CN107908885A - Basin Social Ecology hydrology evolutionary process analogy method based on kinetics equation - Google Patents

Basin Social Ecology hydrology evolutionary process analogy method based on kinetics equation Download PDF

Info

Publication number
CN107908885A
CN107908885A CN201711157102.4A CN201711157102A CN107908885A CN 107908885 A CN107908885 A CN 107908885A CN 201711157102 A CN201711157102 A CN 201711157102A CN 107908885 A CN107908885 A CN 107908885A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
mtd
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711157102.4A
Other languages
Chinese (zh)
Inventor
刘登峰
栾金凯
魏秀
张连鹏
杨倩
刘赛艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201711157102.4A priority Critical patent/CN107908885A/en
Publication of CN107908885A publication Critical patent/CN107908885A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention discloses a kind of basin Social Ecology hydrology evolutionary process analogy method based on kinetics equation, specifically implement according to following steps:Step 1, analogue unit divides;Step 2, Social Ecology hydrology Evolution Simulation model is established, including:Step 2.1, the state variable in modeling unit is set;Step 2.2, system dynamic course equation is established;Step 3, simulation phase and preparation model input data are determined;Step 4, main parameter is determined;Step 5, solving model and usage history data calibration parameter;Step 6, simulation obtains evolutionary process.Solve the problems, such as it is existing in the prior art do not account for adaptation of the society to water deficit conditions and with ecological environment problem it is prominent can more pay attention to the value of ecological environment, do not account for social development during social economy's ecological environment hydrology interaction, social economy's natural environment hydrology state evolution process cannot be obtained.

Description

Basin Social Ecology hydrology evolutionary process analogy method based on kinetics equation
Technical field
The invention belongs to the simulation of basin Social Ecology hydrologic process and electric powder prediction, be related in a kind of basin society- The lower coupling evolution process simulation of ecology-hydrology interaction and the method for prediction, and in particular to a kind of based on kinetics equation Basin Social Ecology hydrology evolutionary process analogy method.
Background technology
Watershed Scale in drought-hit area, in the evolution of social economy, with population, Irrigation farming, industrial expansion, Water consumption can constantly increase.Just occur that Eco-environmental Water Consumption is tied up in part basin, the phenomenon of the deterioration of the ecological environment.Tradition Water management when solving basin water resources shortage problem, pass through quota and planning the methods of the non-water of simple forecast Social economy's scale in non-leap year, setting use water scheme, obtain the allocation plan of water resource.This method does not account for, society It is short to after the understanding lifting of restoring ecological environment water resource can be adapted to by the developing goal of policy shift social economy Scarce reality.This water resources management method for following forcasted years can only obtain the configuration result in following indivedual times, not have There is the evolution process of all departments' water consumption, and social economy's scale based on quota and planning forecast makes in the presence of very big uncertainty Obtaining configuration result also has very big uncertainty.
The content of the invention
The object of the present invention is to provide a kind of basin Social Ecology hydrology evolutionary process simulation side based on kinetics equation Method, solves and existing in the prior art does not account for the social adaptation to water deficit conditions and the protrusion with ecological environment problem The value of ecological environment can more be paid attention to, not account for the phase interaction of social economy-ecological environment-hydrology during social development With, the problem of social economy-natural environment-hydrology state evolution process cannot be obtained.
The technical solution adopted in the present invention is the basin Social Ecology hydrology evolutionary process simulation based on kinetics equation Method, specifically implements according to following steps:
Step 1, analogue unit divides;
Step 2, Social Ecology hydrology Evolution Simulation model is established, including:
Step 2.1, the state variable in modeling unit is set;
Step 2.2, system dynamic course equation is established;
Step 3, simulation phase and preparation model input data are determined;
Step 4, main parameter is determined;
Step 5, solving model and usage history data calibration parameter;
Step 6, simulation obtains evolutionary process.
The features of the present invention also resides in,
The step 1 is specially:Determine the basin perimeter of research, research range is divided into upstream and middle and lower reaches two Modeling unit.
The step 2.1 is specifically, each modeling unit includes Hydrology, the ecosystem, social system and warp Ji system, for general Arid Area, mainly by an agricultural society, other economic departments, such as work in economic system Industry, ignored, the state variable involved in each unit is as follows:
(1) reservoir storage W, unit m3.W represents the assignable water resource of modeling unit.
(2) vegetation coverage VC, dimensionless, value range [0,1].VCNatural vegetation is represented, by can be determined with water.It It is defined as the area of natural vegetation covering and the area ratio of analogue unit.
(3) irrigated crop area ratio RI, dimensionless, value range [0,1].RIBe defined as the area of irrigated crop with The area ratio of analogue unit.
(4) population N, with 104People is unit.
The step 2.2 in hydrology subsystem, biological subsystem, social economy's subsystem specifically, establish micro- respectively Divide equation, describe the evolutionary process of system state variables, specifically,
Step 2.2.1, establishes the water balance fundamental equation of hydrology subsystem;
Step 2.2.2, establishes the natural vegetation Evolution Dynamics equation of biological subsystem;
Step 2.2.3, establishes the kinetics equation of social economy's subsystem.
The step 2.2.1 specifically,
Based on year scale, water consumption equilibrium equation represents the leading hydrologic process of system, then the water balance equation of upstream For:
Wherein, P is annual precipitation, EtFor the year evapotranspiration amount of natural vegetation, EcTo irrigate crops
Year evapotranspiration amount, EbFor the year evaporation capacity in exposed desert, unit is mm/yr, if falling on exposed
The precipitation evaporating completely in desert, and have enough water supply, evapotranspiration amount can be calculated with following equation:
Wherein, Ep is year potential evaporation amount, and unit mm/yr, kt and kc are respectively to be used for calculating naturally
Vegetation and the empirical coefficient of crops actual evaporation.QinUFor upstream inbound traffics, unit m3/ yr,
It is set to the observation runoff of alura.QoutUFor upstream outflow, unit m3/ yr, it depends on
In QinU, WU, VCLAnd its dependent variable.QoutUCalculated according to formula (3):
QoutU=q1(QinU)+q2(WU)+q3(VCL) (3)
Wherein, q1,q2,q3It is and QinU,WU,VCLCorresponding function.q1As upstream becomes a mandarin (QinU) increase and increase, q2With W, you can distribute the increase of water resource and increase, q3Increase with the increase of downstream vegetative coverage, it represents the ring of government Guarantor's policy.QoutUIt is according to the existing water operation convention in Tarim Basin, is calculated with certain step, calculation formula is such as Under.
QoutU=max { PUAU-EtUAUVCU-EcUAURIU-EbUAU(1-VCU-RIU)+QinU,kQQinU} (4)
The year evapotranspiration amount of natural vegetation, EtU, calculation formula be:
Irrigate the year evapotranspiration amount of vegetation, EcU, it is
The water balance equation in downstream is:
Wherein, similar, the Q in pa-rameter symbols therein and upstream formula (1)inLRepresent downstream inbound traffics, and, downstream enters Flow QinLEqual to upstream outflow QoutU
QinL=QoutU (8)
Exposed soil evaporation only is from precipitation, exposed soil evaporation EbLCalculation formula be
If natural water cannot meet to need water, vegetation water consumption cannot be fully met, and the minimum water consumption of natural vegetation is just It is local precipitation, the year evapotranspiration amount E of natural vegetationtLCalculation formula is
Irrigate the year evapotranspiration amount E of vegetationcLIt is
Specifically, natural vegetation Evolution Dynamics equation is described by Levins models, this is the step 2.2.2 One logistic growth curve equation, this Vegetation changes kinetic model are applied and verified in drought-hit area basin.Drought-hit area The Vegetation changes kinetics equation of basin upstream is:
Wherein, gVFor breeding potential, mVFor the death rate, VCMFor VCMaximum, this value can determine or by public affairs by artificial planning Formula (13) is definite, wherein, VCMUIt is the ratio for the vegetation area area and analogue unit area that can be supported using water-use for environment amount Value.
The breeding potential and the death rate of natural vegetation depend on environment water supply, and water supply is essentially from underground water.It is relied on The calculation formula of relation is,
Wherein, gVU,mVU1,mVU2And rEWSUCIt is empirical parameter.rEWSIt is environment water supply rate, it is that available water is needed with environment The ratio between water, dimensionless, value range are [0,1].
rEWSUCIt is rEWSUThreshold value, rEWSUCalculation formula be:
Wherein, T be environmental Water Requirement calculate time step, WERUIt is environmental Water Requirement.
Similarly, Vegetation changes kinetics equation is
The step 2.2.3 is specifically, the evolution of irrigated crop area is to discard driving by wasteland reclamation and farmland , these two aspects corresponds to breeding potential and the death rate respectively in Vegetation changes kinetics equation, this evolution can generally by Logistic growth model describes, and the dynamic evolution equation of the irrigated crop area ratio of drought-hit area basin upstream is,
Wherein, gRU,gR2UAnd gR3UFor the reclamation of wasteland rate of new irrigated farmland.mRU,mR2UAnd mR3UFor the discarded of existing irrigated farmland Rate.RIMUFor RIUMaximum.This value is provided by artificial planning, or is determined by following using duty:
gRUAnd mRUFor influence of the utilized water resources to irrigated farmland area.gR2UAnd mR2UFor drought-hit area under Environment Protection Policy Influence of the basin upstream natural vegetation to irrigated farmland area.gR3UAnd mR3UFor under Environment Protection Policy drought-hit area lower reaches from Right influence of the vegetation to upstream irrigated farmland area.
Similarly, the irrigated crop area ratio Evolution Equation of drought-hit area lower reaches is
In social economic system, population evolution equation is traditionally simulated by competitive model, although usually It can be influenced at the same time be subject to population migration and other factors.Breeding potential and the death rate are all determined by environment and agricultural.Drought The population evolution kinetics equation of area basin upstream is
Wherein, gNUAnd gN2UFor population breeding potential and move into rate.mNUAnd mN2UFor the death rate and emigration.NMFor N most Big value, this value can be determined by programming and distribution.
Similarly, the population evolution kinetics equation of drought-hit area lower reaches is
The constitutive relation formula of each subsystem describes respectively.gVLAnd mVLConstitutive relation be:
gRUAnd mRUConstitutive relation be:
Wherein, gRU0, mRU1,mRU2And rWUCIt is parameter.rWUIrrigation water supply rate, it is dimensionless number, value range be [0, 1]。rWUCIt is rWUThreshold value, calculation formula is,
Wherein, WIRUIt is irrigation requirement.
gR2UAnd mR2UConstitutive relation be
Wherein, gR2U0,mR2U1,mR2U2And VCUCIt is parameter.
gR3UAnd mR3UConstitutive relation be
Wherein, gR3U0,mR3U1,mR3U2And VCLCIt is parameter.
gRL,mRL,gR2L, and mR2LConstitutive relation be
The implication of variable is in table 3.
gNUAnd mNUConstitutive relation be
Wherein, gNU0,mNU1,mNU2And VCUCNUIt is parameter.
gN2UAnd mN2UConstitutive relation be
Wherein, gN2U0,mN2U1,mN2U2And RIUCNUIt is parameter.
gNL,mNL,gN2L, and mN2LConstitutive relation be
The step 3 is specifically, model is calculated using identical time step, in order to describe more accurately to change Journey, the time step of model selection are generally 1 year, and material calculation can be set in parameter.The primary condition of model is inputting Need to set according to research in file, the input data of model includes the precipitation for flowing into flow, simulating the phase of coboundary and dives In evaporation capacity.Scale-model investigation object coboundary is inputted if flow, then the data on flows for needing to prepare to flow into upstream units is made For mode input data.Prepare the input data of precipitation and potential evaporation amount respectively for upstream and downstream unit.
The step 5 is specifically, the controlling equation of model is the ordinary differential system that step 2 is established, using increasing income ODE's solver solve.Obtain the historical process analogue value of system state variables, the analogue value and state variable are gone through The relatively rear adjusting parameter value of history measured data so that historical process obtains best simulation.Parameter value is the ginseng of calibration at this time Numerical value.
The step 6 specifically, EVOLUTION EQUATION after parameter calibration is carried out using step 5 carries out simulation and forecast, if The precipitation and potential evaporation amount data scenarios in fixed one period of future, input model, solves differential equation group, when obtaining future The analogue value of phase Social Ecology hydrology evolutionary process.
The invention has the advantages that by establishing between the state variables such as population, irrigated area, natural vegetation area Feedback, simulates to obtain the evolution process of these variables using kinetics equation, solves the method that existing scene is set and does not account for The problem of influence of the water shortage environment to water consumption and society are to the accommodation of water, obtains relatively reliable society-life State-hydrology evolutionary process.
Brief description of the drawings
Fig. 1 is the flow chart of basin Social Ecology Hydrology evolutionary process simulation;
Fig. 2 is the coupled relation figure of basin Social Ecology Hydrology.
Embodiment
The present invention is described in detail with reference to the accompanying drawings and detailed description.
A kind of basin Social Ecology hydrology evolutionary process analogy method based on kinetics equation, as shown in Figure 1, specifically pressing Implement according to following steps:
Step 1, analogue unit divides.
Determine the basin perimeter of research, the boundary of basin upstream and middle and lower reaches is determined according to the custom of hydrographic water resource industry Line, determines basin upstream and the line of demarcation of middle and lower reaches according to the custom of hydrographic water resource industry, research range is divided into upstream With two modeling units of middle and lower reaches.
Step 2, Social Ecology hydrology Evolution Simulation model is established;
Step 2.1, the state variable in modeling unit is set;
Each modeling unit includes Hydrology, the ecosystem, social system and economic system, as shown in table 1, for General Arid Area, mainly by an agricultural society, other economic departments are ignored (such as industry) in economic system, State variable involved in each unit is as follows:
(1) reservoir storage W, unit m3.W represents the assignable water resource of modeling unit.
(2) vegetation coverage VC, dimensionless, value range [0,1].VCNatural vegetation is represented, by can be determined with water.It It is defined as the area of natural vegetation covering and the area ratio of analogue unit.
(3) irrigated crop area ratio RI, dimensionless, value range [0,1].RIBe defined as the area of irrigated crop with The area ratio of analogue unit.
(4) population N, with 104People is unit.
Step 2.2, system dynamic course equation is established:
In each modeling unit, it is used for describing the dynamic process of these systems using four ODEs:Water storage Amount represents hydrology subsystem, and natural vegetation coverage represents biological subsystem, and irrigated crop area represents Economy subsystem, population Represent social subsystems.The area of modeling unit is denoted as A, be designated as under symbol U represent upstream, under be designated as L represent downstream.
The phantom frame that the 1 Social Ecology hydrology of table develops
The differential equation is established in hydrology subsystem, biological subsystem, social economy's subsystem respectively, description system mode becomes The evolutionary process of amount, the coupled relation of basin Social Ecology Hydrology are as shown in Figure 2.The step of establishing evolutionary process equation has Body includes:
Step 2.2.1, establishes the water balance fundamental equation of hydrology subsystem:
Based on year scale, water consumption equilibrium equation represents the leading hydrologic process of system,
Then the water balance equation of upstream is:
Wherein, P is annual precipitation, EtFor the year evapotranspiration amount of natural vegetation, EcTo irrigate the year evapotranspiration amount of crops, EbFor the year evaporation capacity in exposed desert, unit is mm/yr, if falling on the precipitation evaporating completely in exposed desert, and is had enough Supply water, evapotranspiration amount can be calculated with following equation:
Wherein, Ep is year potential evaporation amount, and unit mm/yr, kt and kc are respectively to be used for calculating natural vegetation and crops The empirical coefficient of actual evaporation.QinUFor upstream inbound traffics, unit m3/ yr, is set to the observation runoff of alura.QoutUFor Upstream outflow, unit m3/ yr, it depends on QinU, WU, VCLAnd its dependent variable.QoutUCalculated according to formula (3):
QoutU=q1(QinU)+q2(WU)+q3(VCL) (3)
Wherein, q1,q2,q3It is and QinU,WU,VCLCorresponding function.q1As upstream becomes a mandarin (QinU) increase and increase, q2With W, you can distribute the increase of water resource and increase, q3Increase with the increase of downstream vegetative coverage, it represents the ring of government Guarantor's policy.QoutUIt is according to the existing water operation convention in Tarim Basin, is calculated with certain step, calculation formula is such as Under,
QoutU=max { PUAU-EtUAUVCU-EcUAURIU-EbUAU(1-VCU-RIU)+QinU,kQQinU} (4)
The year evapotranspiration amount of natural vegetation, EtU, calculation formula be:
Irrigate the year evapotranspiration amount of vegetation, EcU, it is
The water balance equation in downstream is:
Wherein, similar, the Q in pa-rameter symbols therein and upstream formula (1)inLRepresent downstream inbound traffics, and, downstream enters Flow QinLEqual to upstream outflow QoutU
QinL=QoutU (8)
Exposed soil evaporation only is from precipitation, exposed soil evaporation EbLCalculation formula be
If natural water cannot meet to need water, vegetation water consumption cannot be fully met, and the minimum water consumption of natural vegetation is just It is local precipitation, the year evapotranspiration amount E of natural vegetationtLCalculation formula is
Irrigate the year evapotranspiration amount E of vegetationcLIt is
Step 2.2.2, establishes the natural vegetation Evolution Dynamics equation of biological subsystem:
Natural vegetation Evolution Dynamics equation is described by Levins models, this is a logistic growth curve side Journey, this Vegetation changes kinetic model are applied and verified in drought-hit area basin.The Vegetation changes power of drought-hit area basin upstream Learning equation is:
Wherein, gVFor breeding potential, mVFor the death rate, VCMFor VCMaximum, this value can determine or by public affairs by artificial planning Formula (13) is definite, wherein, VCMUIt is the ratio for the vegetation area area and analogue unit area that can be supported using water-use for environment amount Value.
The breeding potential and the death rate of natural vegetation depend on environment water supply, and water supply is essentially from underground water.It is relied on The calculation formula of relation is,
Wherein, gVU,mVU1,mVU2And rEWSUCIt is empirical parameter.rEWSIt is environment water supply rate, it is that available water is needed with environment The ratio between water, dimensionless, value range are [0,1].rEWSUCIt is rEWSUThreshold value, rEWSUCalculation formula be:
Wherein, T be environmental Water Requirement calculate time step, WERUIt is environmental Water Requirement.
Similarly, Vegetation changes kinetics equation is
Step 2.2.3, establishes the kinetics equation of social economy's subsystem:
The evolution of irrigated crop area is to discard driving by wasteland reclamation and farmland, and these two aspects is moved in Vegetation changes Breeding potential and the death rate are corresponded in mechanical equation respectively, this evolution can be described generally by logistic growth model, The dynamic evolution equation of the irrigated crop area ratio of drought-hit area basin upstream is
Wherein, gRU,gR2UAnd gR3UFor the reclamation of wasteland rate of new irrigated farmland.mRU,mR2UAnd mR3UFor the discarded of existing irrigated farmland Rate.RIMUFor RIUMaximum.This value is provided by artificial planning, or is determined by following using duty:
gRUAnd mRUFor influence of the utilized water resources to irrigated farmland area.gR2UAnd mR2UFor drought-hit area under Environment Protection Policy Influence of the basin upstream natural vegetation to irrigated farmland area.gR3UAnd mR3UFor under Environment Protection Policy drought-hit area lower reaches from Right influence of the vegetation to upstream irrigated farmland area.
Similarly, the irrigated crop area ratio Evolution Equation of drought-hit area lower reaches is
In social economic system, population evolution equation is traditionally simulated by competitive model, although usually It can be influenced at the same time be subject to population migration and other factors.Breeding potential and the death rate are all determined by environment and agricultural.Drought The population evolution kinetics equation of area basin upstream is
Wherein, gNUAnd gN2UFor population breeding potential and move into rate.mNUAnd mN2UFor the death rate and emigration.NMFor N most Big value, this value can be determined by programming and distribution.
Similarly, the population evolution kinetics equation of drought-hit area lower reaches is
The constitutive relation formula of each subsystem describes respectively.gVLAnd mVLConstitutive relation be:
gRUAnd mRUConstitutive relation be:
Wherein, gRU0, mRU1,mRU2And rWUCIt is parameter.rWUIrrigation water supply rate, it is dimensionless number, value range be [0, 1]。rWUCIt is rWUThreshold value, calculation formula is,
Wherein, WIRUIt is irrigation requirement.
gR2UAnd mR2UConstitutive relation be
Wherein, gR2U0,mR2U1,mR2U2And VCUCIt is parameter.
gR3UAnd mR3UConstitutive relation be
Wherein, gR3U0,mR3U1,mR3U2And VCLCIt is parameter.
gRL,mRL,gR2L, and mR2LConstitutive relation be
The implication of variable is in table 3.
gNUAnd mNUConstitutive relation be
Wherein, gNU0,mNU1,mNU2And VCUCNUIt is parameter.
gN2UAnd mN2UConstitutive relation be
Wherein, gN2U0,mN2U1,mN2U2And RIUCNUIt is parameter.
gNL,mNL,gN2L, and mN2LConstitutive relation be
The implication of parameter is in table 3.
Step 3, simulation phase and preparation model input data are determined.
Model is calculated using identical time step, in order to describe more accurately change procedure, the time of model selection Step-length is generally 1 year, and material calculation can be set in parameter.The primary condition of model is in input file according to research needs Setting, general value such as table 2.
The general value of 2 system state variables of table
The input data of model includes the precipitation and potential evaporation amount that flow into flow, simulate the phase of coboundary.Model is ground Object coboundary is studied carefully if flow inputs, then the data on flows for needing to prepare to flow into upstream units is as mode input data. Prepare the input data of precipitation and potential evaporation amount respectively for upstream and downstream unit.
Step 4, main parameter is determined.
The general value of major parameter is as shown in table 3.
The general value of 3 major parameter of table, subscript U represent upstream units, and subscript L represents downstream units
Step 5, solving model and usage history data calibration parameter.
The controlling equation of model is the ordinary differential system that step 2 is established, and uses the ODE's solver increased income Solve.Obtain the historical process analogue value of system state variables, adjusted after the history measured data of the analogue value and state variable Whole parameter value so that historical process obtains best simulation.Parameter value is the parameter value of calibration at this time.
Step 6, simulation obtains evolutionary process.
The EVOLUTION EQUATION after parameter calibration is carried out using step 5 to carry out simulation and forecast, sets the drop in a following period Water and potential evaporation amount data scenarios, input model, solves differential equation group, obtains the evolution of the future period Social Ecology hydrology The analogue value of process.

Claims (10)

1. a kind of basin Social Ecology hydrology evolutionary process analogy method based on kinetics equation, it is characterised in that specifically press Implement according to following steps:
Step 1, analogue unit divides;
Step 2, Social Ecology hydrology Evolution Simulation model is established, including,
Step 2.1, the state variable in modeling unit is set;
Step 2.2, system dynamic course equation is established;
Step 3, simulation phase and preparation model input data are determined;
Step 4, main parameter is determined;
Step 5, solving model and usage history data calibration parameter;
Step 6, simulation obtains evolutionary process.
2. the basin Social Ecology hydrology evolutionary process analogy method according to claim 1 based on kinetics equation, its It is characterized in that, the step 1 is specially:Determine the basin perimeter of research, research range is divided into upstream and middle and lower reaches two A modeling unit.
3. the basin Social Ecology hydrology evolutionary process analogy method according to claim 1 based on kinetics equation, its It is characterized in that, the step 2.1 is specifically, each modeling unit includes Hydrology, the ecosystem, social system and warp Ji system, for general Arid Area, mainly by an agricultural society, other economic departments, such as work in economic system Industry, ignored, the state variable involved in each unit is as follows:
(1) reservoir storage W, unit m3, the assignable water resource of W expression modeling units,
(2) vegetation coverage VC, dimensionless, value range [0,1];VCNatural vegetation is represented, by can be determined with water;It is determined Justice is the area of natural vegetation covering and the area ratio of analogue unit;
(3) irrigated crop area ratio RI, dimensionless, value range [0,1];RIIt is defined as area and the simulation of irrigated crop The area ratio of unit;
(4) population N, with 104People is unit.
4. the basin Social Ecology hydrology evolutionary process analogy method according to claim 1 based on kinetics equation, its It is characterized in that, the step 2.2 in hydrology subsystem, biological subsystem, social economy's subsystem specifically, establish micro- respectively Divide equation, describe the evolutionary process of system state variables, specifically,
Step 2.2.1, establishes the water balance fundamental equation of hydrology subsystem;
Step 2.2.2, establishes the natural vegetation Evolution Dynamics equation of biological subsystem;
Step 2.2.3, establishes the kinetics equation of social economy's subsystem.
5. the basin Social Ecology hydrology evolutionary process analogy method according to claim 4 based on kinetics equation, its Be characterized in that, the step 2.2.1 specifically,
Based on year scale, water consumption equilibrium equation represents the leading hydrologic process of system, then the water balance equation of upstream is:
<mrow> <mfrac> <mrow> <msub> <mi>dW</mi> <mi>U</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>P</mi> <mi>U</mi> </msub> <msub> <mi>A</mi> <mi>U</mi> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>t</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>U</mi> </msub> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>c</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>U</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>b</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>U</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein, P is annual precipitation, EtFor the year evapotranspiration amount of natural vegetation, EcTo irrigate the year evapotranspiration amount of crops, EbFor The year evaporation capacity in exposed desert, unit are mm/yr, if falling on the precipitation evaporating completely in exposed desert, and have enough water supply, Evapotranspiration amount can be calculated with following equation:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>E</mi> <mi>t</mi> </msub> <mo>=</mo> <msub> <mi>k</mi> <mi>t</mi> </msub> <msub> <mi>E</mi> <mi>p</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>E</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>k</mi> <mi>c</mi> </msub> <msub> <mi>E</mi> <mi>p</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>E</mi> <mi>b</mi> </msub> <mo>=</mo> <mi>P</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein, Ep is year potential evaporation amount, and unit mm/yr, kt and kc are respectively to be used for calculating natural vegetation and crops reality The empirical coefficient of evaporation capacity;QinUFor upstream inbound traffics, unit m3/ yr, is set to the observation runoff of alura;QoutUFor upstream Outflow, unit m3/ yr, it depends on QinU, WU, VCLAnd its dependent variable;QoutUCalculated according to formula (3):
QoutU=q1(QinU)+q2(WU)+q3(VCL) (3)
Wherein, q1,q2,q3It is and QinU,WU,VCLCorresponding function;q1As upstream becomes a mandarin (QinU) increase and increase, q2With W, The increase of water resource can be distributed and increased, q3Increase with the increase of downstream vegetative coverage, it represents the environmentally friendly political affairs of government Plan;QoutUIt is according to the existing water operation convention in Tarim Basin, is calculated with certain step, calculation formula is as follows;
QoutU=max { PUAU-EtUAUVCU-EcUAURIU-EbUAU(1-VCU-RIU)+QinU,kQQinU} (4)
The year evapotranspiration amount of natural vegetation, EtU, calculation formula be:
<mrow> <msub> <mi>E</mi> <mrow> <mi>t</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>P</mi> <mi>U</mi> </msub> <msub> <mi>A</mi> <mi>U</mi> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>c</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>U</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>b</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>U</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mi>U</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>A</mi> <mi>U</mi> </msub> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <msub> <mi>P</mi> <mi>U</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Irrigate the year evapotranspiration amount of vegetation, EcU, it is
<mrow> <msub> <mi>E</mi> <mrow> <mi>c</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mi>U</mi> </msub> <msub> <mi>A</mi> <mi>U</mi> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>t</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>U</mi> </msub> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>b</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>U</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mi>U</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>A</mi> <mi>U</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
The water balance equation in downstream is:
<mrow> <mfrac> <mrow> <msub> <mi>dW</mi> <mi>L</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>P</mi> <mi>L</mi> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>t</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>c</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>b</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Wherein, similar, the Q in pa-rameter symbols therein and upstream formula (1)inLRepresent downstream inbound traffics, and, downstream inbound traffics QinLEqual to upstream outflow QoutU
QinL=QoutU (8)
Exposed soil evaporation only is from precipitation, exposed soil evaporation EbLCalculation formula be
<mrow> <msub> <mi>E</mi> <mrow> <mi>b</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>P</mi> <mi>L</mi> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>t</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>c</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>L</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>A</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <msub> <mi>P</mi> <mi>L</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
If natural water cannot meet to need water, vegetation water consumption cannot be fully met, the minimum water consumption of natural vegetation be exactly when Ground precipitation, the year evapotranspiration amount E of natural vegetationtLCalculation formula is
<mrow> <msub> <mi>E</mi> <mrow> <mi>t</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>P</mi> <mi>L</mi> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>c</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>b</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>L</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>A</mi> <mi>L</mi> </msub> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <msub> <mi>P</mi> <mi>L</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Irrigate the year evapotranspiration amount E of vegetationcLIt is
<mrow> <msub> <mi>E</mi> <mrow> <mi>c</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mi>L</mi> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>t</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>E</mi> <mrow> <mi>b</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>L</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>A</mi> <mi>L</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
6. the basin Social Ecology hydrology evolutionary process analogy method according to claim 4 based on kinetics equation, its Be characterized in that, the step 2.2.2 specifically, natural vegetation Evolution Dynamics equation is described by Levins models, this It is a logistic growth curve equation, this Vegetation changes kinetic model is applied and verified in drought-hit area basin;Drought The Vegetation changes kinetics equation of area basin upstream is:
<mrow> <mfrac> <mrow> <msub> <mi>dV</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>g</mi> <mrow> <mi>V</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>V</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
Wherein, gVFor breeding potential, mVFor the death rate, VCMFor VCMaximum, this value can determine or by formula by artificial planning (13) determine, wherein, VCMUIt is the ratio for the vegetation area area and analogue unit area that can be supported using water-use for environment amount Value;
<mrow> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mi>v</mi> <mi>a</mi> <mi>i</mi> <mi>l</mi> <mi>a</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> <mi> </mi> <mi>e</mi> <mi>n</mi> <mi>v</mi> <mi>i</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> <mi>m</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mi> </mi> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mo>/</mo> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mi> </mi> <mi>r</mi> <mi>e</mi> <mi>q</mi> <mi>u</mi> <mi>i</mi> <mi>r</mi> <mi>e</mi> <mi>m</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> <mi> </mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi> </mi> <mi>u</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi> </mi> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> </mrow> <msub> <mi>A</mi> <mi>U</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
The breeding potential and the death rate of natural vegetation depend on environment water supply, and water supply is essentially from underground water;Its dependence Calculation formula be,
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>g</mi> <mrow> <mi>V</mi> <mi>U</mi> <mn>0</mn> </mrow> </msub> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>E</mi> <mi>W</mi> <mi>S</mi> <mi>U</mi> <mi>C</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>r</mi> <mrow> <mi>E</mi> <mi>W</mi> <mi>S</mi> <mi>U</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mi>V</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mrow> <mi>V</mi> <mi>U</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>V</mi> <mi>U</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>E</mi> <mi>W</mi> <mi>S</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>r</mi> <mrow> <mi>E</mi> <mi>W</mi> <mi>S</mi> <mi>U</mi> <mi>C</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>V</mi> <mi>U</mi> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
Wherein, gVU,mVU1,mVU2And rEWSUCIt is empirical parameter;rEWSIt is environment water supply rate, it is available water and environmental Water Requirement The ratio between, dimensionless, value range is [0,1];
rEWSUCIt is rEWSUThreshold value, rEWSUCalculation formula be:
<mrow> <msub> <mi>r</mi> <mrow> <mi>E</mi> <mi>W</mi> <mi>S</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>t</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>U</mi> </msub> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> <mi>T</mi> </mrow> <msub> <mi>W</mi> <mrow> <mi>E</mi> <mi>R</mi> <mi>U</mi> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
Wherein, T be environmental Water Requirement calculate time step, WERUIt is environmental Water Requirement;
Similarly, Vegetation changes kinetics equation is
<mrow> <mfrac> <mrow> <msub> <mi>dV</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>g</mi> <mrow> <mi>V</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>M</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>V</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>M</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mi>v</mi> <mi>a</mi> <mi>i</mi> <mi>l</mi> <mi>a</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> <mi> </mi> <mi>e</mi> <mi>n</mi> <mi>v</mi> <mi>i</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> <mi>m</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mi> </mi> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mo>/</mo> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mi> </mi> <mi>r</mi> <mi>e</mi> <mi>q</mi> <mi>u</mi> <mi>i</mi> <mi>r</mi> <mi>e</mi> <mi>m</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> <mi> </mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi> </mi> <mi>u</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi> </mi> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> </mrow> <msub> <mi>A</mi> <mi>L</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
7. the basin Social Ecology hydrology evolutionary process analogy method according to claim 4 based on kinetics equation, its It is characterized in that, the step 2.2.3 is specifically, the evolution of irrigated crop area is to discard driving by wasteland reclamation and farmland , these two aspects corresponds to breeding potential and the death rate respectively in Vegetation changes kinetics equation, this evolution can generally by Logistic growth model describes, and the dynamic evolution equation of the irrigated crop area ratio of drought-hit area basin upstream is,
<mrow> <mfrac> <mrow> <msub> <mi>dR</mi> <mrow> <mi>I</mi> <mi>U</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>U</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mn>3</mn> <mi>U</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>U</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>3</mn> <mi>U</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
Wherein, gRU,gR2UAnd gR3UFor the reclamation of wasteland rate of new irrigated farmland;mRU,mR2UAnd mR3UFor the discarded rate of existing irrigated farmland; RIMUFor RIUMaximum;This value is provided by artificial planning, or is determined by following using duty:
<mrow> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mi>v</mi> <mi>a</mi> <mi>i</mi> <mi>l</mi> <mi>a</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> <mi> </mi> <mi>i</mi> <mi>r</mi> <mi>r</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> <mi> </mi> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mo>/</mo> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mi> </mi> <mi>r</mi> <mi>e</mi> <mi>q</mi> <mi>u</mi> <mi>i</mi> <mi>r</mi> <mi>e</mi> <mi>m</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> <mi> </mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi> </mi> <mi>u</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi> </mi> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> </mrow> <msub> <mi>A</mi> <mi>U</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
gRUAnd mRUFor influence of the utilized water resources to irrigated farmland area;gR2UAnd mR2UFor under Environment Protection Policy on the basin of drought-hit area Swim influence of the natural vegetation to irrigated farmland area;gR3UAnd mR3UFor the natural vegetation of drought-hit area lower reaches under Environment Protection Policy Influence to upstream irrigated farmland area;
Similarly, the irrigated crop area ratio Evolution Equation of drought-hit area lower reaches is
<mrow> <mfrac> <mrow> <msub> <mi>dR</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>L</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>M</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>L</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>M</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mi>v</mi> <mi>a</mi> <mi>i</mi> <mi>l</mi> <mi>a</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> <mi> </mi> <mi>i</mi> <mi>r</mi> <mi>r</mi> <mi>i</mi> <mi>g</mi> <mi>a</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> <mi> </mi> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mo>/</mo> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mi> </mi> <mi>r</mi> <mi>e</mi> <mi>q</mi> <mi>u</mi> <mi>i</mi> <mi>r</mi> <mi>e</mi> <mi>m</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> <mi> </mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi> </mi> <mi>u</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi> </mi> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> </mrow> <msub> <mi>A</mi> <mi>L</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
In social economic system, population evolution equation is traditionally simulated by competitive model, although usually can be same When influenced be subject to population migration and other factors;Breeding potential and the death rate are all determined by environment and agricultural;Flow drought-hit area The population evolution kinetics equation of domain upstream is
<mrow> <mfrac> <mrow> <msub> <mi>dN</mi> <mi>U</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>U</mi> </mrow> </msub> <msub> <mi>N</mi> <mi>U</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mrow> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>N</mi> <mi>U</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>U</mi> </mrow> </msub> <msub> <mi>N</mi> <mi>U</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
Wherein, gNUAnd gN2UFor population breeding potential and move into rate;mNUAnd mN2UFor the death rate and emigration;NMFor the maximum of N, This value can be determined by programming and distribution;
Similarly, the population evolution kinetics equation of drought-hit area lower reaches is
<mrow> <mfrac> <mrow> <msub> <mi>dN</mi> <mi>L</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>L</mi> </mrow> </msub> <msub> <mi>N</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mrow> <mi>M</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>N</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>L</mi> </mrow> </msub> <msub> <mi>N</mi> <mi>L</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
The constitutive relation formula of each subsystem describes respectively;gVLAnd mVLConstitutive relation be:
<mrow> <msub> <mi>g</mi> <mrow> <mi>V</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>g</mi> <mrow> <mi>V</mi> <mi>L</mi> <mn>0</mn> </mrow> </msub> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>E</mi> <mi>W</mi> <mi>S</mi> <mi>L</mi> <mi>C</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>r</mi> <mrow> <mi>E</mi> <mi>W</mi> <mi>S</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
<mrow> <msub> <mi>m</mi> <mrow> <mi>V</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mrow> <mi>V</mi> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>V</mi> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>E</mi> <mi>W</mi> <mi>S</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>r</mi> <mrow> <mi>E</mi> <mi>W</mi> <mi>S</mi> <mi>L</mi> <mi>C</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>V</mi> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>r</mi> <mrow> <mi>E</mi> <mi>W</mi> <mi>S</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>t</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mi>T</mi> </mrow> <msub> <mi>W</mi> <mrow> <mi>E</mi> <mi>R</mi> <mi>L</mi> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow>
gRUAnd mRUConstitutive relation be:
<mrow> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mi>U</mi> <mn>0</mn> </mrow> </msub> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>W</mi> <mi>U</mi> <mi>C</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>r</mi> <mrow> <mi>W</mi> <mi>U</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
<mrow> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mi>U</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mi>U</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>W</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>r</mi> <mrow> <mi>W</mi> <mi>U</mi> <mi>C</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mi>U</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow>
Wherein, gRU0, mRU1,mRU2And rWUCIt is parameter;rWUIt is irrigation water supply rate, it is dimensionless number, and value range is [0,1]; rWUCIt is rWUThreshold value, calculation formula is,
<mrow> <msub> <mi>r</mi> <mrow> <mi>W</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>c</mi> <mi>U</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>U</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> </mrow> </msub> <mi>T</mi> </mrow> <msub> <mi>W</mi> <mrow> <mi>I</mi> <mi>R</mi> <mi>U</mi> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow>
Wherein, WIRUIt is irrigation requirement;
gR2UAnd mR2UConstitutive relation be
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>U</mi> <mn>0</mn> </mrow> </msub> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> <mi>C</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>U</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>U</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> <mi>C</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>U</mi> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow>
Wherein, gR2U0,mR2U1,mR2U2And VCUCIt is parameter;
gR3UAnd mR3UConstitutive relation be
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mn>3</mn> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mn>3</mn> <mi>U</mi> <mn>0</mn> </mrow> </msub> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> <mi>C</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>3</mn> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>3</mn> <mi>U</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>3</mn> <mi>U</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> <mi>C</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>3</mn> <mi>U</mi> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow>
Wherein, gR3U0,mR3U1,mR3U2And VCLCIt is parameter;
gRL,mRL,gR2L, and mR2LConstitutive relation be
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mi>L</mi> <mn>0</mn> </mrow> </msub> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>W</mi> <mi>L</mi> <mi>C</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>r</mi> <mrow> <mi>W</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>W</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>r</mi> <mrow> <mi>W</mi> <mi>L</mi> <mi>C</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>r</mi> <mrow> <mi>W</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>c</mi> <mi>L</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mi>T</mi> </mrow> <msub> <mi>W</mi> <mrow> <mi>I</mi> <mi>R</mi> <mi>L</mi> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>g</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>L</mi> <mn>0</mn> </mrow> </msub> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>R</mi> <mn>2</mn> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> </mrow>
The implication of variable is in table 3;
gNUAnd mNUConstitutive relation be
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mi>U</mi> <mn>0</mn> </mrow> </msub> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> <mi>C</mi> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mi>U</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mi>U</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>U</mi> <mi>C</mi> <mi>N</mi> <mi>U</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mi>U</mi> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow>
Wherein, gNU0,mNU1,mNU2And VCUCNUIt is parameter;
gN2UAnd mN2UConstitutive relation be
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>U</mi> <mn>0</mn> </mrow> </msub> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> <mi>C</mi> <mi>N</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>U</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>U</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>U</mi> <mi>C</mi> <mi>N</mi> <mi>U</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>U</mi> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>34</mn> <mo>)</mo> </mrow> </mrow>
Wherein, gN2U0,mN2U1,mN2U2And RIUCNUIt is parameter;
gNL,mNL,gN2L, and mN2LConstitutive relation be
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mi>L</mi> <mn>0</mn> </mrow> </msub> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> <mi>C</mi> <mi>N</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>L</mi> <mi>C</mi> <mi>N</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>35</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>L</mi> <mn>0</mn> </mrow> </msub> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> <mi>C</mi> <mi>N</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>I</mi> <mi>L</mi> <mi>C</mi> <mi>N</mi> <mi>L</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>N</mi> <mn>2</mn> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>36</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
8. the basin Social Ecology hydrology evolutionary process analogy method according to claim 1 based on kinetics equation, institute The step 3 stated is specifically, model is calculated using identical time step, in order to describe more accurately change procedure, model choosing The time step selected is generally 1 year, and material calculation can be set in parameter;The primary condition of model basis in input file Research needs to set, and the input data of model includes the precipitation and potential evaporation amount that flow into flow, simulate the phase of coboundary;Mould Type research object coboundary is inputted if flow, then the data on flows for needing to prepare to flow into upstream units is as mode input number According to;Prepare the input data of precipitation and potential evaporation amount respectively for upstream and downstream unit.
9. the basin Social Ecology hydrology evolutionary process analogy method according to claim 1 based on kinetics equation, institute The step 5 stated is specifically, the ordinary differential system that the controlling equation of model is established for step 2, uses the ordinary differential side to increase income Journey solver solves;Obtain the history measured data of the historical process analogue value of system state variables, the analogue value and state variable Compare rear adjusting parameter value so that historical process obtains best simulation;Parameter value is the parameter value of calibration at this time.
10. the basin Social Ecology hydrology evolutionary process analogy method according to claim 1 based on kinetics equation, institute The step 6 stated using the EVOLUTION EQUATION after step 5 progress parameter calibration specifically, carry out simulation and forecast, setting is one following The precipitation and potential evaporation amount data scenarios in period, input model, solves differential equation group, obtains future period Social Ecology The analogue value of hydrology evolutionary process.
CN201711157102.4A 2017-11-20 2017-11-20 Basin Social Ecology hydrology evolutionary process analogy method based on kinetics equation Pending CN107908885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711157102.4A CN107908885A (en) 2017-11-20 2017-11-20 Basin Social Ecology hydrology evolutionary process analogy method based on kinetics equation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711157102.4A CN107908885A (en) 2017-11-20 2017-11-20 Basin Social Ecology hydrology evolutionary process analogy method based on kinetics equation

Publications (1)

Publication Number Publication Date
CN107908885A true CN107908885A (en) 2018-04-13

Family

ID=61846363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711157102.4A Pending CN107908885A (en) 2017-11-20 2017-11-20 Basin Social Ecology hydrology evolutionary process analogy method based on kinetics equation

Country Status (1)

Country Link
CN (1) CN107908885A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110738353A (en) * 2019-09-16 2020-01-31 华中科技大学 Prediction method and system based on human-water coupling mutual feed system dynamic evolution model
CN111597696A (en) * 2020-05-06 2020-08-28 河海大学 Method for evaluating water delivery quantity of oasis in arid region based on ecological hydrological simulation and optimization
CN112199456A (en) * 2020-09-17 2021-01-08 西南科技大学 Basin water resource management method based on supply type hydrological ecosystem service
CN113570271A (en) * 2021-08-03 2021-10-29 东莞理工学院 Quantitative evaluation method for water culture transition and influence thereof
WO2022193703A1 (en) * 2021-03-18 2022-09-22 天津大学 Evaluation system and method for regional atmospheric pollution regulation and control scheme
CN117814097A (en) * 2024-03-06 2024-04-05 北京佳格天地科技有限公司 Machine learning-based efficient farmland irrigation method and system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110738353A (en) * 2019-09-16 2020-01-31 华中科技大学 Prediction method and system based on human-water coupling mutual feed system dynamic evolution model
CN110738353B (en) * 2019-09-16 2022-05-20 华中科技大学 Prediction method and system based on human-water coupling mutual feed system dynamic evolution model
CN111597696A (en) * 2020-05-06 2020-08-28 河海大学 Method for evaluating water delivery quantity of oasis in arid region based on ecological hydrological simulation and optimization
CN112199456A (en) * 2020-09-17 2021-01-08 西南科技大学 Basin water resource management method based on supply type hydrological ecosystem service
CN112199456B (en) * 2020-09-17 2022-03-25 西南科技大学 Basin water resource management method based on supply type hydrological ecosystem service
WO2022193703A1 (en) * 2021-03-18 2022-09-22 天津大学 Evaluation system and method for regional atmospheric pollution regulation and control scheme
CN113570271A (en) * 2021-08-03 2021-10-29 东莞理工学院 Quantitative evaluation method for water culture transition and influence thereof
CN117814097A (en) * 2024-03-06 2024-04-05 北京佳格天地科技有限公司 Machine learning-based efficient farmland irrigation method and system
CN117814097B (en) * 2024-03-06 2024-05-03 北京佳格天地科技有限公司 Machine learning-based efficient farmland irrigation method and system

Similar Documents

Publication Publication Date Title
CN107908885A (en) Basin Social Ecology hydrology evolutionary process analogy method based on kinetics equation
Azamathulla et al. Comparison between genetic algorithm and linear programming approach for real time operation
Mirchi et al. Modeling for watershed planning, management, and decision making
Singh Simulation–optimization modeling for conjunctive water use management
Singh Land and water management planning for increasing farm income in irrigated dry areas
Guo et al. A system dynamics approach for regional environmental planning and management: a study for the Lake Erhai Basin
Inam et al. Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management. Part 2: Model coupling and application
Xue et al. A decision-making framework to model environmental flow requirements in oasis areas using Bayesian networks
Khoi Comparison of the HEC-HMS and SWAT hydrological models in simulating the stream flow
Vogl et al. Managing forest ecosystem services for hydropower production
Eslamian et al. Guidelines to Optimal Design of Furrow Irrigation Based on Plants, Soil and Furrow Specifications
Bhadra et al. An alternative rotational delivery schedule for improved performance of reservoir-based canal irrigation system
Sedighkia et al. Linking ecohydraulic simulation and optimization system for mitigating economic and environmental losses of reservoirs
Khalaj et al. Investigation about climate change and human activity effects on groundwater level and groundwater quality in semiarid region
Frede et al. Interdisciplinary modeling and the significance of soil functions
Cakmak et al. Participatory fuzzy cognitive mapping analysis to evaluate the future of water in the Seyhan Basin
DARANI et al. An integrated hydro-economic modeling to evaluate marketing reform policies of agricultural products.
Bhagwat et al. Development of HydroClimatic Conceptual Streamflow (HCCS) model for tropical river basin
Yebdri et al. The water resources management study of the Wadi Tafna Basin (Algeria) using the SWAT model
Winarta et al. Dam break studies using hydrologic and hydraulics model for Chereh Dam, Kuantan, Pahang, Malaysia
Kovács et al. Impacts of the climate change on runoff and diffuse phosphorus load to Lake Balaton (Hungary)
Bala et al. Simulation of crop-irrigation systems
Ghane et al. Sensitivity analysis of runoff model by swat to meteorological parameters: a case study of kasillian watershed, mazandaran, Iran
Augustiman et al. Analysis of the Potential Utilization of Semantok Reservoir For the Fulfillment of Raw Water and Irrigation Water
Saha et al. Modelling streamflow response to climate change for the Kyeamba Creek catchment of south eastern Australia

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180413