CN107879744B - 一种原生电磁场SiC-ZnO复合材料及其制备方法 - Google Patents

一种原生电磁场SiC-ZnO复合材料及其制备方法 Download PDF

Info

Publication number
CN107879744B
CN107879744B CN201711287516.9A CN201711287516A CN107879744B CN 107879744 B CN107879744 B CN 107879744B CN 201711287516 A CN201711287516 A CN 201711287516A CN 107879744 B CN107879744 B CN 107879744B
Authority
CN
China
Prior art keywords
electromagnetic field
composite material
zno composite
primary electromagnetic
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711287516.9A
Other languages
English (en)
Other versions
CN107879744A (zh
Inventor
顾华志
杨爽
黄奥
张美杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201711287516.9A priority Critical patent/CN107879744B/zh
Publication of CN107879744A publication Critical patent/CN107879744A/zh
Application granted granted Critical
Publication of CN107879744B publication Critical patent/CN107879744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种原生电磁场SiC‑ZnO复合材料及其制备方法。其技术方案是:以40~60wt%的碳化硅颗粒、0~10wt%的碳化硅细粉和30~60wt%的热电氧化物粉体为原料,外加所述原料5~10wt%的粘结剂,混练,机压成型,干燥,即得干燥后的坯体;然后将干燥后的坯体置于高温炉中,以25~35℃/h的速率升温至1200~1600℃,保温8~10h,制得原生电磁场SiC‑ZnO复合材料。本发明所制备的原生电磁场SiC‑ZnO复合材料高温力学性能优异、热震稳定性及热电性能好,并能利用在服役过程中的温差原位产生电磁场,减少工作层对钢水的污染,提升钢铁质量。

Description

一种原生电磁场SiC-ZnO复合材料及其制备方法
技术领域
本发明属于SiC-ZnO复合材料技术领域。具体涉及一种原生电磁场SiC-ZnO复合材料及其制备方法。
背景技术
钢铁生产中,钢渣不可避免地与二次精炼炉以及浇钢系统的水口、塞棒、滑板等耐火材料接触。在这些过程中,钢渣对耐火材料的作用主要包括两个方面:由于钢水的冲刷、剥落造成耐火材料整块的落入融钢中,形成尺寸较大的外来夹杂;耐火材料的组成元素溶解到熔融钢铁中,包括耐火材料的构成氧化物或氮化物、碳及各种结合剂与添加剂。因此,耐火材料的剥落与蚀损产生非金属杂质成为制约钢铁品质的重要污染源,为了应对耐火材料苛刻的服役环境,多种新型耐火材料被开发。“一种六铝酸钙轻质耐火材料及其制备方法”(CN201710117068.1)以氧化铝微粉和石灰石为原料制备六铝酸钙轻质耐火材料,有效降低了耐火材料的体积密度和热导率。“一种刚玉-尖晶石轻量耐火材料及其制备方法”(CN201610172544.5)以镁砂和碳为反应源,制备了烧成温度低、气孔率可调的刚玉-尖晶石轻量耐火材料,虽然该耐火材料的抗渗透和侵蚀性能有所改善,但从钢厂的实际应用情况来看,高品质钢的质量控制仍然难以实现。目前仅靠提升耐火材料自身性能的技术,很难消除耐火材料引入的杂质对高品质钢的影响。
发明内容
本发明旨在克服现有技术缺陷,目的是提供一种原生电磁场SiC-ZnO复合材料的制备方法,用该方法制备的原生电磁场SiC-ZnO复合材料具有良好的高温力学性能,并能利用服役过程中的温差原位产生电磁场,改善工作层与钢渣的界面作用,减少工作层对钢水的污染,提升钢铁质量。
为实现上述目的,本发明采用的技术方案是:以40~60wt%的碳化硅颗粒、0~10wt%的碳化硅细粉和30~60wt%的热电氧化物粉体为原料,外加所述原料5~10wt%的粘结剂,混练,机压成型,干燥,即得干燥后的坯体;将干燥后的坯体置于高温炉中,以25~35℃/h的速率升温至1200~1600℃,保温8~10h,制得原生电磁场SiC-ZnO复合材料。
所述碳化硅颗粒的纯度≥99wt%,碳化硅颗粒的粒径为0.088~1mm。
所述碳化硅细粉的纯度≥99wt%,碳化硅细粉的粒径≤0.088mm。
所述热电氧化物粉体为氧化锌和或为掺杂氧化锌;所述掺杂氧化锌的掺杂元素为Al、Ga、Ni和In中的一种;所述热电氧化物粉体的纯度≥99wt%,粒径≤5μm。
所述粘结剂为聚乙烯醇、石蜡和糊精中的一种。
所述机压成型的压强为100~200MPa。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
(1)由于碳化硅不仅具有良好的耐腐蚀及高温力学性能,且具有较高的塞贝克系数;故本发明在氧化锌中添加SiC,不仅用于材料机械性能的增强,且利用其有较好的热电应用潜力,使所制备的原生电磁场SiC-ZnO复合材料具有优良的抗热震和热电性能。
(2)将本发明制备的原生电磁场SiC-ZnO复合材料用于钢包工作衬背面,利用炉内热量向钢包或精炼炉等炉体外壳传递产生的温度梯度,即利用其温差能原位产生电磁场,不需要借助外部辅助产生电磁场,具有节能、环保优点。
(3)本发明通过原位产生的电磁场改变钢包或精炼炉的工作层与钢渣的界面环境,显著改善所述工作层与钢渣的界面作用,提高了工作层耐火材料的使用寿命,减少了钢水的污染。
本发明制备的原生电磁场SiC-ZnO复合材料经检测:体积密度为2.5~4.0g/cm3;耐压强度为255~290MPa;塞贝克系数为-185~-155μV/℃。
因此,本发明所制备的原生电磁场SiC-ZnO复合材料具有高温力学性能优异、热震稳定性及热电性能好,并能利用在服役过程中的温差原位产生电磁场,改善工作层与钢渣的界面作用,减少工作层对钢水的污染,提升钢铁质量。
具体实施方式
以下结合具体实施方式对本发明做进一步阐述,本发明并不局限于下述实施例。
为避免重复,先将本具体实施方式所涉及的技术参数统一描述如下,实施例不再赘述:
所述碳化硅颗粒的纯度≥99wt%,碳化硅颗粒的粒径为0.088~1mm。
所述碳化硅细粉的纯度≥99wt%,碳化硅细粉的粒径≤0.088mm。
所述热电氧化物粉体的纯度≥99wt%,粒径≤5μm
所述机压成型的压强为100~200MPa。
实施例1
一种原生电磁场SiC-ZnO复合材料及其制备方法。本实施例所述制备方法是:
以40~45wt%的碳化硅颗粒和55~60wt%的热电氧化物粉体为原料,外加所述原料5~8wt%的粘结剂,混练,机压成型,干燥,即得干燥后的坯体;将干燥后的坯体置于高温炉中,以25~35℃/h的速率升温至1200~1400℃,保温8~10h,制得原生电磁场SiC-ZnO复合材料。
所述热电氧化物粉体为氧化锌。
所述粘结剂为聚乙烯醇。
本实施例制备的原生电磁场SiC-ZnO复合材料经检测:体积密度为3.7~4.0g/cm3;耐压强度为255~265MPa;塞贝克系数为-185~-180μV/℃。
实施例2
一种原生电磁场SiC-ZnO复合材料及其制备方法。本实施例所述制备方法是:
以44~49wt%的碳化硅颗粒、1~4wt%的碳化硅细粉和47~55wt%的热电氧化物粉体为原料,外加所述原料5.5~8.5wt%的粘结剂,混练,机压成型,干燥,即得干燥后的坯体;将干燥后的坯体置于高温炉中,以25~35℃/h的速率升温至1250~1450℃,保温8~10h,制得原生电磁场SiC-ZnO复合材料。
所述热电氧化物粉体为掺杂氧化锌;所述掺杂氧化锌的掺杂元素为Al。
所述粘结剂为石蜡。
本实施例制备的原生电磁场SiC-ZnO复合材料经检测:体积密度为3.4~3.8g/cm3;耐压强度为260~272MPa;塞贝克系数为-182~-176μV/℃。
实施例3
一种原生电磁场SiC-ZnO复合材料及其制备方法。本实施例所述制备方法是:
以48~53wt%的碳化硅颗粒、2~6wt%的碳化硅细粉和41~50wt%的热电氧化物粉体为原料,外加所述原料6~9wt%的粘结剂,混练,机压成型,干燥,即得干燥后的坯体;将干燥后的坯体置于高温炉中,以25~35℃/h的速率升温至1300~1500℃,保温8~10h,制得原生电磁场SiC-ZnO复合材料。
所述热电氧化物粉体为掺杂氧化锌;所述掺杂氧化锌的掺杂元素为Ga。
所述粘结剂为糊精。
本实施例制备的原生电磁场SiC-ZnO复合材料经检测:体积密度为3.2~3.6g/cm3;耐压强度为266~278MPa;塞贝克系数为-178~-171μV/℃。
实施例4
一种原生电磁场SiC-ZnO复合材料及其制备方法。本实施例所述制备方法是:
以52~57wt%的碳化硅颗粒、4~8wt%的碳化硅细粉和35~44wt%的热电氧化物粉体为原料,外加所述原料6.5~9.5wt%的粘结剂,混练,机压成型,干燥,即得干燥后的坯体;将干燥后的坯体置于高温炉中,以25~35℃/h的速率升温至1350~1550℃,保温8~10h,制得原生电磁场SiC-ZnO复合材料。
所述热电氧化物粉体为掺杂氧化锌;所述掺杂氧化锌的掺杂元素为Ni。
所述粘结剂为聚乙烯醇。
本实施例制备的原生电磁场SiC-ZnO复合材料经检测:体积密度为2.8~3.3g/cm3;耐压强度为272~284MPa;塞贝克系数为-174~-165μV/℃。
实施例5
一种原生电磁场SiC-ZnO复合材料及其制备方法。本实施例所述制备方法是:
以56~60wt%的碳化硅颗粒、6~10wt%的碳化硅细粉和30~38wt%的热电氧化物粉体为原料,外加所述原料7~10wt%的粘结剂,混练,机压成型,干燥,即得干燥后的坯体;将干燥后的坯体置于高温炉中,以25~35℃/h的速率升温至1400~1600℃,保温8~10h,制得原生电磁场SiC-ZnO复合材料。
所述热电氧化物粉体为掺杂氧化锌;所述掺杂氧化锌的掺杂元素为In。
所述粘结剂为糊精。
本实施例制备的原生电磁场SiC-ZnO复合材料经检测:体积密度为2.5~3.0g/cm3;耐压强度为278~290MPa;塞贝克系数为-168~-155μV/℃。
本具体实施方式与现有技术相比具有如下积极效果:
(1)由于碳化硅不仅具有良好的耐腐蚀及高温力学性能,且具有较高的塞贝克系数;故本具体实施方式在氧化锌中添加SiC,不仅用于材料机械性能的增强,且利用其有较好的热电应用潜力,使所制备的原生电磁场SiC-ZnO复合材料具有优良的抗热震和热电性能。
(2)将本具体实施方式制备的原生电磁场SiC-ZnO复合材料用于钢包工作衬背面,利用炉内热量向钢包或精炼炉等炉体外壳传递产生的温度梯度,即利用其温差能原位产生电磁场,不需要借助外部辅助产生电磁场,具有节能、环保优点。
(3)本具体实施方式通过原位产生的电磁场改变钢包或精炼炉的工作层与钢渣的界面环境,显著改善所述工作层与钢渣的界面作用,提高了工作层耐火材料的使用寿命,减少了钢水的污染。
本具体实施方式制备的SiC-ZnO耐火材料经检测:体积密度为2.5~4.0g/cm3;耐压强度为255~290MPa;塞贝克系数为-185~-155μV/℃。
因此,本具体实施方式所制备的原生电磁场SiC-ZnO复合材料具有高温力学性能优异、热震稳定性及热电性能好,并能利用在服役过程中的温差原位产生电磁场,改善工作层与钢渣的界面作用,减少工作层对钢水的污染,提升钢铁质量。

Claims (6)

1.一种原生电磁场SiC-ZnO复合材料的制备方法,其特征在于以40~60wt%的碳化硅颗粒、0~10wt%碳化硅细粉和30~60wt%的热电氧化物粉体为原料,外加所述原料5~10wt%的粘结剂,混练,机压成型,干燥,即得干燥后的坯体;然后将干燥后的坯体置于高温炉中,以25~35℃/h的速率升温至1200~1600℃,保温8~10h,制得原生电磁场SiC-ZnO复合材料;
所述热电氧化物粉体为氧化锌和或为掺杂氧化锌;所述掺杂氧化锌的掺杂元素为Al、Ga、Ni和In中的一种;所述热电氧化物粉体的纯度≥99wt%,粒径≤5μm。
2.根据权利要求1所述的原生电磁场SiC-ZnO复合材料的制备方法,其特征在于所述的碳化硅颗粒的纯度≥99wt%,碳化硅颗粒的粒径为0.088~1mm。
3.根据权利要求1所述的原生电磁场SiC-ZnO复合材料的制备方法,其特征在于所述的碳化硅细粉的纯度≥99wt%,碳化硅细粉的粒径≤0.088mm。
4.根据权利要求1所述的原生电磁场SiC-ZnO复合材料的制备方法,其特征在于所述粘结剂为聚乙烯醇、石蜡和糊精中的一种。
5.根据权利要求1所述的原生电磁场SiC-ZnO复合材料的制备方法,其特征在于所述机压成型的压强为100~200MPa 。
6.一种原生电磁场SiC-ZnO复合材料,其特征在于所述原生电磁场SiC-ZnO复合材料是根据权利要求1-5中任一项所述原生电磁场SiC-ZnO复合材料的制备方法所述制备的原生电磁场SiC-ZnO复合材料。
CN201711287516.9A 2017-12-07 2017-12-07 一种原生电磁场SiC-ZnO复合材料及其制备方法 Active CN107879744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711287516.9A CN107879744B (zh) 2017-12-07 2017-12-07 一种原生电磁场SiC-ZnO复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711287516.9A CN107879744B (zh) 2017-12-07 2017-12-07 一种原生电磁场SiC-ZnO复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107879744A CN107879744A (zh) 2018-04-06
CN107879744B true CN107879744B (zh) 2020-07-24

Family

ID=61773025

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711287516.9A Active CN107879744B (zh) 2017-12-07 2017-12-07 一种原生电磁场SiC-ZnO复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107879744B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176949A (zh) * 1996-09-19 1998-03-25 洪性镛 陶瓷组合物及以其制造吸收电磁波的陶瓷的生产方法
KR20020085025A (ko) * 2001-05-04 2002-11-16 (주)성창산업 전자파 및 수맥파 흡수능을 구비한 차음 및 진동 방지재용조성물 및 이를 이용한 매트
US6705152B2 (en) * 2000-10-24 2004-03-16 Nanoproducts Corporation Nanostructured ceramic platform for micromachined devices and device arrays
CN1483008A (zh) * 2000-11-21 2004-03-17 ʥ�걾�մɼ����Ϲɷ����޹�˾ 静电放电消散陶瓷
CN1635981A (zh) * 2001-07-31 2005-07-06 株式会社新王磁材 制造烧结磁体的方法
US7560160B2 (en) * 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition
CN102362003A (zh) * 2009-11-19 2012-02-22 出光兴产株式会社 In-Ga-Zn系氧化物溅射靶
CN102976785A (zh) * 2012-12-12 2013-03-20 武汉科技大学 一种轻质Al2O3-SiC-C耐火砖及其制备方法
CN104987097A (zh) * 2015-07-30 2015-10-21 武汉科技大学 一种氮化硅结合碳化硅耐火材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176949A (zh) * 1996-09-19 1998-03-25 洪性镛 陶瓷组合物及以其制造吸收电磁波的陶瓷的生产方法
US6705152B2 (en) * 2000-10-24 2004-03-16 Nanoproducts Corporation Nanostructured ceramic platform for micromachined devices and device arrays
CN1483008A (zh) * 2000-11-21 2004-03-17 ʥ�걾�մɼ����Ϲɷ����޹�˾ 静电放电消散陶瓷
KR20020085025A (ko) * 2001-05-04 2002-11-16 (주)성창산업 전자파 및 수맥파 흡수능을 구비한 차음 및 진동 방지재용조성물 및 이를 이용한 매트
CN1635981A (zh) * 2001-07-31 2005-07-06 株式会社新王磁材 制造烧结磁体的方法
US7560160B2 (en) * 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition
CN102362003A (zh) * 2009-11-19 2012-02-22 出光兴产株式会社 In-Ga-Zn系氧化物溅射靶
CN102976785A (zh) * 2012-12-12 2013-03-20 武汉科技大学 一种轻质Al2O3-SiC-C耐火砖及其制备方法
CN104987097A (zh) * 2015-07-30 2015-10-21 武汉科技大学 一种氮化硅结合碳化硅耐火材料及其制备方法

Also Published As

Publication number Publication date
CN107879744A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN107399988B (zh) 一种利用铝硅系工业废渣制备氧化铝-碳化硅复合多孔陶瓷的方法
CN105585314B (zh) 一种致密六铝酸钙耐火熟料及其制备方法
CN106938922B (zh) 硅刚玉耐磨砖
CN103922746A (zh) 一种水基流延成型制备致密氮化硅陶瓷材料及致密异形氮化硅陶瓷材料的方法
CN108083765B (zh) 低导热抗剥落砖及其制备方法
CN106938923B (zh) 硅刚玉耐磨复合砖
CN103922773B (zh) 薄带连铸用氮化硼质陶瓷侧封板及其制备方法
CN103833383B (zh) 一种闭孔结构的刚玉-镁铝尖晶石质耐火骨料的制备方法
CN104446390A (zh) 一种含镁改性刚玉复相材料制备方法
CN103467120A (zh) 一种不锈钢钢包用无磷低碳铝镁不烧砖及其制造方法
CN107500748B (zh) 一种镁铝尖晶石-石墨烯耐火材料制品及其制备工艺
CN105801140A (zh) 一种赛隆结合刚玉-碳化硅质复合耐火材料的制备方法
CN110483023B (zh) 一种微孔化刚玉砖及其制备方法
CN103964859B (zh) 钢薄带连铸用侧封板及其制备方法
CN109553311A (zh) 一种利用菱镁矿微波烧结制备高密度镁砂的方法
CN108455973B (zh) 一种冶炼钒铁合金的直筒炉炉衬的制造方法
CN109650753A (zh) 一种利用菱镁矿放电等离子烧结制备高密度镁砂的方法
CN107879744B (zh) 一种原生电磁场SiC-ZnO复合材料及其制备方法
CN112341218B (zh) 放电等离子烧结高性能镁锆复合陶瓷砖制备方法
CN104140233B (zh) 一种工业炉用的1200℃级低铁隔热浇注料及制备方法
CN109020524A (zh) 一种中频感应电炉用炉衬材料及其制备方法
CN112897994A (zh) 一种刚玉尖晶石复相材料制备方法
CN108484161B (zh) 一种钛酸铝复合材料及其制备方法
CN108033792B (zh) 一种原生电磁场SiC-ZnO耐火浇注料及其制备方法
CN103896606A (zh) 一种高炉陶瓷杯用耐火材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant