指令uc的表达式如下:
<mrow> <msub> <mi>u</mi> <mi>c</mi> </msub> <mo>=</mo> <mi>I</mi> <munder> <mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mi>v</mi> </mrow> <msub> <mi>u</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msub> </munder> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <munder> <mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mi>v</mi> </mrow> <msub> <mi>q</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msub> </munder> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>b</mi> <mi>t</mi> <mi>v</mi> </mrow> </msub> <mo>)</mo> <mo>-</mo> <msub> <mi>K</mi> <mi>d</mi> </msub> <msub> <mi>&amp;omega;</mi> <mrow> <mi>b</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
其中,qbtv为qbt四元数的矢量部分;qup为|qbtv|的上限,具体表达式如下:
<mrow> <msub> <mi>q</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <mi>&amp;xi;</mi> <msub> <mi>&amp;omega;</mi> <mi>n</mi> </msub> </mfrac> <msub> <mi>&amp;omega;</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;xi;</mi> </mrow> <msub> <mi>&amp;omega;</mi> <mi>n</mi> </msub> </mfrac> <msqrt> <mrow> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>|</mo> <msub> <mi>q</mi> <mrow> <mi>b</mi> <mi>t</mi> <mi>v</mi> </mrow> </msub> <mo>|</mo> </mrow> </msqrt> <mo>)</mo> </mrow> </mrow>
其中,ξ为转动阻尼比,ωn为转动自然角频率,Kp为转动比例系数,Kd为转动微分系数,uup为执行机构所准许的在转动方向上能够取得的最大值;为-qbtv方向的最大角加速度,satv()为矢量饱和函数,其定义如下:
<mrow> <munder> <mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mi>v</mi> </mrow> <mi>a</mi> </munder> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>&lt;</mo> <mi>a</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mi>a</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
5.根据权利要求4所述的空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于:所述转动比例系数Kp与转动微分系数Kd的计算公式如下:
Kd=2ξωnE3
其中:E3为3阶单位阵。
6.根据权利要求1~5之一所述的空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于:根据所述飞行器转动三轴递阶饱和控制器指令uc和刚体卫星姿态动力学方程,得到飞行器指令力矩Tc的具体方法如下:
<mrow> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>u</mi> <mi>c</mi> </msub> <mo>-</mo> <msub> <mi>T</mi> <mi>g</mi> </msub> <mo>-</mo> <msub> <mi>T</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;times;</mo> <mi>I</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;times;</mo> <mi>h</mi> <mo>+</mo> <mover> <mi>h</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow>
其中:I为飞行器的转动惯量,ωbi为飞行器相对于惯性系的角速度,h为飞轮角动量,为飞轮角动量变化率,Tg为重力梯度力矩,Tm为磁卸载力矩。
7.根据权利要求1所述的空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于:所述飞行器平动三轴递阶饱和控制器指令uc'的表达式如下:
<mrow> <msup> <msub> <mi>u</mi> <mi>c</mi> </msub> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>m</mi> <munder> <mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mi>v</mi> </mrow> <mrow> <msup> <msub> <mi>u</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msub> <mo>&amp;prime;</mo> </msup> </mrow> </munder> <mrow> <mo>(</mo> <mo>-</mo> <msup> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>&amp;prime;</mo> </msup> <munder> <mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mi>v</mi> </mrow> <msub> <mi>r</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msub> </munder> <mo>(</mo> <mi>r</mi> <mo>)</mo> <mo>-</mo> <msup> <msub> <mi>K</mi> <mi>d</mi> </msub> <mo>&amp;prime;</mo> </msup> <mi>v</mi> <mo>)</mo> </mrow> </mrow>
式中,m为飞行器的质量;rup的具体表达式如下:
<mrow> <msub> <mi>r</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>2</mn> <msup> <mi>&amp;xi;</mi> <mo>&amp;prime;</mo> </msup> </mrow> <mrow> <msup> <msub> <mi>&amp;omega;</mi> <mi>n</mi> </msub> <mo>&amp;prime;</mo> </msup> </mrow> </mfrac> <msub> <mi>v</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> <mfrac> <mrow> <mn>2</mn> <msup> <mi>&amp;xi;</mi> <mo>&amp;prime;</mo> </msup> </mrow> <mrow> <msup> <msub> <mi>&amp;omega;</mi> <mi>n</mi> </msub> <mo>&amp;prime;</mo> </msup> </mrow> </mfrac> <msqrt> <mrow> <mn>2</mn> <msub> <mover> <mi>v</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>|</mo> <mi>r</mi> <mo>|</mo> </mrow> </msqrt> <mo>)</mo> </mrow> </mrow>
其中,ξ'为平动阻尼比,ωn'为自然角频率;Kp'为平动比例系数,Kd'为平动微分系数,uup'为执行机构所准许的在平动方向上能够取得的最大值;为-r方向的最大加速度,satv()为矢量饱和函数,其定义如下:
<mrow> <munder> <mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> <mi>v</mi> </mrow> <mi>a</mi> </munder> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>&lt;</mo> <mi>a</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mi>a</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
8.根据权利要求7所述的空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于:所述平动比例系数Kp'与平动微分系数Kd'的计算公式如下:
Kp'=(ωn')2E3,Kd'=2ξ'ωn'E3
其中:E3为3阶单位阵。
9.根据权利要求1、7或8所述的空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于:根据所述飞行器平动三轴递阶饱和控制器指令uc'和刚体卫星位置动力学方程,得到飞行器指令力Fc的具体方法如下:
Fc=uc'。
10.根据权利要求1所述的空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于:根据所述飞行器指令力矩Tc计算得到每一个控制周期内的转动需求喷气时间tonA的具体方法如下:
<mrow> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>A</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>s</mi> <mi>A</mi> </mrow> <mi>T</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mrow> <mi>s</mi> <mi>A</mi> </mrow> </msub> <msubsup> <mi>U</mi> <mrow> <mi>s</mi> <mi>A</mi> </mrow> <mi>T</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>m</mi> </mrow> </msub> </mrow>
其中:UsA为每台发动机开机时对质心的力矩矩阵;Tsam为控制周期。
11.根据权利要求10所述的空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于:对tonA进行矢量限幅,得到:
<mrow> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>A</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>A</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>A</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>m</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mfrac> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>A</mi> </mrow> </msub> <mrow> <mi>max</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>A</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>max</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>A</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
12.根据权利要求1所述的空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于:根据所述飞行器指令力Fc计算得到每一个控制周期内的平动需求喷气时间tonR的具体方法如下:
<mrow> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>R</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>s</mi> <mi>R</mi> </mrow> <mi>T</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mrow> <mi>s</mi> <mi>R</mi> </mrow> </msub> <msubsup> <mi>U</mi> <mrow> <mi>s</mi> <mi>R</mi> </mrow> <mi>T</mi> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>F</mi> <mi>c</mi> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>m</mi> </mrow> </msub> </mrow>
其中:UsR为每台发动机开机时对质心的力矩阵;Tsam为控制周期。
13.根据权利要求12所述的空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于:对tonR进行矢量限幅,得到:
<mrow> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>R</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>R</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>R</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>m</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mfrac> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>R</mi> </mrow> </msub> <mrow> <mi>max</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>R</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>max</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> <mi>R</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
14.根据权利要求1~5、7~8、11~13之一所述的空天飞行器在轨操作相对位置姿态联合控制方法,其特征在于:根据所述每一个控制周期Tsam内的转动需求喷气时间tonA和每一个控制周期Tsam内的平动需求喷气时间tonR,得到每一个控制周期内位置姿态联合控制指令开机时间ton的具体公式如下:
ton=tonA+tonR
对ton进行矢量限幅,得到:
<mrow> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>m</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mfrac> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mrow> <mi>max</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>max</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
CN201711124072.7A 2017-11-14 2017-11-14 一种空天飞行器在轨操作相对位置姿态联合控制方法 Active CN107918400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711124072.7A CN107918400B (zh) 2017-11-14 2017-11-14 一种空天飞行器在轨操作相对位置姿态联合控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711124072.7A CN107918400B (zh) 2017-11-14 2017-11-14 一种空天飞行器在轨操作相对位置姿态联合控制方法

Publications (2)

Publication Number Publication Date
CN107918400A true CN107918400A (zh) 2018-04-17
CN107918400B CN107918400B (zh) 2021-03-26

Family

ID=61895461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711124072.7A Active CN107918400B (zh) 2017-11-14 2017-11-14 一种空天飞行器在轨操作相对位置姿态联合控制方法

Country Status (1)

Country Link
CN (1) CN107918400B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109507875A (zh) * 2019-01-08 2019-03-22 哈尔滨工业大学 一种欧拉旋转卫星姿态机动递阶饱和pid控制方法
CN110585711A (zh) * 2019-09-12 2019-12-20 腾讯科技(深圳)有限公司 虚拟飞行器的控制方法、装置、终端及存储介质
CN112363524A (zh) * 2020-11-20 2021-02-12 中国运载火箭技术研究院 一种基于自适应增益扰动补偿的再入飞行器姿态控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104590588A (zh) * 2014-12-04 2015-05-06 哈尔滨工业大学 一种基于隔离余量方法与脉宽融合策略的挠性卫星姿态轨道耦合控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104590588A (zh) * 2014-12-04 2015-05-06 哈尔滨工业大学 一种基于隔离余量方法与脉宽融合策略的挠性卫星姿态轨道耦合控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PHILIP N K等: "Relative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft", 《ACTA ASTRONAUTICA》 *
彭智宏等: "基于对偶四元数的航天器相对位置和姿态耦合控制", 《飞行器测控学报》 *
王剑颖: "航天器姿轨一体化动力学建模、控制与导航方法研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑(电子期刊)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109507875A (zh) * 2019-01-08 2019-03-22 哈尔滨工业大学 一种欧拉旋转卫星姿态机动递阶饱和pid控制方法
CN109507875B (zh) * 2019-01-08 2022-03-04 哈尔滨工业大学 一种欧拉旋转卫星姿态机动递阶饱和pid控制方法
CN110585711A (zh) * 2019-09-12 2019-12-20 腾讯科技(深圳)有限公司 虚拟飞行器的控制方法、装置、终端及存储介质
CN112363524A (zh) * 2020-11-20 2021-02-12 中国运载火箭技术研究院 一种基于自适应增益扰动补偿的再入飞行器姿态控制方法
CN112363524B (zh) * 2020-11-20 2024-02-20 中国运载火箭技术研究院 一种基于自适应增益扰动补偿的再入飞行器姿态控制方法

Also Published As

Publication number Publication date
CN107918400B (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
Miele Flight mechanics: theory of flight paths
CN107918400A (zh) 一种空天飞行器在轨操作相对位置姿态联合控制方法
Geng et al. Implementation and demonstration of coordinated transport of a slung load by a team of rotorcraft
CN106021784A (zh) 一种基于两层优化策略的全轨迹优化设计方法
Yamasaki et al. Robust trajectory-tracking method for UAV guidance using proportional navigation
Huang et al. Guidance, navigation, and control system design for tripropeller vertical-take-off-and-landing unmanned air vehicle
Acosta et al. Adaptive nonlinear dynamic inversion control of an autonomous airship for the exploration of Titan
Subrahmanyam et al. Entry, Descent, and Landing technological barriers and crewed MARS vehicle performance analysis
Mazouz et al. Convex optimization guidance for precision landing on titan
Akkinapalli et al. Attitude control of a multicopter using L 1 augmented quaternion based backstepping
Whitmore et al. Orbital space plane, past, present, and future
Valmorbida et al. SPARTANS-A cooperating spacecraft testbed for autonomous proximity operations experiments
Saikia et al. Trajectory optimization for adaptive deployable entry and placement technology (ADEPT)
Yao et al. Trajectory tracking controller based on PID-NLADRC
DwyerCianciolo et al. Overview of the nasa entry, descent and landing systems analysis exploration feed-forward study
Johnson A parameterized approach to the design of lunar lander attitude controllers
Pienkowski et al. Analysis of the aerodynamic orbital transfer capabilities of the X-37 space maneuvering vehicle (SMV)
Astrov et al. Situational awareness based flight control of a drone
Johnson et al. Evaluation of an adaptive method for launch vehicle flight control
Battipede et al. Control allocation system for an innovative remotely-piloted airship
Wittal et al. Mission Design Considerations for Robotic Lunar and Gateway Payload Return
Saikia et al. Trajectory optimization analysis of rigid deployable aerodynamic decelerator
Gambone Seeker Cubesat Control System
Kargarnajafi et al. Conceptual Design of the Spacecraft Attitude Control Based on the Plane Displacement of the Propulsion System
Jones et al. Low excess speed triple cyclers of Venus, Earth, and Mars

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant