CN107888306B - 一种地铁隧道中小尺度衰落值的测量方法 - Google Patents

一种地铁隧道中小尺度衰落值的测量方法 Download PDF

Info

Publication number
CN107888306B
CN107888306B CN201711068655.2A CN201711068655A CN107888306B CN 107888306 B CN107888306 B CN 107888306B CN 201711068655 A CN201711068655 A CN 201711068655A CN 107888306 B CN107888306 B CN 107888306B
Authority
CN
China
Prior art keywords
data
value
field intensity
scale fading
mobile communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711068655.2A
Other languages
English (en)
Other versions
CN107888306A (zh
Inventor
吴宇庆
叶友仁
周维
王屹
肖开宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUBEI POST TELECOMMUNICATION PLANNING DESIGN CO Ltd
Original Assignee
HUBEI POST TELECOMMUNICATION PLANNING DESIGN CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUBEI POST TELECOMMUNICATION PLANNING DESIGN CO Ltd filed Critical HUBEI POST TELECOMMUNICATION PLANNING DESIGN CO Ltd
Priority to CN201711068655.2A priority Critical patent/CN107888306B/zh
Publication of CN107888306A publication Critical patent/CN107888306A/zh
Application granted granted Critical
Publication of CN107888306B publication Critical patent/CN107888306B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种测量方法,属于无线通信技术领域,具体是涉及一种地铁隧道中小尺度衰落值的测量方法。包括:步骤1,使用至少两套接收机在拥挤车厢内两侧窗边同时采集指定频段某个实际移动通信系统导频的场强数据;步骤2,从场强数据中分离确定性成分和随机性成分;步骤3,得出随机成分的估计;步骤4,计算随机成分估计的标准方差;步骤5,基于标准方差计算小尺度衰落。该方法不使用CW波全频段模测系统,而在地铁隧道中,使用两套常规接收机同时采集某个实际移动通信系统导频的场强,再经数据处理,来获得大尺度衰落值。

Description

一种地铁隧道中小尺度衰落值的测量方法
技术领域
本发明涉及一种测量方法,属于无线通信技术领域,具体是涉及一种地铁隧道中小尺度衰落值的测量方法。
背景技术
因为无线电波传播方式有直射、反射、绕射、散射及它们的合成,衰落特性是移动信道的基本特性。根据一段距离(数十至数百个波长范围)内信号强度变化的快慢,可将衰落分为大尺度衰落和小尺度衰落,如图1。其中大尺度衰落描述的是发射机与接收机之间场强中值的缓慢变化,包括由于人体等固定障碍物阻挡的阴影效应造成的接收场强中值的缓慢变化,以及路径传播造成的在更大范围(几百米或几千米)空间距离上的接收信号电平平均值的变化。
路径损耗和阴影衰落等大尺度衰落参数是预测无线电波覆盖能力的重要参数。例如,目前预测地铁隧道中无线电波覆盖能力的方法中,较典型的是中国铁塔股份有限公司2016年颁布的《室内分布系统技术指导意见》给出的方法:
其计算单信号源有效覆盖距离L=(Pin–(P0+L1+L2+L3+L4+L5))/S(米),其参数有:Pin:漏泄电缆输入端注入功率;P0:最低要求覆盖信号强度;L1:漏泄电缆耦合损耗;L2:人体衰落因子即阴影衰落,与车厢内的拥挤程度有关,一般取3-5dB;L3:宽度因子即路径损耗,Xlg(d/2),d为终端距离漏泄电缆的距离,X为系数,一般取值在10-20之间,根据实际项目进行模测校准;L4:设计衰减余量,一般取3dB;L5:车体损耗;S:每米漏泄电缆传输损耗。
其中模测校准L2(人体衰落因子即阴影衰落)、L3(宽度因子即路径损耗)这两个参数时,通常需要使用昂贵的CW波(未经调制的标准正弦波)模测系统,CW波模测系统使用条件也较苛刻。因此在实际项目中,L2、L3(大多只能根据经验取定,影响了无线覆盖能力预测结果的准确度。
另外,因为实际移动通信系统采用了诸如扩频、RAKE接收机等抗衰落技术,而CW波模测系统无法模拟出实际移动通信系统抗衰落能力,因此现有方法的模测校准结果较保守,导致较大的冗余投资。
发明内容
本发明主要是为了降低模测校准工作的门槛,提出了一种地铁隧道中无线电传播模型校正的测量方法。该方法不使用CW波全频段模测系统,而在地铁隧道中,使用两套常规接收机同时采集某个实际移动通信系统导频的场强,再经数据处理,来获得大尺度衰落值。
本发明的上述技术问题主要是通过下述技术方案得以解决的:
一种地铁隧道中小尺度衰落值的测量方法,包括:
步骤1,使用至少两套接收机在拥挤车厢内两侧窗边同时采集指定频段某个实际移动通信系统导频的场强数据;
步骤2,从场强数据中分离确定性成分和随机性成分,
步骤3,得出随机性成分的估计;
步骤4,计算随机性成分估计的标准偏差;
步骤5,基于标准偏差计算小尺度衰落。
优选的,上述的一种地铁隧道中小尺度衰落值的测量方法,所述步骤1中,采样频率为5Hz,获得第j次采样时A点的数据{yAj}以及第j次采样时的B点数据{yBj}。
优选的,上述的一种地铁隧道中小尺度衰落值的测量方法,所述步骤2中,对采样点数据进行平滑处理,使用等权中心滑动平均法,从场强数据yj中分离确定性成分fj和随机性成分ej
yj=fj+ej j=1,2,…,N (1)
其中,所述等权中心滑动平均方法是沿全长的N个数据,不断逐个滑动地取2n+1=m个相邻数据作加权平均来表示平滑数据,其基于以下公式实现:
Figure GDA0002999791620000031
ek=yk-fk k=n+1,n+2,…,N-n (3);
优选的,上述的一种地铁隧道中小尺度衰落值的测量方法,所述步骤4
中,用Excel软件中的STDEV()函数,估算给定样本的标准偏差σ。
优选的,上述的小尺度衰落值的测量方法,所述步骤5中,计算小尺度衰落Z(p,μ,σ),其结果是移动通信网质量指标“可通率”的函数,具体为:
用Excel软件中的NORMINV(p,μ,σ)函数,返回指定平均值和标准偏差的正态累积分布函数的反函数值z;式中,p:正态分布的概率值,即移动通信网质量指标“可通率”。其数学意义为从正态分布的左边开始,累加到z值处的总面积(概率),μ:分布的算术平均值,σ:分布的标准偏差。
因此,本发明具有如下优点:
1、不再使用CW波模测系统,而是使用较易获得的装备,可操作性较强。本发明涉及的方法考虑了实际移动通信系统抗衰落能力,所获得的结果较使用CW波模测系统更准确。
2、相对现有方法中衰减余量一般取定值3dB的情况,本发明涉及的方法能实测获得的小尺度衰落值Z(p,0,σ),无线覆盖能力预测时应用实测值所得结果较客观、较准确。
3、本发明涉及的方法所获得的小尺度衰落值Z(p,0,σ),该值是移动通信网质量指标“可通率”的函数,可以差异化设计不同质量要求的系统。
附图说明
附图1是漏泄电缆覆盖模型示意图;
附图2是使用两套常规测试设备的位置A和位置B测量时的示意图。
附图3是信号传播衰落示意图。
附图4是NORMINV函数的参数Probability意义。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例1
本发明的目的是通过如下措施来达到的:
1、使用两套接收机采集数据
使用两套常规接收机,在拥挤车厢内两侧窗边(如图2的位置A和位置B),在地铁隧道中,同时采集指定频段某个实际移动通信系统导频的场强数据,采样频率为5Hz,获得两组样本{yAj}、{yBj}。
2、数据平滑处理
使用等权中心滑动平均法,从场强数据yj中分离确定性成分fj和随机性成分ej:yj=fj+ej j=1,2,…,N (1)
等权中心滑动平均方法是沿全长的N个数据,不断逐个滑动地取2n+1=m个相邻数据作加权平均来表示平滑数据,其一般算式为
Figure GDA0002999791620000041
在动态测试数据处理中应用较多的是最简单的5-11点等权中心平滑。
3、做“同步”处理:
从两组样本确定性成分中截取两组同时开始的、等长的数列{fAj}、{fBj}。目前大部分公用移动通信系统的测试接收机能够同时记录场强数据和系统时间,利用系统时间即可实现{fAj}、{fBj}“同步”。
4、计算参数|FA-FB|取值
大尺度衰落参数|FA-FB|表达了在车厢内部的无线路径传播损耗、以及人体阻挡引起的阴影衰落的总和;FA为{fAj}的数学期望、FB为{fBj}的数学期望,|FA-FB|为两者之差的绝对值。重复步骤1~4,将获得的N个|FA-FB|值取平均值,得|FA-FB|1
5、考虑两台接收机性能存在差异,对掉两台接收机位置,重复以上步骤1~4,获得|FA-FB|2
6、最终|FA-FB|=(|FA-FB|1+|FA-FB|2)/2。
7、计算获得X值:
因为接收场强中值F=Pin-(P0+L1+L2+L3+L4+L5),式中
Pin:漏泄电缆输入端注入功率;
P0:最低要求覆盖信号强度;
L1:漏泄电缆耦合损耗,此项为漏泄电缆指标,一般取95%覆盖概率的耦合损耗,与工作频段有关;
L2:人体衰落,与车厢内的拥挤程度有关,一般取3-5dB;
L3:宽度因子,X1g(d/2),d为终端距离漏泄电缆的距离,X为系数,一般取值在10-20之间,根据实际项目进行模测校准;
L4:设计衰减余量,一般取3dB;
L5:车体损耗,与车箱类型有关,一般地铁车体损耗在8-12dB左右;
所以,|FA-FB|-L2=∣L3A-L3B∣=∣Xlg(dA/2)-Xlg(dB/2)∣=∣Xlg(dA/dB)∣,可以得到
X=(|FA-FB|-L2)/∣lg(dA/dB)∣
两套接收机在拥挤车厢内两侧窗边(如图2的位置A和位置B),它们到漏泄电缆距离为dA和dB(单位:米)。
实施例2
在某市地铁隧道中,使用两套接收机(测试软件:鼎利PIONNER v9.1;测试终端:中兴MF91S),同时采集中国移动TD-LTE系统导频场强数据,采样频率为5Hz,获得两套数据{yAj}、{yBj}。使用等权中心滑动平均法(m=11),从场强数据yj中分离确定性成分fj
根据接收机记录的系统时间,从两套样本确定性成分中截取两个同时开始的、等长的数列,A处场强确定性成分{fAj}与B处场强确定性成分{fBj}。△E为{fAj}、{fBj}数学期望之差的绝对值。
表1第一组测试16段场强数据计算结果
Figure GDA0002999791620000061
Figure GDA0002999791620000071
第一组测试16段场强数据计算得到16对△E,以各段样本的数量比例为权重,加权平均得到|FA-FB|1=10.5dB。
考虑两台接收机性能存在差异,对掉两台接收机测试位置,重复以上步骤。根据接收机记录的系统时间,截取同时开始的等长数据,A处场强确定性成分与B处场强确定性成分。
表2第二组测试16段场强数据计算结果
Figure GDA0002999791620000072
Figure GDA0002999791620000081
第二组测试16段场强数据计算得到16对△E,以各段样本的数量比例为权重,加权平均得到|FA-FB|2=11.9dB。
将获取的两组测试值平均,可得:|FA-FB|=11.2dB
两套接收机在拥挤车厢内两侧窗边(如图2的位置A和位置B),它们到漏泄电缆距离为dA=1.1m和dB=3.7m。
如果取L2=3dB,则X=(|FA-FB|-L2)/∣lg(dA/dB)∣=(11.2-3)/∣lg(3.7/1.1)∣=15.6。
因此地铁隧道中2.3-2.4GHz TDD频段,无线电传播模型校正结果是:如果取人体损耗L2=3dB,则X=15.6。
实施例3
1.使用两套接收机采集数据
使用两套接收机(测试软件:鼎利PIONNER v9.1;测试终端:中兴MF91S),在拥挤车厢内两侧窗边(如图2的位置A和位置B),在某地铁隧道中,同时采集中国移动的TD-LTE系统导频的场强数据,采样频率为5Hz,获得两组样本{yAj}、{yBj}。
2.数据平滑处理,分离确定性成分
使用等权中心滑动平均法(m=11),从场强数据yj中分离确定性成分fj
3.做“同步”处理:
从两组样本确定性成分中截取两组同时开始的、等长的的数列{fAj}、{fBj}。目前市面上公用移动通信系统的测试接收机能够同时记录场强数据和系统时间。
获取第一组测试,根据接收机记录的系统时间,截取同时开始的等长数据,A处场强确定性成分与B处场强确定性成分。
表1是没有做同步直接截取等长数据和做同步后的对比。计算表明做同步与不做同步所获得的结果是不同的。
表1第一次测试计算结果
Figure GDA0002999791620000091
4.计算参数|FA-FB|取值
大尺度衰落参数|FA-FB|表达了在车厢内部的无线路径传播损耗、以及人体阻挡引起的阴影衰落起的总和;|FA-FB|为{fAj}、{fBj}数学期望之差的绝对值。第一次测试结果详见表1。
5.考虑两台接收机性能存在差异,对掉两台接收机位置,重复以上步骤1~4,。
对调两台接收机位置后做第二组测试,获得A处导频场强值;以及经平滑后得到的A处场强确定性成分。
对调两台接收机位置后做第二组测试,获得B处导频场强值,以及经平滑后得到的B处场强确定性成分。
