CN107907555A - 一种水泥微观试验分析样品的制备方法 - Google Patents
一种水泥微观试验分析样品的制备方法 Download PDFInfo
- Publication number
- CN107907555A CN107907555A CN201711097598.0A CN201711097598A CN107907555A CN 107907555 A CN107907555 A CN 107907555A CN 201711097598 A CN201711097598 A CN 201711097598A CN 107907555 A CN107907555 A CN 107907555A
- Authority
- CN
- China
- Prior art keywords
- cement
- sample
- preparation
- powder
- test analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/20008—Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
- G01N23/2005—Preparation of powder samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/286—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/44—Sample treatment involving radiation, e.g. heat
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/2202—Preparing specimens therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/286—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
- G01N2001/2866—Grinding or homogeneising
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/30—Accessories, mechanical or electrical features
- G01N2223/312—Accessories, mechanical or electrical features powder preparation
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
本发明公开一种水泥微观试验分析样品的制备方法,包括如下步骤:步骤1,选取待测的水泥基材料进行破型,获取颗粒样品;步骤2,将颗粒样品研磨后制成粉末并过筛,获取粉末样品;步骤3,将粉末样品放入真空烘箱中烘干,获得测试样品。采用本发明的方法制备水泥微观试验分析样品时,可以有效的烘干样品中的自由水,同时采用真空烘箱提供的真空环境,可隔绝空气中的CO2,防止样品受到碳化,对样品造成污染,从而保证了样品测试结果的准确性。
Description
技术领域
本发明涉及一种试验样品的制备方法,特别涉及一种水泥微观试验分析样品的制备方法,属于建筑材料检测领域。
背景技术
基于微观结构研究水泥基材料的宏观性能已经成为水泥基材料领域的最新研究热点和发展趋势。目前微观试验的样品分为颗粒和粉末,压汞试验采用颗粒样品,X射线衍射(XRD)、扫描电镜法(SEM)与热重分析采用粉末样品。粉末样品在制备过程中经历了破型、研磨和烘干等步骤,为了保证测试结果的准确性,必须在制备过程中保证样品尽可能没有变化且没有受到污染。烘干是整个制备过程中耗时最长的一个步骤。
目前粉末样品的烘干有试块烘干法和粉末烘干法。试块烘干法是先将待测水泥基材料试块放入烘箱内烘干,随后破型、研磨制成粉末样品进行测试,此法的缺点是,试块由于体积大具有一定的密实度,内部的水分不能有效的烘干。粉末烘干法是将待测水泥基材料试块破型、研磨制成粉末样品后,放入普通烘箱烘干,此法的缺点是粉末样品长时间暴露在空气中,水化产物Ca(OH)2会与空气中的CO2反应形成CaCO3,碳化反应过程如公式(1)~(4)所示。
Ca(OH)2+CO2→CaCO3+H2O (1)
(3CaO·2SiO2·3H2O)+3CO2→(3CaCO3·2SiO2·3H2O) (2)
(2CaO·SiO2)+2CO2+nH2O→(SiO2·nH2O)+2CaCO3 (3)
(3CaO·SiO2)+3CO2+nH2O→(SiO2·nH2O)+3CaCO3 (4)
微观分析作为微观测试方法的主要方法,对于评估水泥基材料的成份及其性能具有较重要的作用。而目前已有的技术,试块烘干法可以避免空气中的CO2对样品的污染,但是不能对试块内部的自由水进行有效的烘干。常规的粉末烘干虽然可以有效的烘干内部的自由水,但是空气中的CO2会对样品造成污染。因此,亟需提供一套既保证烘干自由水又保证样品不受污染的水泥微观试验分析样品的制备方法。
发明内容
发明目的:本发明针对现有的微观试样分析样品制备中存在的问题,提供一种水泥微观试验分析样品的制备方法,该方法既能保证烘干自由水又能保证样品不受污染。
技术方案:本发明的一种水泥微观试验分析样品的制备方法,包括如下步骤:
步骤1,选取待测的水泥基材料进行破型,获取颗粒样品;
步骤2,将颗粒样品研磨后制成粉末并过筛,获取粉末样品;
步骤3,将粉末样品放入真空烘箱中烘干,获得测试样品。
对粉末样品进行真空烘干,可以有效的避免空气中的CO2对样品的污染。
步骤3中,优选采用恒温的真空烘箱对粉末样品进行烘干,其中,真空烘干条件优选为:恒定温度40~80℃、真空度-0.2~-1MPa;最好为:真空烘箱的温度为60℃,真空度为-1MPa,烘干时间24h。
上述步骤1中,待测的水泥基材料可为净浆、砂浆或混凝土。
如果待测的水泥基材料为砂浆,步骤2中,需在研磨后将水泥石中的细骨料小心的挑出;如果待测的水泥基材料为混凝土,需在研磨后将水泥石中的粗骨料和细骨料小心的挑出。
较优的,步骤2中,将研磨后制成的粉末过200目(80μm)的筛子,然后迅速将粒径小于200目的粉末样品放入容器密封保存。
发明原理:粉末烘干法可以有效的烘干自由水,采用真空烘箱对粉末样品进行烘干,一方面可以有效的避免空气中的CO2对样品的污染,另一方面加大了接触面积,可以有效的提高干燥的速度。
有益效果:与现有技术相比,本发明的优点在于:本发明的水泥微观试验分析样品的制备方法能够有效烘干待测样品中的自由水,且不受空气中CO2的污染,保证了样品测试结果的准确性。
附图说明
图1为实施例1中采用本发明方法制得的样品的热重分析测试结果;
图2为对比例1中采用试块烘干法制得的样品的热重分析测试结果;
图3为对比例2中采用常规粉末烘干法制得的样品的热重分析测试结果。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
本发明的一种水泥微观试验分析样品的制备方法,包括下述步骤:
步骤1,选取待测的水泥基材料进行破型,获取颗粒样品;
步骤2,将颗粒样品研磨后制成粉末并过筛,获取粉末样品;
步骤3,将粉末样品放入真空烘箱中烘干,获得测试样品。
该方法能够有效烘干待测样品中的自由水,且不受空气中CO2的污染。
与试块烘干法相比,本发明制得的测试样品为粉末样品,采用的粉末样品可以有效的烘干自由水;与常规粉末烘干法相比,本发明采用真空烘箱提供的真空环境,可隔绝空气中的CO2,防止样品受到碳化,对样品造成污染,从而保证了样品测试结果的准确性。
实施例1
一种水泥微观试验分析样品的制备方法,包括以下步骤:
步骤1,选取实验室制备、养护28d后的M10普通砂浆,采用锤击法破碎获取颗粒样品;
步骤2,采用研钵研磨颗粒样品后,小心的将沙子挑出并过80μm的筛子制成粉末样品;
步骤3,采用真空烘箱,恒定温度60℃、真空度-1MPa的条件下对粉末样品烘干处理24h,获得测试样品,对其进行热重分析试验,试验结果如图1,图中箭头方向指向相应曲线对应的纵坐标,其中,左纵坐标TG代表样品的质量损失率;右纵坐标DTG是根据左纵坐标TG对温度求导得出,其波峰代表相应温度下该样品某种成份的损失(图2~3中左、右纵坐标及箭头含义与图1相同)。
可以看到,实施例1获得的测试样品无自由水残留,而且未形成CaCO3。
对比例1
采用试块烘干法制备水泥微观试验分析样品,包括以下步骤:
步骤1,选取由上世纪80年代的建筑垃圾制成的再生砂浆,采用锤击法将再生砂浆试块制成颗粒样品并放入普通烘箱中烘干24h;
步骤2,采用研钵研磨后小心的将沙子挑出并过80μm的筛子制成粉末样品;
步骤3,对粉末样品进行热重分析试验,试验结果如图2。可以看到,制得的样品中有大量的自由水残留。
对比例2
采用常规粉末法制备水泥微观试验分析样品,包括以下步骤:
步骤1,选取实验室制备的M10普通砂浆,采用锤击法破碎获取颗粒样品;
步骤2,采用研钵研磨颗粒样品后,小心的将沙子挑出并过80μm的筛子制成粉末样品;
步骤3,采用常规烘箱,对粉末样品进行烘干处理,获得测试样品并进行热重分析试验,试验结果如图3。可以看到,制得的样品中有CaCO3形成,说明样品受到了污染。
综合分析图1~图3可知,采用现有的试块烘干法或常规粉末法制备样品时,制得的样品无法完全烘干或者样品受到污染,如果将其用于进行其他微观实验时,会有较大误差。而采用本发明的方法制备水泥微观试验分析样品时,既可以有效的烘干样品中的自由水,又避免了空气中CO2的污染;制得的粉末样品接近试验样品的原始状态,进行其他微观实验时,保证了样品测试结果的准确性。
Claims (7)
1.一种水泥微观试验分析样品的制备方法,其特征在于,包括如下步骤:
步骤1,选取待测的水泥基材料进行破型,获取颗粒样品;
步骤2,将颗粒样品研磨后制成粉末并过筛,获取粉末样品;
步骤3,将粉末样品放入真空烘箱中烘干,获得测试样品。
2.根据权利要求1所述的水泥微观试验分析样品的制备方法,其特征在于,步骤1中,所述水泥基材料为净浆、砂浆或混凝土。
3.根据权利要求1所述的水泥微观试验分析样品的制备方法,其特征在于,步骤1中,所述破型采用锤击法或碾压法。
4.根据权利要求1所述的水泥微观试验分析样品的制备方法,其特征在于,步骤2中,当待测的水泥基材料为砂浆时,所述颗粒样品研磨后将水泥石中的细骨料挑出;当待测的水泥基材料为混凝土时,所述颗粒样品研磨后将水泥石中的粗骨料和细骨料挑出。
5.根据权利要求1所述的水泥微观试验分析样品的制备方法,其特征在于,步骤2中,所述过筛是将研磨后制成的粉末过200目的筛子,然后迅速将粒径小于200目的粉末样品放入容器密封保存。
6.根据权利要求1所述的水泥微观试验分析样品的制备方法,其特征在于,步骤3中,采用恒温的真空烘箱对粉末样品进行烘干,其中,真空烘干条件为:恒定温度40~80℃、真空度-0.2~-1MPa。
7.根据权利要求6所述的水泥微观试验分析样品的制备方法,其特征在于,所述真空烘干的条件为:真空烘箱的温度为60℃,真空度为-1MPa,烘干时间为24h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711097598.0A CN107907555A (zh) | 2017-11-09 | 2017-11-09 | 一种水泥微观试验分析样品的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711097598.0A CN107907555A (zh) | 2017-11-09 | 2017-11-09 | 一种水泥微观试验分析样品的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107907555A true CN107907555A (zh) | 2018-04-13 |
Family
ID=61844556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711097598.0A Pending CN107907555A (zh) | 2017-11-09 | 2017-11-09 | 一种水泥微观试验分析样品的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107907555A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU779884A1 (ru) * | 1978-12-26 | 1980-11-15 | Московский Ордена Трудового Красного Знамени Инженерно- Строительный Институт Им. В.В. Куйбышева | Способ определени абсолютной плотности пористых материалов |
CN105403479A (zh) * | 2015-12-23 | 2016-03-16 | 东南大学 | 一种测定硬化水泥浆基体结合水和自由水的方法 |
CN105823705A (zh) * | 2016-05-27 | 2016-08-03 | 青岛华高墨烯科技股份有限公司 | 一种用于氧化石墨烯的热重分析方法 |
CN106645241A (zh) * | 2016-09-12 | 2017-05-10 | 河海大学 | 一种通过微观检测判断硅酸盐水泥失效的方法 |
-
2017
- 2017-11-09 CN CN201711097598.0A patent/CN107907555A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU779884A1 (ru) * | 1978-12-26 | 1980-11-15 | Московский Ордена Трудового Красного Знамени Инженерно- Строительный Институт Им. В.В. Куйбышева | Способ определени абсолютной плотности пористых материалов |
CN105403479A (zh) * | 2015-12-23 | 2016-03-16 | 东南大学 | 一种测定硬化水泥浆基体结合水和自由水的方法 |
CN105823705A (zh) * | 2016-05-27 | 2016-08-03 | 青岛华高墨烯科技股份有限公司 | 一种用于氧化石墨烯的热重分析方法 |
CN106645241A (zh) * | 2016-09-12 | 2017-05-10 | 河海大学 | 一种通过微观检测判断硅酸盐水泥失效的方法 |
Non-Patent Citations (2)
Title |
---|
孙文标: "《绿色混凝土的性能研究》", 31 August 2016, 黄河水利出版社 * |
范家骏: "阿利特硫铝酸钙水泥的水化机理", 《第六届水泥化学及测试方法学术会议论文集》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | The impact of cold-bonded artificial lightweight aggregates produced by municipal solid waste incineration bottom ash (MSWIBA) replace natural aggregates on the mechanical, microscopic and environmental properties, durability of sustainable concrete | |
CN105800971B (zh) | 用再生混凝土破碎过程中的细粉制成的辅助性胶凝材料 | |
Wu et al. | Properties and CO2-curing enhancement of cement-based materials containing various sources of waste hardened cement paste powder | |
CN104045251B (zh) | 一种二氧化碳强化再生混凝土骨料的方法 | |
Lu et al. | Properties investigation of recycled aggregates and concrete modified by accelerated carbonation through increased temperature | |
CN109621925B (zh) | 一种二氧化碳捕集剂及其应用 | |
Justnes et al. | Mechanism for performance of energetically modified cement versus corresponding blended cement | |
CN108793797A (zh) | 一种抑制碱-骨料反应的碳化再生骨料的制备方法 | |
Mansaneira et al. | Sugar cane bagasse ash as a pozzolanic material | |
Prasittisopin et al. | Performance characteristics of blended cementitious systems incorporating chemically transformed rice husk Ash | |
Abdeldjouad et al. | Effect of curing temperature on the development of hard structure of alkali-activated soil | |
CN113548816A (zh) | 一种煤气化灰渣的活化方法、活化煤气化灰渣和应用 | |
JP5126524B2 (ja) | 鉄鋼スラグを使用する土木用材の製造方法 | |
Xu et al. | Synthesis and characterization of one-part alkali-activated grouting materials based on granulated blast furnace slag, uncalcined coal gangue and microscopic fly ash sinking beads | |
Kaddah et al. | Complementary use of thermogravimetric analysis and oven to assess the composition and bound CO2 content of recycled concrete aggregates | |
Rihan et al. | Factors Influencing Compressive Strength in Fly Ash-Based Geopolymer Concrete: A Comprehensive Review | |
Bahşi et al. | Role of inclusion size distribution of titanium dioxide on the nitrogen oxides reduction capability and microstructural characteristics of cementitious systems | |
Song et al. | Self-cementing mechanism of CFBC coal ashes at early ages | |
Shu et al. | Effect of dry-wet cycles on the mechanical properties of saline soil solidified with sulfur-free lignin and hydrophobic polymer | |
Rizwan et al. | Self-consolidating mortars using various secondary raw materials | |
CN107907555A (zh) | 一种水泥微观试验分析样品的制备方法 | |
AU2017396650B2 (en) | Method for producing coal ash, coal ash, and cement composition | |
Abbas et al. | Cold-bonded lightweight synthetic aggregate involving high reactive attapulgite at different curing conditions | |
Chen et al. | Study on the effect of fly ash and polycarboxylic acid water reducer on the properties of recycled concrete | |
Soleymani | Pore structure and flexural strength of ZrO2 nanopowders palm oil clinker aggregate-based binary blended concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180413 |
|
RJ01 | Rejection of invention patent application after publication |