CN107894232A - 一种gnss/sins组合导航精确测速定位方法及系统 - Google Patents

一种gnss/sins组合导航精确测速定位方法及系统 Download PDF

Info

Publication number
CN107894232A
CN107894232A CN201710909242.6A CN201710909242A CN107894232A CN 107894232 A CN107894232 A CN 107894232A CN 201710909242 A CN201710909242 A CN 201710909242A CN 107894232 A CN107894232 A CN 107894232A
Authority
CN
China
Prior art keywords
information
speed
gnss
train
sins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710909242.6A
Other languages
English (en)
Inventor
谢劲励
刘三湘
彭锦波
谢松霖
阳卫平
金莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Original Assignee
Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials filed Critical Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Priority to CN201710909242.6A priority Critical patent/CN107894232A/zh
Publication of CN107894232A publication Critical patent/CN107894232A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种GNSS/SINS组合导航精确测速定位方法及系统,将SINS与GNSS输出的导航数据进行融合,信号跟踪过程和数据融合是实时同步的,得到的数据每个时刻都是最准确的,充分利用SINS短期精度高,不受外界干扰和GNSS长期精度高,克服SINS长期精度低和GNSS易受干扰的缺陷,提高了测速定位的精度,解决了无实体轮轨传统列车采用传统测速方法无法精确测出列车速度的问题,对磁浮列车产业快速发展形成有力支撑,同时带动北斗卫星应用产业的发展,可推广于自动驾驶或无人驾驶等轨道交通运输。

Description

一种GNSS/SINS组合导航精确测速定位方法及系统
技术领域
本发明属于惯性技术应用领域。尤其涉及一种可用于城市轨道交通、自动驾驶的惯性组合导航技术。
背景技术
中国首条自主产权的磁浮线长沙磁悬浮工程开通后,在运行中发现存在低速测速不准、停车定位不准确的问题。磁浮列车运行时车身悬浮在轨道之上,列车与轨道之间除了供电轨外无机械接触,因此传统列车上的基于机械接触的“轮轴脉冲传感器”“计轴”“信标”测速技术在磁浮列车无实体轮轨环境下,无法精确测出磁浮列车的速度,影响列车的停靠准确度,对磁浮列车的自动化程度及进一步发展造成制约。
现有的GNSS/SINS组合导航技术适用于包括无机械接触的全部轨道交通行业,但普通分体式组合导航精度较差。国内一体式组合导航系统方面研究较少,大多处于理论仿真阶段,未见工程应用的报道。加拿大的NovAtel公司已研制出了一种基于惯性/GPS的组合导航系统,其IMU精度为:陀螺漂移小于0.75°/h,加速度计零偏1mg,组合系统输出精度为:横滚、俯仰姿态为0.015°,航向为0.041°,速度为0.02m/s,位置为1.8m左右。在城市轨道交通运行中,卫星定位容易受到外界环境的干扰,高楼、封闭式站台、隧道及立交桥等会使卫星信号会变得很差甚至中断而无法定位,严重影响轨道交通列车测速及定位精度。
发明内容
本发明旨在提供一种GNSS/SINS组合导航精确测速定位方法,解决无实体轮轨传统列车采用传统测速方法无法精确测出列车速度的问题。
为解决上述技术问题,本发明所采用的技术方案是:一种GNSS/SINS组合导航精确测速定位方法,包括以下步骤:
1)利用卫星定位模块获得的列车位置信息、惯性测量装置实时监测的列车行驶过程中的行驶速度、姿态变化量、位置变化量以及多个差分基站组网获取的冗余数据进行数据的时间、空间同步和误差建模;
2)利用信息融合算法完成导航参数的最优估计,得到IMU输出信息;所述导航参数包括上述列车位置信息、行驶速度、姿态变化量、位置变化量以及冗余数据;
3)对IMU输出信息进行校准,从而得出校正后的精确位置、速度和行驶方向信息;所述行驶方向包含列车的横滚、方位、俯仰三个姿态量。
步骤1)中,当前时刻列车位置信息计算公式为:
其中,t1为运行延迟时间;λ、h分别为当前时刻测速系统输出的经度、纬度、高度;为当前时刻卫星定位模块输出的位置信息;[v1 v2 v3]为当前时刻的上一时刻惯性测量装置输出的东向、北向以及天向速度信息。
本发明中,对IMU输出信息进行校准的具体实现过程包括:
1)由惯性测量装置获取的实时列车信息与卫星获取的位置信息,经卡尔曼滤波后得到误差估计矩阵;
2)由惯性测量装置实时提供的行驶速度、姿态变化量、位置变化量分别减去误差估计矩阵中所包含的速度误差信息、姿态误差信息、位置误差信息即为最终校准结果。
相应地,本发明还提供了一种GNSS/SINS组合导航精确测速定位系统,其包括:
采集模块,用于利用卫星定位模块获得的列车位置信息、惯性测量装置实时监测的列车行驶过程中的行驶速度、姿态变化量、位置变化量以及多个差分基站组网获取的冗余数据进行数据的时间、空间同步和误差建模;
估算模块,用于利用信息融合算法完成导航参数的最优估计,得到IMU输出信息;所述导航参数包括上述列车位置信息、行驶速度、姿态变化量、位置变化量以及冗余数据;
校准模块,用于对IMU输出信息进行校准,从而得出校正后的精确位置、速度和行驶方向信息。
所述校准模块包括:
滤波模块,用于对由惯性测量装置获取的实时列车信息与卫星获取的位置信息进行卡尔曼滤波后得到误差估计矩阵;
计算模块,用于由惯性测量装置实时提供的行驶速度、姿态变化量、位置变化量分别减去误差估计矩阵中所包含的速度误差信息、姿态误差信息、位置误差信息,得到最终校准结果。
与现有技术相比,本发明所具有的有益效果为:本发明将SINS与GNSS输出的导航数据进行融合,信号跟踪过程和数据融合是实时同步的,得到的数据每个时刻都是最准确的,充分利用SINS短期精度高,不受外界干扰和GNSS长期精度高,克服SINS长期精度低和GNSS易受干扰的缺陷,提高了测速定位的精度,解决了无实体轮轨传统列车采用传统测速方法无法精确测出列车速度的问题,对磁浮列车产业快速发展形成有力支撑,同时带动北斗卫星应用产业的发展,可推广于自动驾驶或无人驾驶等轨道交通运输。
附图说明
图1GNSS/SINS组合导航精确测速定位系统原理图;
图2差分定位系统基本原理图;
图3(a)机场至榔梨速度曲线图;图3(b)到榔梨站距离示意图。
具体实施方式
本发明GNSS/SINS组合导航技术采用一体式耦合设计,将惯性导航及卫星导航两种单纯的导航手段结合起来。将惯导系统给出的当前时刻的速度和位置信息作为主要的导航系统,采用经典的卡尔曼滤波算法进行数据的实时反馈校正,融入在线零位参数估计与零速修正功能,对两个系统进行校正。卫星信号基站采用差分卫星信息组网技术,按照卫星基准站动态匹配算法,自动选取出针对用户设备的最优匹配基准站,以保证卫星定位的最高精度。本发明式接收机内部不需要进行信号的跟踪,将SINS与GNSS输出的导航数据进行融合,信号跟踪过程和数据融合是实时同步的,得到的数据每个时刻都是最准确的,充分利用SINS短期精度高,不受外界干扰和GNSS长期精度高,克服SINS长期精度低和GNSS易受干扰的缺陷,提高测速定位的精度。
测速定位系统由一台集成了卫星定位接收模块、惯性测量装置及用于匹配参数在线预估的算法、差分卫星信息组网和采集融合的数据处理部分组成。
其中卫星定位接收模块对列车定位,惯性测量装置实时监测列车行驶过程中的行驶速度、姿态变化量等状态。所获得的数据通过相应的接口将测量数据传输到系统中心处理模块,并利用软件进行数据的时间、空间同步和误差建模,利用信息融合算法完成导航参数的最优估计。中心计算机的滤波器利用GPS接收机获得的原始测量信息作为观测量,对IMU输出信息进行校准,从而得出校正后的精确位置、速度和行驶方向信息。
系统采用卡尔曼滤波方式进行组合导航,系统采用卫星位置信息作为量测量,用反馈方式校正捷联惯导姿态以及速度信息。
卫星导航系统因为初始化卫星信号以及信息解算的原因,与惯性导航系统存在一个延时时间差。因此卫星导航系统所解算出来的位置信息需要修正后才能够提供给惯性导航系统进行滤波解算:
系统运行并初始化后,卫星导航系统给出此次运行时间延迟t1,根据卫星系统特性,延迟时间在一次通电情况下不会改变。设在当前时刻,卫星导航系统输出位置信息为前一时刻惯组输出速度信息为[v1 v2 v3],则当前时刻卫星导航系统位置信息为:
具体的系统建模以及结算流程如下:
量测量为:
分别为经度、纬度、高度信息。
系统的状态变量选取为0
状态变量依次为三轴速度误差、三轴姿态误差、经度误差、纬度误差、高度误差、三轴陀螺零位误差、三轴加速度计零位误差共计15个状态变量。
选取量测阵;
H=[0 0 0 0 0 0 1 1 1 0 0 0 0 0 0]T
分别选取十五维的系统噪声矩阵Q以及三维的量测噪声矩阵R。
系统噪声矩阵Q的初始值由惯组的系统精度以及加速计以及陀螺的器件精度所决定,量测噪声矩阵由卫星导航系统定位精度决定。
状态矩阵X(t)的初始值为零,而预测矩阵X(t)的初始值由系统实际跑车试验得来。在列车进行过程中,由下式进行卡尔曼滤波估计:
Pk=X(t-1)*P(t-1)*X(t-1)/+Q*Δt
K=Pk*H/*inv(H*Pk*H/+R)
P(t)=(I9-K*H)*Pk;
X(t)=K*Z(t)
其中Δt为解算周期,滤波结束得到的X(t)即为误差矩阵。
由惯性导航系统实时提供的姿态信息、速度信息以及位置信息减去滤波误差估计矩阵即为系统最终输出结果。X(t)中包含加速度计与陀螺的零位误差估计值,在列车开动一段时间后趋于稳定,此时输出的零位信息即为滤波的估计值,可以代入惯性导航系统中作为误差值修正。
通过在线零位估计解决测速系统中IMU惯性器件误差趋势性漂移的问题,而零速修正主要解决列车的停靠的时低速测速问题。
差分卫星信息组网技术为全球卫星导航定位系统提供信息传输技术支撑,将其各个子系统组合成一个数据交互网络。差分卫星信息组网技术采用自主研发的卫星基准站动态匹配算法,将监控分析中心提供的卫星信号故障检测与报警信号,基准站点的卫星信息和基准站点用户负载度信息,结合用户设备的自身经纬度,设备运行历史数据和用户设备优先级等一系列数据进行加权综合,自动选取出针对用户设备的最优匹配基准站,以保证卫星定位的最高精度。最优基准站选取完成后,使用通用分组无线服务技术将基准站的RTCM伪距差分数据修正值发送到数据发播服务子系统,由其将数据分发到传输用户设备上。
差分卫星信息组网包含列车设备,基准站,中央控制中心三个部分,设备与中央控制中心,基准站与中央控制中心能够通过无线网络进行通信,基准站与设备之间不能通信。
列车内部设置方式:在列车头尾各装一台设备,两台设备同时与列车控制器连接,两台设备均能够输出列车速度和位置信息,但是具体由哪一台设备输出信息,由中央控制中心来决定,决定输出的判断方式为:优先输出具有有效差分状态字的设备数据,如果两台设备的差分状态字一样(同时有效或者同时无效),则输出接收卫星数高的设备数据;当接收卫星数小于9时,取消卫星数据的融合,只输出1号设备的惯组数据。设备能够产生同步时钟,保证在设备之间输出切换时数据能够保持同步,同步时钟的基准使用卫星接收机上的PPS信号,每一个PPS信号脉冲到来时,将自身的同步时钟与PPS脉冲同步,每一个同步时钟上升沿发送列车速度位置信息。
基准站设置方式:在每一个列车站台安装一个卫星基准站,卫星基准站会通过移动网络向中央控制中心发送伪距信息,中央控制中心接收到信息后,将信息转发给列车上的设备。卫星基准站同时使用移动,联通,电信三家供应商的网络与中央控制中心进行通信,每10秒钟进行一次网络信号测试,选取网络信号在90以上的移动网络发送数据,发送的数据帧中含有加密字段,符合字段要求的数据才会被中央控制中心认可给予转发。
中央控制中心的设置方式:中央控制中心安装在高可靠机房,连接互联网,拥有固定IP地址,24小时不间断保持运行,接收列车设备和基准站的信息,根据列车设备发送过来的经纬度地址,将最近的基准站信息对其转发,保证测量精度。中央控制中心会将所有列车的数据进行存档做为备用。
根据本发明技术方案进行设计及实验验证,开展了GNSS/SINS组合导航技术的研究,组合导航参数在线估计方法、GNSS定位系统组网研究技术有所突破,测速定位系统样机完成随磁浮列车演示验证。
表1 GNSS/SINS组合导航系统样机磁浮列车演示验证结果
本项目采用轻小型一体化设计,将惯性导航及卫星导航两种单纯的导航手段结合起来,达到1+1>2的显著效果,提高动态特性,增强抗干扰能力。将SINS数据引入轨道交通行业,融合在线参数预估方法,可独立完成列车速度、地理位置、方向信息的实时测量,是该技术运用于轨道交通的一次重大突破;通过GNSS定位系统组网构建、卫星导航与惯导数据同步与补偿技术进一步提高列车RAMS。
表2 GNSS/SINS组合导航精确测速定位技术主要技术指标
项目指标名称 实际达到的水平 项目指标名称 实际达到的水平
站台停靠精度 ≤0.3m 星系统 GPS/北斗/GLONASS
列车测速精度 ≤004m/s 天线模制 三星七频
IMU准备时间 ≤5s 定位时间 <40s
数据刷新率 2000Hz 定位精度 ≤0.02m
速度限制 不大于1800km/h 高度限制

Claims (5)

1.一种GNSS/SINS组合导航精确测速定位方法,其特征在于,包括以下步骤:
1)利用卫星定位模块获得的列车位置信息、惯性测量装置实时监测的列车行驶过程中的行驶速度、姿态变化量、位置变化量以及多个差分基站组网获取的冗余数据进行数据的时间、空间同步和误差建模;
2)利用信息融合算法完成导航参数的最优估计,得到IMU输出信息;所述导航参数包括上述列车位置信息、行驶速度、姿态变化量、位置变化量以及冗余数据;
3)对IMU输出信息进行校准,从而得出校正后的精确位置、速度和行驶方向信息。
2.根据权利要求1所述的GNSS/SINS组合导航精确测速定位方法,其特征在于,步骤1)中,当前时刻列车位置信息计算公式为:
其中,t1为运行延迟时间;λ、h分别为当前时刻测速系统输出的经度、纬度、高度;为当前时刻卫星定位模块输出的位置信息;[v1 v2 v3]为当前时刻的上一时刻惯性测量装置输出的东向、北向以及天向速度信息。
3.根据权利要求1所述的GNSS/SINS组合导航精确测速定位方法,其特征在于,对IMU输出信息进行校准的具体实现过程包括:
1)由惯性测量装置获取的实时列车信息与卫星获取的位置信息,经卡尔曼滤波后得到误差估计矩阵;
2)由惯性测量装置实时提供的行驶速度、姿态变化量、位置变化量分别减去误差估计矩阵中所包含的速度误差信息、姿态误差信息、位置误差信息即为最终校准结果。
4.一种GNSS/SINS组合导航精确测速定位系统,其特征在于,包括:
采集模块,用于利用卫星定位模块获得的列车位置信息、惯性测量装置实时监测的列车行驶过程中的行驶速度、姿态变化量、位置变化量以及多个差分基站组网获取的冗余数据进行数据的时间、空间同步和误差建模;
估算模块,用于利用信息融合算法完成导航参数的最优估计,得到IMU输出信息;所述导航参数包括上述列车位置信息、行驶速度、姿态变化量、位置变化量以及冗余数据;
校准模块,用于对IMU输出信息进行校准,从而得出校正后的精确位置、速度和行驶方向信息。
5.根据权利要求所述的GNSS/SINS组合导航精确测速定位系统,其特征在于,所述校准模块包括:
滤波模块,用于对由惯性测量装置获取的实时列车信息与卫星获取的位置信息进行卡尔曼滤波后得到误差估计矩阵;
计算模块,用于由惯性测量装置实时提供的行驶速度、姿态变化量、位置变化量分别减去误差估计矩阵中所包含的速度误差信息、姿态误差信息、位置误差信息,得到最终校准结果。
CN201710909242.6A 2017-09-29 2017-09-29 一种gnss/sins组合导航精确测速定位方法及系统 Pending CN107894232A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710909242.6A CN107894232A (zh) 2017-09-29 2017-09-29 一种gnss/sins组合导航精确测速定位方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710909242.6A CN107894232A (zh) 2017-09-29 2017-09-29 一种gnss/sins组合导航精确测速定位方法及系统

Publications (1)

Publication Number Publication Date
CN107894232A true CN107894232A (zh) 2018-04-10

Family

ID=61803110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710909242.6A Pending CN107894232A (zh) 2017-09-29 2017-09-29 一种gnss/sins组合导航精确测速定位方法及系统

Country Status (1)

Country Link
CN (1) CN107894232A (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955851A (zh) * 2018-07-12 2018-12-07 北京交通大学 利用ins和dtm确定gnss误差的方法
CN108964698A (zh) * 2018-08-01 2018-12-07 清华大学 Rtk基站定位试验系统及方法
CN109212575A (zh) * 2018-10-10 2019-01-15 中南大学 一种基于北斗及惯性导航的组合测速定位技术
CN109204319A (zh) * 2018-08-27 2019-01-15 广东星舆科技有限公司 高精度位置数据采集系统、后视镜、判断驾驶状态的方法
CN109471144A (zh) * 2018-12-13 2019-03-15 北京交通大学 基于伪距/伪距率的多传感器紧组合列车组合定位方法
CN109522591A (zh) * 2018-10-10 2019-03-26 中南大学 一种应用于中高速磁浮列车的数据融合方法
CN109596139A (zh) * 2019-01-22 2019-04-09 中国电子科技集团公司第十三研究所 基于mems的车载导航方法
CN109781098A (zh) * 2019-03-08 2019-05-21 兰州交通大学 一种列车定位的方法和系统
CN110187374A (zh) * 2019-05-28 2019-08-30 立得空间信息技术股份有限公司 一种智能驾驶性能检测多目标协同定位系统及方法
CN110296701A (zh) * 2019-07-09 2019-10-01 哈尔滨工程大学 惯性与卫星组合导航系统渐变型故障回溯容错方法
CN110657800A (zh) * 2018-06-29 2020-01-07 北京自动化控制设备研究所 一种位置测量组合导航系统的时间同步方法
CN111596334A (zh) * 2020-06-23 2020-08-28 重庆赛迪奇智人工智能科技有限公司 一种厂区铁路网中机车二自由度精准定位方法
CN111856536A (zh) * 2020-07-30 2020-10-30 东南大学 一种基于系统间差分宽巷观测的gnss/ins紧组合定位方法
CN112147663A (zh) * 2020-11-24 2020-12-29 中国人民解放军国防科技大学 一种卫星和惯性组合动对动实时精密相对定位方法
CN112526570A (zh) * 2019-09-18 2021-03-19 中车株洲电力机车研究所有限公司 列车定位方法及装置
CN112833919A (zh) * 2021-03-25 2021-05-25 成都纵横自动化技术股份有限公司 一种多余度的惯性测量数据的管理方法及其系统
CN113625323A (zh) * 2021-06-18 2021-11-09 北京千方科技股份有限公司 一种基于车路协同的车辆实时定位系统、方法、介质及车辆
CN113739817A (zh) * 2020-05-29 2021-12-03 上海华依科技集团股份有限公司 一种汽车组合导航设备信号融合算法参数的在线自动调试方法
CN114295122A (zh) * 2021-12-02 2022-04-08 河北汉光重工有限责任公司 用于嵌入式系统的sins_gnss时间同步方法及系统
CN114348055A (zh) * 2022-01-19 2022-04-15 江西理工大学 磁悬浮轨道交通运行控制方法及控制系统
CN115597535A (zh) * 2022-11-29 2023-01-13 中国铁路设计集团有限公司(Cn) 基于惯性导航的高速磁悬浮轨道不平顺检测系统及方法
CN115950657A (zh) * 2023-02-16 2023-04-11 中国农业大学 一种集群作业模式下轮式拖拉机滑转率测算系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1869630A (zh) * 2006-04-19 2006-11-29 吉林大学 完备汽车运动状态测量系统
CN102778686A (zh) * 2012-08-07 2012-11-14 东南大学 基于移动gps/ins节点的协同车辆定位方法
US20130107668A1 (en) * 2011-10-28 2013-05-02 Raytheon Company Convoy-based systems and methods for locating an acoustic source
CN104865589A (zh) * 2015-06-14 2015-08-26 成都可益轨道技术有限公司 铁路机车车辆安全导航系统
CN106154299A (zh) * 2016-06-22 2016-11-23 陕西宝成航空仪表有限责任公司 一种gps/sins组合导航系统时间同步方法
CN106226803A (zh) * 2016-07-18 2016-12-14 深圳市华信天线技术有限公司 定位方法、装置及无人机
CN106324645A (zh) * 2016-08-19 2017-01-11 付寅飞 一种基于惯性导航和卫星差分定位的车辆精准定位方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1869630A (zh) * 2006-04-19 2006-11-29 吉林大学 完备汽车运动状态测量系统
US20130107668A1 (en) * 2011-10-28 2013-05-02 Raytheon Company Convoy-based systems and methods for locating an acoustic source
CN102778686A (zh) * 2012-08-07 2012-11-14 东南大学 基于移动gps/ins节点的协同车辆定位方法
CN104865589A (zh) * 2015-06-14 2015-08-26 成都可益轨道技术有限公司 铁路机车车辆安全导航系统
CN106154299A (zh) * 2016-06-22 2016-11-23 陕西宝成航空仪表有限责任公司 一种gps/sins组合导航系统时间同步方法
CN106226803A (zh) * 2016-07-18 2016-12-14 深圳市华信天线技术有限公司 定位方法、装置及无人机
CN106324645A (zh) * 2016-08-19 2017-01-11 付寅飞 一种基于惯性导航和卫星差分定位的车辆精准定位方法

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110657800B (zh) * 2018-06-29 2021-08-10 北京自动化控制设备研究所 一种位置测量组合导航系统的时间同步方法
CN110657800A (zh) * 2018-06-29 2020-01-07 北京自动化控制设备研究所 一种位置测量组合导航系统的时间同步方法
CN108955851A (zh) * 2018-07-12 2018-12-07 北京交通大学 利用ins和dtm确定gnss误差的方法
CN108964698A (zh) * 2018-08-01 2018-12-07 清华大学 Rtk基站定位试验系统及方法
CN109204319A (zh) * 2018-08-27 2019-01-15 广东星舆科技有限公司 高精度位置数据采集系统、后视镜、判断驾驶状态的方法
CN109212575A (zh) * 2018-10-10 2019-01-15 中南大学 一种基于北斗及惯性导航的组合测速定位技术
CN109522591A (zh) * 2018-10-10 2019-03-26 中南大学 一种应用于中高速磁浮列车的数据融合方法
CN109471144A (zh) * 2018-12-13 2019-03-15 北京交通大学 基于伪距/伪距率的多传感器紧组合列车组合定位方法
CN109471144B (zh) * 2018-12-13 2023-04-28 北京交通大学 基于伪距/伪距率的多传感器紧组合列车组合定位方法
CN109596139A (zh) * 2019-01-22 2019-04-09 中国电子科技集团公司第十三研究所 基于mems的车载导航方法
CN109781098A (zh) * 2019-03-08 2019-05-21 兰州交通大学 一种列车定位的方法和系统
CN110187374A (zh) * 2019-05-28 2019-08-30 立得空间信息技术股份有限公司 一种智能驾驶性能检测多目标协同定位系统及方法
CN110187374B (zh) * 2019-05-28 2022-12-16 立得空间信息技术股份有限公司 一种智能驾驶性能检测多目标协同定位系统及方法
CN110296701A (zh) * 2019-07-09 2019-10-01 哈尔滨工程大学 惯性与卫星组合导航系统渐变型故障回溯容错方法
CN112526570A (zh) * 2019-09-18 2021-03-19 中车株洲电力机车研究所有限公司 列车定位方法及装置
CN113739817B (zh) * 2020-05-29 2023-09-26 上海华依智造动力技术有限公司 汽车组合导航设备信号融合算法参数的在线自动调试方法
CN113739817A (zh) * 2020-05-29 2021-12-03 上海华依科技集团股份有限公司 一种汽车组合导航设备信号融合算法参数的在线自动调试方法
CN111596334A (zh) * 2020-06-23 2020-08-28 重庆赛迪奇智人工智能科技有限公司 一种厂区铁路网中机车二自由度精准定位方法
CN111856536A (zh) * 2020-07-30 2020-10-30 东南大学 一种基于系统间差分宽巷观测的gnss/ins紧组合定位方法
CN112147663B (zh) * 2020-11-24 2021-02-09 中国人民解放军国防科技大学 一种卫星和惯性组合动对动实时精密相对定位方法
CN112147663A (zh) * 2020-11-24 2020-12-29 中国人民解放军国防科技大学 一种卫星和惯性组合动对动实时精密相对定位方法
CN112833919A (zh) * 2021-03-25 2021-05-25 成都纵横自动化技术股份有限公司 一种多余度的惯性测量数据的管理方法及其系统
CN112833919B (zh) * 2021-03-25 2023-11-03 成都纵横自动化技术股份有限公司 一种多余度的惯性测量数据的管理方法及其系统
CN113625323A (zh) * 2021-06-18 2021-11-09 北京千方科技股份有限公司 一种基于车路协同的车辆实时定位系统、方法、介质及车辆
CN113625323B (zh) * 2021-06-18 2022-12-30 北京千方科技股份有限公司 一种基于车路协同的车辆实时定位系统、方法、介质及车辆
CN114295122A (zh) * 2021-12-02 2022-04-08 河北汉光重工有限责任公司 用于嵌入式系统的sins_gnss时间同步方法及系统
CN114348055A (zh) * 2022-01-19 2022-04-15 江西理工大学 磁悬浮轨道交通运行控制方法及控制系统
CN114348055B (zh) * 2022-01-19 2023-08-18 江西理工大学 磁悬浮轨道交通运行控制方法及控制系统
CN115597535A (zh) * 2022-11-29 2023-01-13 中国铁路设计集团有限公司(Cn) 基于惯性导航的高速磁悬浮轨道不平顺检测系统及方法
CN115950657A (zh) * 2023-02-16 2023-04-11 中国农业大学 一种集群作业模式下轮式拖拉机滑转率测算系统及方法
CN115950657B (zh) * 2023-02-16 2023-09-15 中国农业大学 一种集群作业模式下轮式拖拉机滑转率测算系统及方法

Similar Documents

Publication Publication Date Title
CN107894232A (zh) 一种gnss/sins组合导航精确测速定位方法及系统
CN108196289B (zh) 一种卫星信号受限条件下的列车组合定位方法
Joubert et al. Developments in modern GNSS and its impact on autonomous vehicle architectures
CN101357643B (zh) 数字轨道地图辅助gps实现精确列车定位方法及系统
CN108226985B (zh) 基于精密单点定位的列车组合导航方法
CN101535833B (zh) 移动体定位装置
CN102253399B (zh) 一种利用载波相位中心值的多普勒差分补偿测速方法
US20060234699A1 (en) System and method for establishing the instantaneous speed of an object
CN103018758A (zh) 基于gps/ins/agps的移动差分基站方法
CN101858748A (zh) 高空长航无人机的多传感器容错自主导航方法
CN207318731U (zh) 一种具有北斗定位定向功能的车辆监控装置
Zhou et al. Kinematic measurement of the railway track centerline position by GNSS/INS/odometer integration
CN110907976A (zh) 基于北斗卫星的高速铁路组合导航系统
JP2004168216A (ja) Gps測位による列車走行情報検出装置及びその列車走行情報検出方法
CN209479681U (zh) 实现轨道快速检测的测量小车
CN106093992A (zh) 一种基于cors的亚米级组合定位导航系统及导航方法
CN108195374A (zh) 用于轨道自动测量车的组合导航系统及组合导航解算方法
CN105044738A (zh) 一种接收机自主完好性监视的预测方法及预测系统
CN104697485A (zh) 基于单轴加速度传感器的姿态测量系统及其姿态测量方法
Breuer et al. High precision localisation in customised GNSS receiver for railway applications
CN113758483A (zh) 一种自适应fkf地图匹配方法及系统
Vana et al. Benefits of motion constraining for robust, low-cost, dual-frequency GNSS PPP+ MEMS IMU navigation
Mirabadi et al. Design of fault tolerant train navigation systems
Liu et al. Performance of tightly coupled integration of GPS/BDS/MEMS-INS/Odometer for real-time high-precision vehicle positioning in urban degraded and denied environment
Jiang Digital route model aided integrated satellite navigation and low-cost inertial sensors for high-performance positioning on the railways

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180410

WD01 Invention patent application deemed withdrawn after publication