对调两台接收机位置后做第二组测试,根据接收机记录的系统时间,截取同时开始的等长数据,A处场强确定性成分与B处场强确定性成分。
表2第二次测试计算结果
Figure GDA0002999791620000101
6.将获取的两次测试值平均即为大尺度衰落值|FA-FB|=(6.2+15.1)/2=10.7dB。
实施例4
第一、本发明不再使用现有预测方法中的L4(设计衰减余量)来表示衰落储备参数。本发明自定义了车厢内部小尺度衰落值Z(p,μ,σ)。
p:正态分布的概率值,即移动通信网质量指标“可通率”。其数学意义为从正态分布的左边开始,累加到Z(p,μ,σ)值(简称z值)处的总面积(概率),如图2。
μ:分布的算术平均值。
σ:分布的标准偏差。
小尺度衰落值Z(p,μ,σ),即为无线电波快衰落储备,该值是p(移动通信网质量指标:可通率)的函数。该值能量化反映地铁隧道中车厢内无线电波的小尺度衰落情况,包括多径传播产生的场强幅度波动中衰落率大于1Hz的分量、以及移动台运动引起多普勒频移所产生的衰落(衰落率10Hz~300Hz)等。
第二、获取Z(p,μ,σ)步骤如下:
1.使用两套接收机采集数据
使用两套接收机,在车厢内两侧窗边(位置A和位置B),在隧道中同时采集指定频段某个实际移动通信系统导频的场强数据,采样频率为5Hz,获得两组样本{yAj}、{yBj}。
2.比较{yAj}、{yBj}的平均值,其中数值较小者为远离漏泄电缆接收机的场强数据{yj}。
3.使用等权中心滑动平均法,从远离漏泄电缆接收机获得场强数据{yj}中分离出确定性成分fj和随机性成分ej
yj=fj+ej j=1,2,…,N (1)
等权中心滑动平均方法是沿全长的N个数据,不断逐个滑动地取2n+1=m个相邻数据作加权平均来表示平滑数据,其一般算式为
Figure GDA0002999791620000111
在动态测试数据处理中应用较多的是最简单的5-11点等权中心平滑。
由此也可得出对随机性成分的估计,即取其残差为
ek=yk-fk k=n+1,n+2,…,N-n (3)
高斯分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个平均值为μ、标准偏差为σ2的高斯分布,记为N(μ,σ2)。则其概率密度函数为正态分布的平均值μ决定了其位置,其标准差σ决定了分布的幅度。一般实验中的随机性成分,大多数呈现为正态或近似正态分布,{ej}服从N(μ=0,σ2)的高斯分布。
4.计算{ej}标准偏差:
用Excel软件中的STDEV()函数,估算给定样本的标准偏差σ。
5.计算小尺度衰落Z(p,μ,σ),其结果是移动通信网质量指标“可通率”的函数。
用Excel软件中的NORMINV(p,μ,σ)函数,返回指定平均值和标准偏差的正态累积分布函数的反函数值z。
p:正态分布的概率值,即移动通信网质量指标“可通率”。其数学意义为从正态分布的左边开始,累加到z值处的总面积(概率),如图2。
μ:分布的算术平均值。
σ:分布的标准偏差。
如有一组场强数据随机性成分{ej}满足正态分布,期望值μ=0,其标准差σ=3dB即2.0,Z(p,0,σ)=NORMINV(95%,0,2.0)=3.3=5.2dB,表示若有5.2dB衰落储备时累计95%信号可克服小尺度衰落,接收到的场强能高于给定电平值(即满足移动通信网质量指标“可通率”为95%)。
实施例5
本发明定义车厢内部小尺度衰落值Z(p,μ,σ),即为无线电波衰落储备。
获取Z(p,μ,σ)步骤如下:
1.使用两套接收机采集数据
使用两套接收机(测试软件:鼎利PIONNER v9.1;测试终端:中兴MF91S),,在车厢内两侧窗边(位置A和位置B),在隧道中同时采集中国移动的TD-LTE系统导频的场强数据,采样频率为5Hz,获得两组样本{yAj}、{yBj}。
2.比较{yAj}、{yBj}的平均值或波形,其中数值较小者为远离漏泄电缆接收机的场强数据{yj}。
用Excel软件中的AVERAGE()函数,计算{yAj}、{yBj}中同时开始的等长数据:
{yAj}的平均值:AVERAGE(N33:N313)=-87.1dBm;
{yBj}的平均值:AVERAGE(N231:N511)=-72.0dBm;
经比较A处为远离漏泄电缆的接收机。
A处导频场强值,B处导频场强值。
3.使用等权中心滑动平均法(M=11),从A处(远离漏泄电缆接收机)获得场强数据{yj}中分离出随机性成分{ej},{ej}服从N(μ=0,σ2)的高斯分布。
4.计算{ej}标准偏差:
用Excel软件中的STDEV()函数,估算出{ej}的标准偏差σ=3.2dB。
5.计算小尺度衰落Z(p,μ,σ)
Excel软件中的NORMINV()函数,能返回指定平均值和标准偏差的正态累积分布函数的反函数值z。
A处场强数据随机性成分{ej}满足正态分布,期望值μ=0,其标准差σ=3.2dB即2.1,Z(p,μ=0,σ=2.1)=NORMINV(95%,0,2.1)=5.4dB,表示若有5.4dB电平储备时累计95%信号可克服小尺度衰落,A处接收到的场强能高于给定电平值(即满足移动通信网质量指标“可通率”为95%)。
以此类推,可以计算出可通率90%~99%所对应的小尺度衰落即衰落储备取值,详见表1。
表1 2.3-2.4GHz TDD频段衰落储备取值
Figure GDA0002999791620000131
Figure GDA0002999791620000141
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (1)

1.一种地铁隧道中小尺度衰落值的测量方法,其特征在于,包括:
步骤1,使用两套接收机在拥挤车厢内两侧窗边同时采集指定频段某个实际移动通信系统导频的场强数据,采样频率为5Hz获得两组样本{yAj}、{yBj},j=1,2,…,N;
步骤2,比较{yAj}、{yBj}的平均值,其中数值较小者为远离漏泄电缆接收机的场强数据{yj};
步骤3,使用等权中心滑动平均法从场强数据中分离确定性成分和随机性成分,对采样点数据进行平滑处理,从远离漏泄电缆接收机获得的场强数据{yj}中分离确定性成分{fj}和随机性成分{ej}:
yj=fj+ej
其中,所述等权中心滑动平均方法是沿全长的N个数据,不断逐个滑动地取2n+1=m个相邻数据作加权平均来表示平滑数据;
步骤4,计算随机性成分{ej}的标准偏差σ,用Excel软件中的STDEV()函数,估算给定样本的标准偏差σ;
步骤5,基于标准偏差计算小尺度衰落;计算小尺度衰落Z(p,μ,σ),其结果是移动通信网质量指标“可通率”的函数,具体为:
用Excel软件中的NORMINV(p,μ,σ)函数,返回指定平均值和标准偏差的正态累积分布函数的反函数值z;式中,p:正态分布的概率值,即移动通信网质量指标“可通率”;其数学意义为从正态分布的左边开始,累加到z值处的总面积,μ:分布的算术平均值,σ:分布的标准偏差。
CN201711068655.2A 2017-11-03 2017-11-03 一种地铁隧道中小尺度衰落值的测量方法 Active CN107888306B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711068655.2A CN107888306B (zh) 2017-11-03 2017-11-03 一种地铁隧道中小尺度衰落值的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711068655.2A CN107888306B (zh) 2017-11-03 2017-11-03 一种地铁隧道中小尺度衰落值的测量方法

Publications (2)

Publication Number Publication Date
CN107888306A CN107888306A (zh) 2018-04-06
CN107888306B true CN107888306B (zh) 2021-06-11

Family

ID=61778650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711068655.2A Active CN107888306B (zh) 2017-11-03 2017-11-03 一种地铁隧道中小尺度衰落值的测量方法

Country Status (1)

Country Link
CN (1) CN107888306B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI971540A (fi) * 1997-04-11 1998-10-12 Nokia Telecommunications Oy Menetelmä radioaaltojen monitiehäipymän vaikutuksen määrittämiseksi
CN101635930B (zh) * 2008-07-21 2012-05-16 中兴通讯股份有限公司 时分-同步码分多址移动通信系统进行隧道覆盖的方法
CN102739329B (zh) * 2012-06-25 2014-08-20 中国科学院上海微系统与信息技术研究所 一种轻轨沿线道路传感器网络路径损耗模型建立方法
CN104735681B (zh) * 2014-10-31 2018-07-27 广东南方电信规划咨询设计院有限公司 高铁环境中lte网络的设置方法

Also Published As

Publication number Publication date
CN107888306A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN101606076B (zh) 对距离估计或涉及距离估计的改进
CN100518012C (zh) 认知无线电系统的授权用户信号检测方法
CN101394233B (zh) 室内视距环境下脉冲超宽带多径信号建模的方法及系统
Zhang et al. Measurement‐based delay and Doppler characterizations for high‐speed railway hilly scenario
CN103604494A (zh) 一种提高变电站厂界噪声测量准确性的方法
CN106707035B (zh) 无线电环境图场强参数估计算法
CN102638290B (zh) 一种基于信道测量的多径信号分量提取方法及装置
Wang et al. A novel indoor ranging method using weighted altofrequent RSSI measurements
CN103561412B (zh) 一种基于平稳随机过程的信道相关阴影衰落构建的方法
CN107888306B (zh) 一种地铁隧道中小尺度衰落值的测量方法
Ileri RSSI based position estimation in zigbee sensor networks
Yi et al. RSSI localization method for mine underground based on RSSI hybrid filtering algorithm
CN110412562B (zh) 机载距离测量设备健康度评估方法
Zhang et al. Cultivated Land Monitoring System Based on Dynamic Wake-Up UAV and Wireless of Distributed Storage.
CN105738866B (zh) 一种基于能量检测的60GHz非视距识别与无线指纹定位方法
CN104010366A (zh) 一种环境自适应的信号源定位方法
López-Benítez et al. Spatial duty cycle model for cognitive radio
CN107959535B (zh) 一种地铁隧道中大尺度衰落值的测量方法
CN103297989A (zh) 一种高速铁路高架桥场景下时变k因子模型构建方法
CN103237348B (zh) 一种基于wsn改进粒子滤波的运动目标定位方法
CN107888309B (zh) 一种地铁隧道中无线电传播模型校正的测量方法
Lu et al. Fading analysis for the high speed railway viaduct and terrain cutting scenarios
CN107255811A (zh) 一种基于rssi通信距离估计的不确定性分析方法
CN101373985B (zh) 一种多用户检测干扰消除性能评估的方法及装置
Yuan et al. Measurement-based shadow fading correlation modeling for urban areas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant