CN107899598A - 一种钴、氮共掺杂的纳米粒子‑碳纳米管复合材料的制备方法 - Google Patents
一种钴、氮共掺杂的纳米粒子‑碳纳米管复合材料的制备方法 Download PDFInfo
- Publication number
- CN107899598A CN107899598A CN201711018904.7A CN201711018904A CN107899598A CN 107899598 A CN107899598 A CN 107899598A CN 201711018904 A CN201711018904 A CN 201711018904A CN 107899598 A CN107899598 A CN 107899598A
- Authority
- CN
- China
- Prior art keywords
- cobalt
- preparation
- nitrogen
- composite material
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 30
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 30
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 25
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 21
- 239000010941 cobalt Substances 0.000 title claims abstract description 21
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 239000002131 composite material Substances 0.000 title abstract description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title abstract description 15
- 239000002245 particle Substances 0.000 title abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 30
- 239000002070 nanowire Substances 0.000 claims abstract description 24
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims abstract description 23
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000243 solution Substances 0.000 claims description 18
- -1 poly(ethylene glycol) Polymers 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 8
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 239000007983 Tris buffer Substances 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000010453 quartz Substances 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 229920001400 block copolymer Polymers 0.000 claims description 2
- 238000005119 centrifugation Methods 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical class CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 239000000047 product Substances 0.000 claims 2
- 239000012467 final product Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 22
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 6
- 239000000446 fuel Substances 0.000 abstract description 6
- 239000001257 hydrogen Substances 0.000 abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 6
- 230000009467 reduction Effects 0.000 abstract description 5
- 229960003638 dopamine Drugs 0.000 abstract description 4
- 238000003837 high-temperature calcination Methods 0.000 abstract description 3
- 239000002114 nanocomposite Substances 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 3
- 238000011031 large-scale manufacturing process Methods 0.000 abstract 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000003643 water by type Substances 0.000 description 8
- 239000002105 nanoparticle Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- 229910052976 metal sulfide Inorganic materials 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- MHUWZNTUIIFHAS-CLFAGFIQSA-N dioleoyl phosphatidic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(O)=O)OC(=O)CCCCCCC\C=C/CCCCCCCC MHUWZNTUIIFHAS-CLFAGFIQSA-N 0.000 description 1
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical compound C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229960004502 levodopa Drugs 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940126680 traditional chinese medicines Drugs 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/617—500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inert Electrodes (AREA)
- Catalysts (AREA)
Abstract
本发明涉及一种钴、氮共掺杂的纳米粒子‑碳纳米管复合材料的制备方法,属于纳米复合材料制备技术领域。解决现有制备方法过程复杂,成本较高,需要特殊的贵重仪器,不利于大规模生产的问题。本发明提供的钴、氮共掺杂的纳米粒子‑碳纳米管复合材料的制备方法主要是以CdS纳米线、多巴胺和硝酸钴作为原料,在硝酸钴存在的条件下,在CdS纳米线外面包覆多巴胺,所得样品经过高温煅烧即可得到。通过控制CdS纳米线和硝酸钴的质量比,可以调节所得材料的形貌。该制备方法过程简单,成本低。所得复合材料具有较大的比表面积和丰富的介孔结构,使得材料具有很好的氧还原电催化性能,在燃料电池、生物传感、金属‑空气电池、超级电容器等领域有广泛的应用前景。
Description
技术领域
本发明属于纳米复合材料制备技术领域,具体涉及一种钴、氮共掺杂的纳米粒子-碳纳米管复合材料的制备方法。该方法简单便捷,便于大批量的制备、成本低。所制备的复合材料具有良好的电催化性能,在燃料电池、金属-空气电池、生物传感、超级电容器等领域有广泛的应用前景。
背景技术
碳纳米管具有比表面积大、导电性好和一维的孔结构等特点,被认为是一种非常理想的纳米载体及良好的催化剂载体。杂原子共掺杂的纳米粒子-碳纳米管复合材料,具有较大的比表面积、丰富的孔结构和良好的导电性等,在燃料电池、生物传感、超级电容器等方面具有独特的优势和良好的发展潜力。将零维的金属纳米粒子修饰到碳纳米管的表面可以获得性能优越的功能性纳米复合材料,可使活性金属的前驱体得到充分的分散,防止金属粒子烧结,由于碳纳米管与活性金属间的强相互作用,可以极大地促进催化剂的活性、选择性和稳定性。
目前,制备纳米粒子-碳纳米管复合材料的方法,比较局限,主要包括以下几种:1.化学镀法:是在无外加电流的情况下借助合适的还原剂,使镀液中金属离子还原成金属,并沉积到材料上的过程。如Guo等利用化学镀法将Pd纳米粒子沉积到碳纳米管上,并且探究了碳纳米管直径对于沉积结果的影响[Guo Y,Fhayli K,Li Song,Yang Y,RSC Advances2013,3,17693-17695.];2.电化学沉积法:电化学沉积是指金属或合金或金属化合物在电场作用下从其化合物水溶液、非水溶液或熔盐中在电极表面沉积出来的电化学过程。如Quinn等利用电化学沉积方法合成了Au(Pt,Pd)-多壁碳纳米管复合材料[Quinn B,DekkerC,Lemay S,Journal of the American Chemical Society 2005,127,6146-6147.];3.物理方法:包括溅射沉积、离子和电子束辐射沉积、气相蒸发沉积等,其优势在于可以有效调控金属纳米粒子的尺寸、形貌和在碳纳米管表面的分散性。如Soin等通过磁控溅射方法在垂直排列的碳纳米管表面获得均匀分散的粒径介于3~5nm的Pt纳米粒子[Soin N,Roy SS,Karlsson L,Diamond and Related Materials 2010,19,595-598.]。但是上述这些制备方法过程复杂,成本较高,需要特殊的贵重仪器、工艺复杂,不利于大规模生产。
发明内容
本发明要解决现有技术中的技术问题,提供一种钴、氮共掺杂的纳米粒子-碳纳米管复合材料的制备方法。该制备方法是以CdS纳米线作为牺牲模板,在其外表面包覆一层多巴胺,包覆的同时,向反应液中加入一定量的硝酸钴,将所得产物经过高温煅烧,就可以得到钴、氮共掺杂的纳米粒子-碳纳米管的复合材料,并且通过控制与调节CdS纳米线与硝酸钴的质量比,可以得到性能更加优异的钴、氮共掺杂的纳米粒子-碳纳米管复合材料。该制备方法简便可行,成本低,制得的复合材料表现出优异的氧还原电化学催化性能。该复合材料在燃料电池、生物传感、金属-空气电池、超级电容器等领域有广泛的应用前景。
为了解决上述技术问题,本发明的技术方案具体如下:
一种钴、氮共掺杂的纳米粒子-碳纳米管复合材料的制备方法,包括以下步骤:
步骤1、首先制备50~200mg嵌段共聚物聚(乙二醇)-聚(丙二醇)-聚(乙二醇)(P123)和120mg三(羟甲基)氨基甲烷(Tris)的混合水溶液,向该混合水溶液中加入0.01~1.00g硝酸钴,再将0.10~0.30g CdS纳米线加入到上述混合水溶液中,室温下搅拌;
步骤2、称取0.10~0.50g多巴胺溶于去离子水中,加入到步骤1得到的混合溶液中,室温下搅拌反应;
步骤3、将反应后的溶液,通过离心,洗涤,干燥后得到产物;
步骤4、将所得产物放在石英舟中,氮气保护下程序升温至900℃,热处理1~3h后即得到钴、氮共掺杂的纳米粒子-碳纳米管复合材料。
在上述技术方案中,所述CdS纳米线与硝酸钴的质量比为10:1、1:1、1:2或1:5。
本发明的有益效果是:
本发明提供的钴、氮共掺杂的纳米粒子-碳纳米管复合材料的制备方法,主要是以CdS纳米线、多巴胺和硝酸钴作为原料,在硝酸钴存在的条件下,在CdS纳米线外面包覆多巴胺,所得样品经过高温煅烧即可得到钴、氮共掺杂的纳米粒子-碳纳米管复合材料。通过控制CdS纳米线和硝酸钴的质量比,可以调节所得材料的形貌,只有在最佳比例下,才能得到形貌均一的钴、氮共掺杂的纳米粒子-碳纳米管复合材料。该制备方法过程简单,成本低。此外,所得到的复合材料,由于具有较大的比表面积和丰富的介孔结构,使得材料具有很好的氧还原电催化性能,可以广泛适用于氧还原、氧析出、燃料电池以及氢气析出等方面。该制备方法制备的复合材料在燃料电池、生物传感、金属-空气电池、超级电容器等领域有广泛的应用前景。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1是本发明实施例1方法制备的复合材料的透射电镜(TEM)图;
图2是本发明实施例2方法制备的复合材料的TEM图;
图3是本发明实施例3方法制备的复合材料的TEM图;
图4是本发明实施例4方法制备的复合材料的TEM图;
图5是本发明实施例2方法制备的复合材料的X射线衍射图(XRD)图;
图6是在N2、O2下测试本发明实施例2方法制备的复合材料的电催化氧还原过程的循环伏安曲线。
具体实施方式
下面结合附图对本发明做以详细说明。
所用原料多巴胺(购于阿拉丁试剂)、硝酸钴(购于国药试剂)。
实施例1
原料比例:CdS纳米线和硝酸钴的质量比10:1,形貌见附图1。
1)将50mg P123、120mg Tris和0.01g硝酸钴溶解于100mL去离子水中,再将0.10gCdS纳米线加入到上述溶液中,室温下搅拌;
2)称取0.10g多巴胺溶解到50mL去离子水中,加入到上述溶液中,室温下搅拌反应;
3)将反应后的溶液,进行离心,用乙醇洗涤数次,之后在烘箱内进行干燥,得到产物;
4)将所得产物放入石英舟中,氮气保护下程序升温至900℃,热处理2h,即得到钴、氮共掺杂的纳米粒子-碳纳米管复合材料。
实施例2
原料比例,CdS纳米线和硝酸钴的质量比1:1,形貌见附图2。
1)将100mg P123、120mg Tris和0.10g硝酸钴溶解于100mL去离子水中,再将0.10gCdS纳米线加入到上述溶液中,室温下搅拌;
2)称取0.20g多巴胺溶解到50mL去离子水中,加入到上述溶液中,室温下搅拌反应;
3)将反应完的溶液,进行离心,用乙醇洗涤数次,之后在烘箱内进行干燥,得到产物;
4)将所得产物放入石英舟中,氮气保护下程序升温至900℃,热处理2h,即得到钴、氮共掺杂的纳米粒子-碳纳米管复合材料。
通过测试发现,本实施例所制备的复合材料的比表面积为661.2m2g-1,而且存在大量的介孔结构。图5是本实施例得到的复合材料的X射线衍射(XRD)图谱,由XRD图,我们可以发现,图中出现了明显的金属硫化物的特征峰以及明显的石墨化的碳的特征峰,这表明通过该方法成功地制备出了共掺杂的纳米粒子-碳纳米管的复合材料,位于26°的特征峰对应于石墨化的碳的(002)的衍射峰,其他峰为金属硫化物的衍射峰。图6是本实施例得到的复合材料的电催化氧还原过程的循环伏安曲线,该图表明该复合材料均有良好的电催化氧还原催化性能,表现出很好的氧还原峰电位以及较大的峰电流密度。
实施例3
原料比例,CdS纳米线和硝酸钴的质量比1:2,形貌见附图3。
1)将160mg P123、120mg Tris和0.60g硝酸钴溶解于100mL去离子水中,再将0.30gCdS纳米线加入到上述溶液中,室温下搅拌;
2)称取0.30g多巴胺溶解到50mL去离子水中,加入到上述溶液中,室温下搅拌反应;
3)将反应完的溶液,进行离心,用乙醇洗涤数次,之后在烘箱内进行干燥,得到产物;
4)将所得产物放入石英舟中,氮气保护下程序升温至900℃,热处理1h,即得到钴、氮共掺杂的纳米粒子-碳纳米管复合材料。
实施例4
原料比例,CdS纳米线和硝酸钴的质量比1:5,形貌见附图4。
1)将200mg P123、120mg Tris和1.00g硝酸钴溶解于100mL去离子水中,再将0.20gCdS纳米线加入到上述溶液中,室温下搅拌;
2)称取0.50g多巴胺溶解到50mL去离子水中,加入到上述溶液中,室温下搅拌反应;
3)将反应完的溶液,进行离心,用乙醇洗涤数次,之后在烘箱内进行干燥,得到产物;
4)将所得产物放入石英舟中,氮气保护下程序升温至900℃,热处理3h,即得到钴、氮共掺杂的纳米粒子-碳纳米管复合材料。
由图1-4,我们可以发现,适当控制CdS纳米线和硝酸钴的质量比,可以有效控制所制备的复合材料的形貌。当CdS纳米线和硝酸钴的质量比为10:1时,碳纳米管外面只生长了很少的纳米粒子;当CdS纳米线和硝酸钴的质量比为1:1时,适量的纳米粒子均匀分布在碳纳米管外面;当CdS纳米线和硝酸钴的质量比继续增加到1:2和1:5时,大量纳米粒子分布在碳纳米管外部。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
Claims (2)
1.一种钴、氮共掺杂的纳米粒子-碳纳米管复合材料的制备方法,其特征在于,包括以下步骤:
步骤1、首先制备50~200mg嵌段共聚物聚(乙二醇)-聚(丙二醇)-聚(乙二醇)(P123)和120mg三(羟甲基)氨基甲烷(Tris)的混合水溶液,向该混合水溶液中加入0.01~1.00g硝酸钴,再将0.10~0.30g CdS纳米线加入到上述混合水溶液中,室温下搅拌;
步骤2、称取0.10~0.50g多巴胺溶于去离子水中,加入到步骤1得到的混合溶液中,室温下搅拌反应;
步骤3、将反应后的溶液,通过离心,洗涤,干燥后得到产物;
步骤4、将所得产物放在石英舟中,氮气保护下程序升温至900℃,热处理1~3h后即得到钴、氮共掺杂的纳米粒子-碳纳米管复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述CdS纳米线与硝酸钴的质量比为10:1、1:1、1:2或1:5。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711018904.7A CN107899598B (zh) | 2017-10-26 | 2017-10-26 | 一种钴、氮共掺杂的纳米粒子-碳纳米管复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711018904.7A CN107899598B (zh) | 2017-10-26 | 2017-10-26 | 一种钴、氮共掺杂的纳米粒子-碳纳米管复合材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107899598A true CN107899598A (zh) | 2018-04-13 |
CN107899598B CN107899598B (zh) | 2020-09-15 |
Family
ID=61841832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711018904.7A Expired - Fee Related CN107899598B (zh) | 2017-10-26 | 2017-10-26 | 一种钴、氮共掺杂的纳米粒子-碳纳米管复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107899598B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108695522A (zh) * | 2018-05-29 | 2018-10-23 | 湖南科技大学 | 一种中性铝-空气电池正极材料的制备方法与应用 |
CN110038614A (zh) * | 2019-05-20 | 2019-07-23 | 中国科学院长春应用化学研究所 | 一种氮化钴负载的氮掺杂碳材料及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103495427A (zh) * | 2013-10-17 | 2014-01-08 | 大连理工大学 | 利用低温等离子体制备负载型金属硫化物催化剂的方法 |
CN104892937A (zh) * | 2015-06-25 | 2015-09-09 | 中国科学技术大学 | 聚多巴胺氮掺杂碳纳米管与功能化聚多巴胺氮掺杂碳纳米管的制备方法 |
CN105140535A (zh) * | 2015-08-05 | 2015-12-09 | 北京化工大学 | 硫化钴/氮硫共掺杂碳空心球复合材料及其制备方法 |
US20160079609A1 (en) * | 2014-09-11 | 2016-03-17 | Cfd Research Corporation | Fluorine-based cathode materials for thermal batteries |
CN106076377A (zh) * | 2016-06-06 | 2016-11-09 | 复旦大学 | 一种磷掺杂的硫化钴镍/碳纳米管‑碳纳米纤维复合材料及其制备方法 |
CN106944098A (zh) * | 2017-03-27 | 2017-07-14 | 中国科学院福建物质结构研究所 | 碳材料负载铜钴双金属硫化物复合材料及其制法和在废水处理中的应用 |
-
2017
- 2017-10-26 CN CN201711018904.7A patent/CN107899598B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103495427A (zh) * | 2013-10-17 | 2014-01-08 | 大连理工大学 | 利用低温等离子体制备负载型金属硫化物催化剂的方法 |
US20160079609A1 (en) * | 2014-09-11 | 2016-03-17 | Cfd Research Corporation | Fluorine-based cathode materials for thermal batteries |
CN104892937A (zh) * | 2015-06-25 | 2015-09-09 | 中国科学技术大学 | 聚多巴胺氮掺杂碳纳米管与功能化聚多巴胺氮掺杂碳纳米管的制备方法 |
CN105140535A (zh) * | 2015-08-05 | 2015-12-09 | 北京化工大学 | 硫化钴/氮硫共掺杂碳空心球复合材料及其制备方法 |
CN106076377A (zh) * | 2016-06-06 | 2016-11-09 | 复旦大学 | 一种磷掺杂的硫化钴镍/碳纳米管‑碳纳米纤维复合材料及其制备方法 |
CN106944098A (zh) * | 2017-03-27 | 2017-07-14 | 中国科学院福建物质结构研究所 | 碳材料负载铜钴双金属硫化物复合材料及其制法和在废水处理中的应用 |
Non-Patent Citations (2)
Title |
---|
FAN WANG ET AL.: ""A "Solid Dual-Ions-Transformation" Route to S,N Co-Doped Carbon Nanotubes as Highly Efficient "Metal-Free" Catalysts for Organic Reactions"", 《ADVANCED MATERIALS 》 * |
XING ZHANG ET AL.: ""Cobalt sulfide nanoparticles anchored in three-dimensional carbon nanosheet networks for lithium and sodium ion batteries with enhanced electrochemical performance"", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108695522A (zh) * | 2018-05-29 | 2018-10-23 | 湖南科技大学 | 一种中性铝-空气电池正极材料的制备方法与应用 |
CN110038614A (zh) * | 2019-05-20 | 2019-07-23 | 中国科学院长春应用化学研究所 | 一种氮化钴负载的氮掺杂碳材料及其制备方法 |
CN110038614B (zh) * | 2019-05-20 | 2020-06-16 | 中国科学院长春应用化学研究所 | 一种氮化钴负载的氮掺杂碳材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107899598B (zh) | 2020-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sheng et al. | Porous octahedral PdCu nanocages as highly efficient electrocatalysts for the methanol oxidation reaction | |
CN108493461B (zh) | 一种N掺杂多孔碳包覆Fe、Co双金属纳米粒子的催化剂及其制备方法 | |
CN110890558B (zh) | 一种负载型铂基核壳催化剂及其制备方法 | |
CN109675599B (zh) | 一种氮掺杂碳包覆碳化钼及其制备方法和应用 | |
KR101287891B1 (ko) | 연료전지용 촉매의 제조방법 | |
Liu et al. | Recent advances in active sites identification and regulation of MN/C electro-catalysts towards ORR | |
Wang et al. | Cobalt-gluconate-derived high-density cobalt sulfides nanocrystals encapsulated within nitrogen and sulfur dual-doped micro/mesoporous carbon spheres for efficient electrocatalysis of oxygen reduction | |
Sun et al. | Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness | |
CN110694693A (zh) | 一种碳布负载的MoSx/UiO-66复合材料及制备方法与用途 | |
WO2012116469A1 (en) | Synthesis of nanosized metal carbides on graphitized carbon as supporting materials for electrocatalysts | |
Liu et al. | CeO 2-modified α-MoO 3 nanorods as a synergistic support for Pt nanoparticles with enhanced CO ads tolerance during methanol oxidation | |
Leng et al. | Co/N-doped carbon nanotubes-grafted porous carbon sheets architecture as efficient electrocatalyst for oxygen reduction reaction | |
Zhao et al. | Pyrolysis derived helically nitrogen-doped carbon nanotubes with uniform cobalt for high performance oxygen reduction | |
Hong et al. | Multi-walled carbon nanotube supported Pd nanocubes with enhanced electrocatalytic activity | |
Feng et al. | Ultrafine VN nanoparticles confined in Co@ N-doped carbon nanotubes for boosted hydrogen evolution reaction | |
Hsieh et al. | Preparation of Pt–Co nanocatalysts on carbon nanotube electrodes for direct methanol fuel cells | |
Lv et al. | CoP-embedded nitrogen and phosphorus co-doped mesoporous carbon nanotube for efficient hydrogen evolution | |
Geng et al. | Pd x Fe y alloy nanoparticles decorated on carbon nanofibers with improved electrocatalytic activity for ethanol electrooxidation in alkaline media | |
Jiang et al. | 2D coordination polymer-derived CoSe 2–NiSe 2/CN nanosheets: the dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction | |
Fang et al. | Stacked Co6W6C nanocrystals anchored on N-doping carbon nanofibers with excellent electrocatalytic performance for HER in wide-range pH | |
CN113881965A (zh) | 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用 | |
Zhang et al. | Mn3O4 nanosheets coated on carbon nanotubes as efficient electrocatalysts for oxygen reduction reaction | |
Liu et al. | In situ engineering of hollow porous Mo 2 C@ C nanoballs derived from giant Mo-polydopamine clusters as highly efficient electrocatalysts for hydrogen evolution | |
Di et al. | Hierarchical porous N-doped carbon-supported PtCu nanoparticles as an efficient catalyst for oxygen reduction reaction | |
CN107899598A (zh) | 一种钴、氮共掺杂的纳米粒子‑碳纳米管复合材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200915 |